
Computational Visual Media

DOI 10.1007/s41095-xxx-xxxx-x Vol. x, No. x, month year, xx–xx

Article Type (Research/Review)

Computing knots by quadratic and cubic polynomial curves

Fan Zhang1,2 � , Jinjiang Li1,2, Peiqiang Liu1,2,and Hui Fan1,2

c© The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract A new method is presented to construct

a model for computing parameter value (knot) for

each data point. With four adjacent data points, a

quadratic polynomial curve can be determined uniquely

if the four points form a convex polygon. When the

four data points do not form a convex polygon, a

cubic polynomial curve with one degree of freedom

(a variable) is used to interpolate the four points,

to make the cubic polynomial curve have the better

shape or approximate the polygon formed by the four

data points. The degree of freedom is determined by

minimizing the cubic coefficient of the cubic polynomial

curve. The first advantage of the new method is

that the knots computed by the new method has

quadratic polynomial precision, in the sense that if the

data points are sampled from an underlying quadratic

polynomial curve, and the knots computed by new

method are used to construct quadratic polynomial, the

resulting interpolation curve reproduces the underlying

quadratic curve. The second advantage of the new

method is that it is affine invariant, which is very

important while most parameterization methods do not

have this property. And the third advantage of new

method is that it computes knots as a local method.

Experiments show that the curves constructed with

the knots computed by the new method have better

interpolation precision than the existing methods.

Keywords Knot, Polynomial curve, Minimizing,

Affine invariant.

1 School of Computer Science and Technology,

Shandong Technology and Business University,

Yantai, 264005, China. E-mail: zhangfan51@sina.com,

lijinjiang@gmail.com.

2 Co-Innovation Center of Shandong Colleges

and Universities: Future Intelligent Computing,

Yantai 264005, China. E-mail: liupq@126.com,

fanlinw@263.net.

Manuscript received: 2014-12-31; accepted: 2015-01-30.

1 Introduction

In the fields of computer-aided design, engineering,

scientific computing, and computer graphics, one of

the fundamental problems that needs to be confronted

is the construction of curves and surfaces with high

precision and smoothness. The constructed curves and

surfaces require high precision and unique attributes

in different applications [1, 6, 7, 11, 24, 31]. To meet

these requirements, better interpolation techniques

and parameterization methods are needed. For

scientific computation and engineering application, the

method of constructing curves and surfaces with high

polynomial accuracy is an ideal method. This paper

focuses on how to determine the parameters (knots) of

a given set of points with high precision.

Previous work: For a given set of data points,

Pi = (xi, yi), i = 1, 2, ..., n, the aim of parameterization

is to assign a parameter value ti, t0 <t1 <tn, known

as knots for each Pi. Interpolation curve can be

seen as the movement of particle sequence through the

position space (i.e., data points). Parameter t could

be regarded as time, then the parameterization of the

data points is equal to the time that a particle in

turn arrives at the position space. For the same set

of data, even with the same interpolation methods,

constructing curve with different parameterization

will result in different approximation result. That

means the choice of a parameterization method will

have a noticeable effect on the interpolated curve.

Uniform parameterization is only suitable for some

occasion that the intervals between consecutive data

points are even. In application, three non-uniform

parameterization strategies are widely used: the

chord length method [22], Foley’s method [9] and

the centripetal method [18]. The chord length

method was an ideal parameterized method, for it

can reflect well the distribution according to chord

length between consecutive data points. However,

this interpolation only works well when the parametric

1

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

https://www.editorialmanager.com/cvmj/download.aspx?id=36950&guid=5b701312-74e1-47dd-b1eb-ec4bb2151749&scheme=1
https://www.editorialmanager.com/cvmj/download.aspx?id=36950&guid=5b701312-74e1-47dd-b1eb-ec4bb2151749&scheme=1
https://www.editorialmanager.com/cvmj/viewRCResults.aspx?pdf=1&docID=581&rev=1&fileID=36950&msid=9d76c604-b3e5-4bcb-a632-529c24f9e40f

2 Fan Zhang et al.

curve is a straight line. The centripetal method

assumes that, for a single arc, the centripetal force

is proportional to the corner of curve tangent vector

from start to end of the arc. Foley’s method was

an adapting chord parameterization method and good

planar parameterization results can be derived from

this method. But in terms of the approximation error,

our experiments show that none of them can produce

a satisfactory result.

The work by Lee [18], Jeong et al. [17] had a

strengthened approach effect on those curves/surfaces

whose curvature changes greatly and is irregular.

However, our experiments show that the Jeong’s

method [17] generally results in more errors than

the method [18]. In addition, among the

chord length method, Foley’s method [9] and the

centripetal method [18], only the centripetal method

can assure no local self-intersections on the constructed

curve [28]. Yuksel et al. [28] gave an analysis of

these three methods, showed that the curve produced

by centripetal parameterization was more visually

appropriate curves than those by the two others. But

no mathematical explanation was given. Therefore,

though the centripetal method is especially suitable

for the unevenly data points distribution, the resulting

interpolation curve of these methods do not always

catch all the data characteristic. Fang et al. [8]

refined the interpolation results of the centripetal

method [18] to improve the wiggle evaluation, especially

for abrupt chang data interpolation. A new universal

parametrization [20] for B-spline interpolation is

presented, which could improve the performance of

the existing parametrizations such as the ones [9, 18,

22] by using the nature of B-spline basis function,

the experiments showed that this method could not

improve the precision of the interpolation curves.

Note that the interpolation precision of the knot

locating methods previously mentioned is only linear,

which implies that for the knot-set computed by

above methods are used to construct interpolation

curve, the interpolating curve will not be a quadratic

polynomial curve if the data points are sampled from

a quadratic polynomial curve. To solve the problem

of that the data points are sampled from a non-

linear curve, e.g., a quadratic or cubic polynomial

curve, the underlying high-order curve [29, 30] with a

higher interpolation precision is required to reconstruct.

Zhang et al. [29] proposed a global method for

choosing knots. Constructed interpolation by the

chosen knots can exactly reproduce the quadratic

polynomial curve where the data points are taken

from. The approximation is better than linear precision

methods in terms of error evaluation in the associated

Taylor series. Based on the method of [29], a

local method for determining knots with quadratic

precision was introduced in Zhang et al. [30]. Even

though this method employs a local computation,

it has the ability of preserving quadratic precision.

Hartley and Judd [16] discussed two ways of choosing

knots: an iterative method and a simple formula.

Due to the B-spline nodes were used as parameter

values, method [16] can achieve good shape and good

parametrization. Martin [23] proposed a method of

choosing knots through optimization for parametric

cubic spline interpolation. In the earlier article [19],

the key technology was to generate a unique curve

by minimizing its stress and stretching energies. An

explicit function with high precision was constructed

to compute the knots directly, which avoid solving

non-linear optimization problems. Unfortunately,

this method was still not invariant under affine

transformation for the knot was determined based on

only three consecutive points. The number of control

points for constructing the curve plays an important

role. To solve problems that control points are

redundant or inadequate, for the space case, paper [21]

extended the planar case [27], and proposed an adaptive

removing and adding processes to refine the control

points for the B-spline curve. Some articles also discuss

the parameterization problems of spatial data points

for other applications, article [12–14, 26]constructed a

parametric surface by using the parameterized results.

Parameterization for curve and surface construction

is still an unresolved problem and has attracted

considerable attention. Motivated by the work

[10], Lü [22] identified a family curves that can be

parameterized by rational chord-length, and studied

how the rational quartic and cubic curves were applied

to G1 Hermite interpolation. Similar to Lü [22],

Bastl et al. [4, 5] also replaced arc length segments

with chord lengths approximately, but extended the

property of chord length parameterization of rational

curves by a family of RCL surfaces to any dimension.

Tsuchie and Okamato [25] introduced a curvature

continuous G2 quadratic B-spline curve for fitting

planar curve. The G2 curve is constructed with non-

uniform knots to ensure the G2 condition, thereby, to

reduce the redundant segments in comparison to the

use of uniform knots. To simplify the complicated

optimization problem, the method [25] calculated the

control points and adjusted the knot vector of the

B-spline curve separately. Han [15] also discussed

2

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Computing knots by quadratic and cubic polynomial curves 3

geometric continuous splines in curve design. A class of

general quartic splines is presented for a non-uniform

knot vector. The generated quartic spline curves

had C2 continuity with three local adjustable shape

parameters, which had great influence on the shape

of the spline curves. Bashir [3] presented the rational

quadratic trigonometric Bézier curve with two shape

parameters. Two segments of the objective curve

can be joined with G2 and C2 continuity. Different

from the classical tensor product setting, paper [2]

assigned a different parameter interval to each mesh

edge, which allows interpolation of each section polyline

at parameter values that can prevent wiggling or

other interpolation artifacts, and yields high-quality

interpolating surfaces.

Proposed method: This paper provides a new

method for computing knots. The new method is

derived based on the assumption that the given set of

data points are sampled from a parametric curve that

can be approximated well by piecewise quadratic or

cubic polynomial curves. In particular, the new method

assumes that each curve segment between four adjacent

points can be approximated by a quadratic polynomial

or a cubic polynomial. If the four adjacent consecutive

data points form a convex polygon, four data points

are sufficient for determining a unique interpolation

quadratic polynomial curve. Otherwise, when the

four data points do not form a convex polygon, a

cubic polynomial curve with one degree of freedom

(a variable) is used to interpolate the four points.

The degree of freedom is determined by minimizing

the cubic coefficient of the cubic polynomial curve.

This technique makes the method of constructing

quadratic polynomial curve and cubic polynomial curve

consistent in the sense that for quadratic polynomial

curve, its cubic coefficient is zero, while for cubic

polynomial curve, its cubic coefficient is as small as

possible. Minimizing the cubic coefficient of the cubic

polynomial curve could make the cubic polynomial

curve approximate the polygon formed by the four data

points well, and hence have the excellent shape. As the

knots are determined by the quadratic curve and the

cubic curve, they can reflect the distribution of the data

points well. When the quadratic and cubic polynomial

functions are determined, computing knot for each data

point is an easy task.

The first advantage of the new method is that

the knots computed by this method has quadratic

polynomial precision in the sense that if the data

points are sampled from an underlying quadratic

polynomial curve, and the knots computed by the new

method is used to construct quadratic polynomial, the

resulting interpolation curve reproduces the underlying

quadratic curve. Therefore, when used for curve

construction, the resulting curve could have higher

precision than the methods with linear precision. The

second advantage of the new method is that it is

affine invariant which is very important. Further

more, our method is a local method, thus, it is easy

to modify a curve interactively, consequently making

the curve design process more efficient and flexible.

Experiments show that the curves constructed with

the knots computed by the new method have better

interpolation precision than the ones constructed using

the knots by the existing methods. Experiments show

that approximation precision with our method is better

than the ones proposed in [5, 8, 9, 18, 19, 22, 30].

2 Basic idea of new method

Let Pi = (xi, yi), 1 ≤ i ≤ n, be a given set of distinct

data points. The goal is that corresponding to each

point Pi, a knot ti, ti = 1, 2, ..., n, is computed. And

when the knots are used to construct a parametric

curve P (t) interpolating Pi = (xi, yi), 1 ≤ i ≤ n,

using an existing interpolation method, P (t) should

have a quadratic polynomial precision in the case that

if the given set of data points is sampled from an

underlying quadratic polynomial curve, and the knots

computed by the new method are used to construct

quadratic polynomial, the constructed interpolation

curve reproduces the underlying quadratic curve.

Now, the main idea of the new method is described

briefly as follows. For each point Pi, we locally compute

a knot ti with the consecutive data points. For the two

sets of consecutive data points corresponding to Pi,

{Pi−2, Pi−1, Pi, Pi+1} and {Pi−1, Pi, Pi+1, Pi+2}, two

curves Pi(t) and Pi+1(t) passing the two sets, are

constructed respectively. The two curves Pi(t) and

Pi+1(t) are used to computed the knot ti associated

with Pi.

When the given set of data points, Pi = (xi, yi), 1 ≤
i ≤ n, is sampled from a quadratic polynomial curve,

we compute the ti which satisfy the following condition

that, if the Pi are taken from a parametric quadratic

polynomial P (u) = (x(u), y(u)) defined by

x(u) = X2u
2 +X1u+X0

y(u) = Y2u
2 + Y1u+ Y0.

(1)

i.e., Pi = P (ui), then

ti = αui + β, 1 ≤ i ≤ n (2)

for some constants α and β. This will ensure the

quadratic precision, since a linear transform of the

3

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

4 Fan Zhang et al.

-

6

r r

r

r
r

r

r

y

x


```
```

```
`

```
```

```
```

```

```
```

```
```

```
``̀

```
```

```
```

```
```

``

```
```

```
```

```
```

``

```
```

```
```

```
```

``

```
```

```
```

```
```

``

```
```

```
```

```
```

``

```
```

```
```

```
```

``

```
```

```
```

```

```
```

```
`

```
``

Pi−1

-1

Pi -h
Pi+1

1

Pi+2

Pi+2

Pi−2

Pi−2

Fig. 1 Five data points after transform

knots does not change the shape of a curve.

If the data points Pi, 1 ≤ i ≤ n, are taken

from a quadratic polynomial defined by Eq. (1),

any four consecutive data points {Pi−2, Pi−1, Pi, Pi+1},
i = 3, 4, · · · , n − 1 will uniquely determine a

quadratic polynomial curve Pi(t) which is the same

as P (u) in Eq.(1), but possibly with a different

parameterization. Let tij = αiuj + βi be the knots

computed with respect to Pi(t) passing the four data

points {Pi−2, Pi−1, Pi, Pi+1}. Let ti+1
j = αi+1uj + βi+1

be the knots computed with respect to Pi+1(t) passing

the four data points {Pi−1, Pi, Pi+1, Pi+2}. Although

Pi(t) and Pi+1(t) are the same with the quadratic

curve P (u) in Eq.(1), they could have two different

parameterizations. Thus, we will have two sets of

knot values tij and ti+1
j for the three data points Pj ,

j = i − 1, i, i + 1. Since the two sequences of knots tij
and ti+1

j , j = i−1, i, i+1, are both linearly related to ui,

it is possible to use a linear mapping to match up the

two sequences. For each point Pi, 1 ≤ i ≤ n, a knot ti is

locally computed using two curves Pi(t) and Pi+1(t), all

the ti could have the different parameterizations, one

needs to reparameterize ti in a parameter space.

To develop a complete solution based on the idea

above, we face two tasks:

1) Computing the local knot sequence tj from the

two groups of four consecutive data points separately;

2) Merging all these local knot sequences into a

global knot sequence in a parameter space, which has

quadratic precision.

These two steps will be explained in the following

sections.

3 Computing Knot si from Consecutive

Data Points

In this section, the main structure, functions and

calculation methods of the knots of three consecutive

points {Pi−1, Pi, Pi+1} from their neighboring points

are discussed in detail. For each set of four neighboring

points {Pi−2, Pi−1, Pi, Pi+1}, a quadratic curve or cubic

curve Qi(s) can be uniquely defined. But meanwhile,

by the next set of four points {Pi−1, Pi, Pi+1, Pi+2}, a

quadratic curve or cubic curve also can be determined

. Here the three points {Pi−1, Pi, Pi+1} are owned

by these two sequences. Note that the group of each

three neighboring points is a participant in at least two

adjacent sequences. The key is the combination of the

two sequences of si and si+1.

3.1 Computing si by a quadratic polynomial

For the given five consecutive sequent points Pj =

(xj , yj), j = i − 2, i − 1, i, i + 1, i + 2, if Pi−1, Pi and

Pi+1 are non-collinear, then, by the following transform

x = a11(x− xi) + a12(y − yi)
y = a21(x− xi) + a22(y − yi)− h,

(3)

where

a11 =
yi−1 − 2yi + yi+1

r

a12 =
−xi−1 + 2xi − xi+1

r

a21 =
h(yi−1 − yi+1)

r

a22 =
h(xi+1 − xi−1)

r
r = (xi+1 − xi)(yi−1 − yi)− (xi−1 − xi)(yi+1 − yi).

(4)

The coordinates of Pi−1, Pi and Pi+1 can be

transformed as (−1, 0), (0,−h), (1, 0), as shown in

Figure 1. The quadratic polynomial Pi(s) to interpolate

points (−1, 0), (0,−h) and (1, 0) is as follows:

x =
(s− si)(1− s)

si
+
s(s− si)

1− si
y =

s(s− 1)

si(1− si)
h,

(5)

where 0 < si < 1 is a parameter to be determined,

which satisfies

si =
ti − ti−1

ti+1 − ti−1
. (6)

Theorem 1 In the formula(5), the relationship

between parameter s and point (x, y) is defined by

s =
1 + x+ y(1− 2si)/h

2
. (7)

4

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Computing knots by quadratic and cubic polynomial curves 5

Prof. The formula(5) are rewritten as

x =
(s− si)(1− s)(1− si) + s(s− si)si

si(1− si)
y

h
=

s(s− 1)

si(1− si)
.

(8)

We have
xh

y
=

(s− si)(1− s)(1− si) + s(s− si)si
s(s− 1)

. (9)

Now
xh

y
=

(s− si)(1− s− si + 2sis) + si(1− si)
s(s− 1)

− h

y
.

(10)

By simple algebra calculation, it follows from Eq.(10)

that formula Eq.(7) holds.

Eq.(7) indicates that, once parameter si associated

with (xi, yi) has been identified, parameter value s at

point (x, y) can be achieved by Eq.(7). How to compute

the parameter value si with point (x, y) is discussed

below. Similarly, by simple algebra calculation, the

relationship between parameter si and point (x, y) can

be obtained from Eqs. (7) and (5), which is as follows:

a(x, y)s2i + b(x, y)si + c(x, y) = 0 (11)

where,

a(x, y) = 4y(y + h)

b(x, y) = −2y(σ(x, y) + ρ(x, y) + 2h)

c(x, y) = ρ(x, y)σ(x, y),

(12)

with
ρ(x, y) = h(1 + x) + y

σ(x, y) = h(x− 1) + y.

Then parameter si is the solution of Eq.(11). The five

points Pj , j = i− 2, i− 1, i, i+ 1, i+ 2, can be mapped

via an affine mapping Eq.(3), with the coordinates

(xi−2, yi−2), (0, 1), (0,−h), (1, 0) and (xi+2, yi+2),

respectively, as shown in Figure 1, thus, the Eq.(11)

is invariant under such an affine mapping, and hence,

the parameter si is invariant.

If the coordinate values of point (xi+2, yi+2) satisfy

yi+2 + h(xi+2 − 1)>0 and yi+2 − h(xi+2 − 1)>0, i.e.,

point Pi+2 locates in the solid line area, then the four

points {Pi−1, Pi, Pi+1, Pi+2} form a convex polygon, as

shown in Figure 1. When (x, y) = (xi+2, yi+2), the root

of Eq.(11) is defined as follows:

sri =
−b(xi+2, yi+2)−

√
G(xi+2, yi+2)

2a(xi+2, yi+2)
, (13)

where,

G(xk, yk) = b(xk, yk)2 − 4a(xk, yk)c(xk, yk), k = i+ 2.

Similarly, if the coordinate values of point (xi−2, yi−2)

satisfy yi−2−h(xi−2 + 1)>0 and yi−2 +h(xi−2 + 1)>0,

i.e., point Pi−2 locates in the dotted line area, as

shown in Figure 1. The root of Eq.(11) with (x, y) =

(xi−2, yi−2) is defined as follows:

sli =
−b(xi−2, yi−2) +

√
G(xi−2, yi−2)

2a(xi−2, yi−2)
, (14)

where G(xi−2, yi−2) is defined by Eq.(13).

On the two roots sri (13) and sli (14), we have the

following theorem 2.

Theorem 2 When (x, y) = (xi+2, yi+2), (xi−2, yi−2),

the roots of equation(11) are sri (13) and sli(14),

respectively.

Prof. For simplicity, (x, y) in Eq.(11) is set as (0, y),

then a(x, y), b(x, y) and c(x, y) in Eq.(12) becomes

a(x, y) = 4y(y + h)

b(x, y) = −4y(y + h)

c(x, y) = (y + h)(y − h).

Then, the two solutions of Eq.(11) are as follows:

si =
y ±
√
hy

2y
. (15)

Substituting Eq.(15) into Eq.(7) gets

si =
1

2
(1− ±

√
hy

h
). (16)

For (x, y) = (xi+2, yi+2), sri (13) should satisfies sri > 1,

as y > h, it follows from Eq.(16) that sri should be

defined by Eq.(13). Similarly, for (x, y) = (xi−2, yi−2),

sli < 0 should be defined by Eq.(14). This completes

the proof of Theorem 2.

3.2 si computed by a cubic polynomial

In addition to above two cases, however, we must

mention another one, which is that the coordinate

values (xj , yj), j = i − 2, i + 2, fail to meet yi+2 −
h(xi+2 − 1)>0 and yi−2 + h(xi−2 + 1)>0, i.e., points

Pi−2 and Pi+2 do not locate in the dotted line area and

the solid line area, respectively, as shown in Figure 1.

By this stage, points (−1, 0), (0,−h), (1, 0) and (xj , yj),

j = i − 2, i + 2, do not form a convex polygon, it is

necessary to construct a cubic polynomial to interpolate

the four sequent points. Denote the knot of points

Pj , j = i− 2, i+ 2, as sj , then

sj =
1 + xj + yj(1− 2si)/h

2
. (17)

The cubic polynomial interpolating the four sequent

points is defined by

x = − (s− si)(s− 1)

si
+
s(s− si)

1− si
+

W (s)

W (sj)
Xj

y =
s(s− 1)

si(1− si)
h+

W (s)

W (sj)
Yj ,

(18)

5

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

6 Fan Zhang et al.

g(r)

0 rc 1 r

Fig. 2 The plot of the formula (23)

where,

W (s) = s(s− si)(s− 1)

Xj = xj +
(sj − si)(sj − 1)

si
− sj(sj − si)

1− si
Yj = yj −

sj(sj − 1)

si(1− si)
h.

(19)

Parameter si of Eq.(18) is determined by minimizing

the cubic coefficient of Eq.(18), i.e., by minimizing the

following objective function:

G(si) =
X2
j + Y 2

j

W (sj)2
. (20)

The definition of objective function Eq.(20) is

reasonable. When (−1, 0), (0,−h), (1, 0) and (xj , yj)

form a convex polygon, the cubic coefficient of the

curve function is zero. While, when (−1, 0), (0,−h),

(1, 0) and (xj , yj) do not form a convex polygon, the

cubic coefficient of the cubic curve should be as small

as possible, thus enabling a slow and stable change of

the curve shape in both cases.

3.3 Computing si

When the five points Pj = (xj , yj), i − 2 ≤ j ≤
i+2, are taken from the same quadratic curve, sli = sri .

However, for data points given in general positions (but

still assumed to form a convex chain), these five points

may not lie on the same underlying quadratic curve, so

sli 6= sri . In this case, we would need to reconcile the

two values to determine a knot si for Pi. An obvious

choice would be to set si = (sli+s
r
i)/2. In the following,

a more elaborate scheme to get si from sli and sri will

be proposed, to further improve the estimate of si.

Reconsidering Eq.(11), let

h(x, y, s) = a(x, y)s2 + b(x, y)s+ c(x, y) = 0. (21)

Then, sli and sri are roots of h(xi−2, yi−2, s) and h(xi+2,

yi+2, s), respectively, as shown in Figure 3. Let

si = sli + r(sri − sli) (22)

and

g(r) = h(xi−2, yi−2, si)
2 + h(xi+2, yi+2, si)

2. (23)

-

6

1
r r r

h(xi−2, yi−2, s)
h(xi+2, yi+2, s)

si6

sci

C
CW

sri

�
��

sli

Fig. 3 Positions of sli, s
c
i and sri

It’s obvious that better si in Eq.(22) makes the

g(r) have small value, the reason is that it follows

from Eqs.(5)-(14) that small g(r) means Pi(s) (5)

approximating the five data points (xi−2, yi−2), (0, 1),

(0, 0), (1, 0) and (xi+2, yi+2) well. The shape of g(r) is

given in Figure 2. Our goal is to find a rc so that

sci = sli + rc(sri − sli),
makeing g(rc) being the minimum value of g(r), as

shown in Figure 2, which is defined by

g(rc) = h(xi−2, yi−2, s
c
i)

2 + h(xi+2, yi+2, s
c
i)

2. (24)

The value of rc is determined by
dg(r)

dr
= 0. (25)

The Eqs.(21)-(23) show that Eq.(25) is a cubic

equation, hence, it is easy to solve. Although there

is no case that the Eq.(25) has no root in the interval

(0, 1), for some cases in our experiments, we handle

these special cases by the following way. If Eq.(25) has

no root in the interval (0, 1) for some case, rci is defined

by

sci =

{
sli, if g(0) < g(1).

sri , else
(26)

There are three estimates sli, s
c
i and sri defined by

Eqs.(13), (14) and (22), respectively, for si, as indicated

in Figure 3. Now we are going to compute si as a

combination of sli, s
c
i and sri . We first discuss how to

define the weight ω(si) associated with knot si. If one

of sli, s
c
i and sri is closer to 0.5 than the other two, i.e., sli

is closer to 0.5, then sli should have a bigger affect to the

formation of si, thus the weight ω(sli) is proportional

to sli(1− sli). Let

w(s) =
√
h(xi−2, yi−2, s)2 + h(xi+2, yi+2, s)2. (27)

Obviously, for sli, s
c
i and sri , the best case is that they

satisfying w(sli) = w(sci) = w(sri) = 0. As in this case,

each of sli, s
c
i and sri makes the curves in Eq.(5) or (18)

interpolate the five points Pj = (xj , yj), j = i − 2, i −
1, i, i+ 1, i+ 2. Thus, the weight ω(si) associated with

knot si is inversely proportional to w(si). Based on the

discussion above, weight ω(si) is defined as

ω(si) =
s2i (1− si)2

w(si)
. (28)

6

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Computing knots by quadratic and cubic polynomial curves 7

If one of w(sli), w(sci) and w(sri) is zero, for example,

w(sci) = 0, then si is defined by

si = sci . (29)

If none of w(sli), w(sci) and w(sri) is zero, then, si is

defined by the weighted combination of sli, s
c
i and sri .

The discussion above shows that si can be defined as

follows

si =
ω(sli)s

l
i + ω(sci)s

c
i + ω(sri)s

r
i

ω(sli) + ω(sci) + ω(sri)
. (30)

3.4 Discussion

So far we have excluded the case where some three

consecutive points of them are collinear. Now we need

to address this case. When Pi−1, Pi and Pi+1 are on a

straight line, we set

si =
|Pi−1Pi|

|Pi−1Pi|+ |PiPi+1|
. (31)

This choice makes the quadratic polynomial which

passes Pi−1, Pi and Pi+1 be a straight line with the

magnitude of the first derivative being a constant. Such

a straight line is the most naturally defined curve one

can get in this case.

Finally, for the end data points, s2 corresponding

to Q2(s) is determined using the four points Pj , j =

1, 2, 3, 4, and sn−1 corresponding to Qn−1(s) is

determined using the points Pj , j = n−3, n−2, n−1, n.

4 Computing ti with a local method

Based on the discussion above, with two sets of four

data points {Pj−1, Pj , Pj+1, Pj+2}, j = i− 1, i, one can

construct two quadratic curves Pi(s) and Pi+1(s), and

there are two knot intervals 1− si and si+1 for Pi and

Pi+1, respectively. For Pi(s) , the knot interval for Pi−1

and Pi+1 is set as [0, 1]. While for Pi+1(s), the knot

interval for Pi and Pi+2 is set as [0, 1]. Hence Pi(s)

and Pi+1(s) are defined on different parametric spaces.

The reason is as follows. For Pi(s), the knot interval

for Pi−1 and Pi+1 is set as [0, 1], based on Eq.(6), the

knot corresponding to Pi+2 should be

si+2 = (ti+2 − ti−1)/(ti+1 − ti−1). (32)

Thus, for Pi(s), the knots corresponding to Pi, Pi+1

and Pi+2 are si,1 and si+2, respectively. Since Pi+2

could have any possible position, in general, si,1 and

si+2 will not be 0, si+1 and 1 through a translation

transformation defined in Eq.(6), i.e., for the two sets

{si, 1, si+2} and {0, si+1, 1}, they generally do not

satisfy
1− si
si+2 − 1

=
si+1

1− si+1
.

In the following, we will use a normal form of a

quadratic curve introduced in the work [30] to translate

all Pi(s), 1 < i < n, into the same parameter space,

then to compute the knot interval for Pi and Pi+1

by merging 1 − si and si+1. All the knot intervals

corresponding to data pairs Pi−1 and Pi, i = 2, 3, ..., n−
1, are put together to form a consistent global knot

sequence with respect to the same parameterization of

a quadratic curve.

If the knots corresponding to Pi−1, Pi and Pi+1 are 0,

si and 1, respectively, then, the quadratic polynomial

Pi(s) passing these three data points can be written as

xi (s) = ais
2 + bis+ xi−1

yi (s) = dis
2 + eis+ yi−1,

(33)

where

ai =
(xi−1 − xi)(1− si) + (xi+1 − xi)si

si(1− si)

bi = −ais
2
i + xi−1 − xi

si

di =
(yi−1 − yi)(1− si) + (yi+1 − yi)si

si(1− si)

ei = −dis
2
i + yi−1 − yi

si
.

(34)

If Pi(s) and Pi+1(s) represent the same curve, they can

be transformed into the normal form Eq.(37), and they

will have the same knot interval between Pi and Pi+1.

Suppose that in Eq.(34), ai 6= 0 or di 6= 0. By the

following transformation Eq.(35)

x̄ = x cos θi + y sin θi
ȳ = −x sin θi + y cos θi,

(35)

where,

cos θi =
ai + di√
a2i + d2i

sin θi =
di − ai√
a2i + d2i

and a linear reparameterization Eq.(36)

t =
(
a2i + d2i

) 1
4 s. (36)

Pi(s) (33) can be transformed into the following normal

form
x̄i (t) = t2 + b̄it+ d̄i
ȳi (t) = t2 + ēit+ f̄i,

(37)

where,

d̄i = cos θixi−1 + sin θiyi−1

f̄i = − sin θixi−1 + cos θiyi−1

b̄i =
cos θibi + sin θiei√
cos θiai + sin θidi

ēi =
− sin θibi + cos θiei√

cos θiai + sin θidi
.

(38)

Also, the property of above argument is invariant

under such an normal form transformation of quadratic

polynomial.

7

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

8 Fan Zhang et al.

When the quadratic curve Pi (s) (33) is

transformed into the normal form in Eq.(37) by

the reparameterization process Eqs.(35) and (36), the

knot intervals si and 1 − si in Eq.(33) become ∆i
i−1

and ∆i
i, respectively, which are defined by

∆i
i−1 =

(
a2i + d2i

) 1
4 si

∆i
i =

(
a2i + d2i

) 1
4 (1− si) ,

(39)

where ai and di are defined in Eq.(34).

By mapping each Pi(s) into the normal form, for each

pair of consecutive points Pi and Pi+1, there are two

knot intervals, ∆i
i and ∆i+1

i , 2 ≤ i ≤ n− 1. In general,

∆i
i 6= ∆i+1

i . While for the two end data points, there is

only one knot interval for each of them, i.e., ∆2
1 for the

pair P1 and P2, and ∆n−1
n−1 for the pair Pn−1 and Pn.

We average the two sequences of knot intervals,
{

∆i
i

}
and

{
∆i+1
i

}
, into a single sequence of knot intervals,

{∆i} , i = 1, 2, ..., n− 1, using the following formula

∆1 = ∆2
1

∆i = αi∆
i
i + βi∆

i+1
i , i = 2, 3, ..., n− 2

∆n−1 = ∆n−1
n−1,

(40)

where αi and βi are the weight function, satisfying αi+

βi = 1.

We now discuss the computation of αi and βi in

Eq.(40). If all the data points are taken from the same

quadratic curve, then

αi = βi = 0.5

αi∆
i
i − βi∆

i+1
i = 0.

(41)

For the case that all the data points are not taken from

the same quadratic curve, the values of αi and βi should

have different values, and hence ∆i
i and ∆i+1

i have

different effects on the formation of ∆i. Corresponding

to Pi and Pi+1, there are two knot intervals 1 − si
and si+1. If si(1 − si) > si+1(1 − si+1), in general,

|di − di−1| < |di+1 − di|, which means that si has

higher precision than si+1, hence, ∆i
i should have a

bigger effect on the formation of ∆i than ∆i+1
i . On

the other hand, if si > 1 − si, ∆i
i has higher precision

than ∆i
i−1 as in the case di−1 > di, and similarly, if

1 − si+1 > si+1, ∆i+1
i should have higher precision

than ∆i+1
i+1. This means that αi and βi should be

proportional to the values s2i (1−si) and si+1(1−si+1)2,

respectively. For convenience, we first define two knot

affect factors

α0
i =

s2i (1− si)
s2i (1− si) + si+1(1− si+1)2

β0
i =

si+1(1− si+1)2

s2i (1− si) + si+1(1− si+1)2
.

To determine αi and βi, based on Eq.(41), we first

define the following objective function

G(α1
i , β

1
i) = (α1

i −α0
i)

2+(β1
i −β0

i)2+(α1
i∆

i
i−β1

i ∆i+1
i)2

By minimizing G(α1
i , β

1
i) yields

α1
i =

α0
i (∆

i+1
i ∆i+1

i + 1) + β0
i ∆i

i∆
i+1
i

2(∆i
i)

2 + 2(∆i+1
i)2 + 2

β1
i =

β0
i (∆i

i∆
i
i + 1) + α0

i∆
i
i∆

i+1
i

2(∆i
i)

2 + 2(∆i+1
i)2 + 2

.

(42)

In general, α1
i + β1

i 6= 1, they can not be used to

define αi and βi directly. The factors α0
i and β0

i will be

used to define the final αi and βi again. Now αi and βi
in Eq.(40) are defined by

αi =
α0
iα

1
i

α0
iα

1
i + β0

i β
1
i

βi =
β0
i β

1
i

α0
iα

1
i + β0

i β
1
i

.
(43)

Furthermore, for the end data points, there is only

one knot interval, ∆1
2, for the pair P1 and P2; and there

is one knot interval, ∆n−1
n−1, for the pair Pn−1 and Pn.

So ∆1 and ∆n−1 are defined by

∆1 = ∆1
2

∆n−1 = ∆n−1
n−1.

(44)

Now, the global knot sequence {ti} , i = 1, 2, ..., n, are

determined by

t1 = 0

ti+1 = ti + ∆i, i = 1, 2, ..., n− 1.
(45)

5 Experiments

The experiments are given in this section. The

comparisons are between our method (New) with the

explicit function method(M0) [19], the chord length

method (M1), Foley’s method (M2), the centripetal

method (M3), the quadratic polynomial precision

method (M4) [30], the rational chord length method

(M5) [5] and the refined centripetal method (M6) [8].

The comparison is carried out by three type data points

which are sampled from three sets of the primitive

curves. To ensure the consistency, two of them are

taken from existing studies [29, 30]. The 8 methods

are compared by computing knots for constructing

interpolation curves. The way of constructing curves

and computing tangent vector at each point are

the same as Li [19]. Afterwards, we compare the

interpolation precision of piecewise cubic Hermite

curves constructed by these 8 methods, consider the

performance of the algorithms.

The first type data points are sampled from a family

of elliptic curves, F1(k, t) = (x1(k, t), y1(k, t)), defined

8

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Computing knots by quadratic and cubic polynomial curves 9

0k =

2k =

4k =

6k =

8k =

10k =

12k =

14k =

Fig. 4 The plots of F2(k, t)

by

x1(k, t) = (2 + 0.5k)cos(2πt)

y1(k, t) = 2sin(2πt),
(46)

where k = 0, 1, ..., 13. The second type data points

are sampled from a family of cubic Hermite curves,

F2(k, t) = (x2(k, t), y2(k, t)), k = 1, 2, ..., 14, which is

defined by

x2(k, t) = df1(t) + 3g0(t) + dg1(t)

y2(k, t) = df1(t)− dg1(t),
(47)

where d = 3 + 0.5k, and f0(t), f1(t), g0(t), g1(t) are

cubic Hermite basic functions on region [0, 1].

f0(t) = (1− t)2(1 + 2t), f1(t) = (1− t)2,
g0(t) = t2(3− 2t), g1 = −t2(1− t).

The knots computed by the new method and the

method M4 are exact when the data points are taken

from a quadratic polynomial curve, and as F2(k, t)

is a quadratic polynomial at k = 0, the case when

k = 0 is discarded here. The plots of F2(k, t) =

(x2(k, t), y2(k, t)), k = 0, 2, 4, ..., 14, are given in Figure

4.

The third type data points are taken from four basic

curves, Fl(t) = (xl(t), yl(t)), l = 3, 4, 5, 6, which are

defined respectively as follows.

x = t

y = sin(πt).
(48)

x = t

y = eπt.
(49)

x = t

y =
√

1 + (πt)2.
(50)

x = t

y =
1

1 + (t− 0.5)2
.

(51)

In the comparison, the interval [0,1] is divided into 20

sub-intervals to define the data points Pi = Fj(k, ti) or

Fl(ti), i = 0, 1, 2, · · · , 19, j = 1, 2, l = 3, 4, 5, 6, where

ti is defined by

ti = [i+ λ sin((20− i)i)]/20, i = 0, 1, 2, · · · , 20, (52)

where 0 < λ ≤ 0.25 to ensure the data points

are non-uniformly distributed [29, 30], and meet

Max{di−1, di} ≤ 3Min{di−1, di}.
For F2(k, t) and Fl(t), l = 3, 4, 5, 6, are not closed

curves, it’s therefore easy to reach the maximum error

value at the end points. Instead, the tangent vectors

of F2(k, t) and Fl(t), l = 3, 4, 5, 6, at the end points

t = 0 and t = 1 are used to construct the cubic

Hermite curves. The absolute error curves of F1(k, t),

F2(k, t) and Fl(t), l = 3, 4, 5, 6, are used to evaluate

the 8 algorithms’ performance, which defined as below

[29, 30].

Ej(k, t) = |P (s)− Fj(k, t)|
= min{|Pi(s)− Fj(k, t)|}, j = 1, 2

El(t) = |P (s)− Fl(t)|
= min{|Pi(s)− Fl(t)|}, l = 3, 4, 5

si ≤ s ≤ si+1, i = 0, 1, 2, ..., 19

(53)

where P (s) denotes one of the cubic Hermite curves

constructed by the 8 methods. Fj(k, t), j = 1, 2,

and Fl(t), l = 3, 4, 5, 6, are defined by Eqs.(46)-(51),

respectively. Pi(s) denotes the part of P (s) on the

interval [si, si+1]. The distance from P (s) to Fj(k, t)

and Fl(t) are defined as |P (s)− Fj(k, t)|, j = 1, 2, and

|P (s)− Fl(t)|, l = 3, 4, 5, 6.

Comparison results of these 8 methods for the first

and second types of data points are given first. Table

1 and table 2 describe the maximum values of the

error curves E1(k, t) and E2(k, t) generated by the

8 methods, where, E1(k, t), k = 0, 1, 2, · · · , 13, and

E2(k, t), k = 1, 2, 3, · · · , 14, when λ = 0.15 in Eq.(52).

Table 1 and table 2 highlight the minimum values of

maximum errors. The results displayed in table 1 and

table 2 clearly demonstrate that new method has more

minimum of maximum errors in most cases. Figure 5 is

the error curves E1(k, t) and E2(k, t) at k = 6, λ = 0.15

produced by the seven methods, which gives the visual

feeling to the precision of the curves constructed by

these methods. The error curve by M5 is discarded

because of its similarity to the one by M3. The results

in table 1 and table 2 and Figure 5 fully display the

higher precision of the curves constructed by the new

method, followed by M0 method and M4 method.

Further experiment results on the third type data

points, which are sampled from four basic curves,

Fl(t) = (xl(t), yl(t)), l = 3, 4, 5, 6, defined by Eqs.(48)-

(51), are provided in table 3. Table 3 is the Maximum

errors for the set of data points sampled from F1(t),

9

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

10 Fan Zhang et al.

(3) 140 E
2
 (6, t)by M3

(2) 330 E
2
 (6, t)by M2

(1) 700 E
2
 (6, t)by M1

(2) 92 E
1
 (6, t)by M2

(3) 92 E
1
 (6, t)by M3

(4) 360 E
1
 (6, t)by M4

(5) 360 E
1
 (6, t)by M6

(6) 396 E
1
 (6, t)by M0

(7) 1300 E 2 (6,t)by New(7) 420 E1 (6,t)by New

(6) 1000 E
2
 (6, t)by M0

(5) 600 E
2
 (6, t)by M6

(4) 800 E
2
 (6, t)by M4

(1) 80 E
1
 (6, t)by M1

Fig. 5 Error curves by six methods

10

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Computing knots by quadratic and cubic polynomial curves 11

Tab. 1 Maximum errors of E1(k, t) for λ = 0.15

E1(k, t) New M0 M1 M2 M3 M4 M5 M6
K=0 1.33e-3 1.64e-3 1.02e-3 5.95e-3 1.03e-2 1.11e-3 1.76e-2 8.96e-3
K=1 1.37e-3 1.78e-3 2.18e-3 7.67e-3 1.24e-2 1.24e-3 2.09e-2 1.09e-2
K=2 1.71e-3 2.04e-3 3.49e-3 9.14e-3 1.40e-2 1.75e-3 2.36e-2 1.23e-2
K=3 2.09e-3 2.39e-3 5.59e-3 1.03e-2 1.51e-2 2.24e-3 2.58e-2 1.32e-2
K=4 2.46e-3 2.70e-3 7.99e-3 1.14e-2 1.57e-2 2.71e-3 2.77e-2 1.36e-2
K=5 2.79e-3 2.96e-3 1.07e-2 1.27e-2 1.58e-2 3.19e-3 2.93e-2 1.37e-2
K=6 3.10e-3 3.19e-3 1.35e-2 1.42e-2 1.60e-2 3.63e-3 3.06e-2 1.50e-2
K=7 3.38e-3 3.39e-3 1.73e-2 1.55e-2 1.76e-2 4.03e-3 3.17e-2 1.66e-2
K=8 3.64e-3 3.58e-3 2.20e-2 1.66e-2 1.91e-2 4.41e-3 3.26e-2 1.82e-2
K=9 3.88e-3 3.75e-3 2.71e-2 1.76e-2 2.04e-2 4.75e-3 3.34e-2 1.97e-2
K=10 4.10e-3 3.93e-3 3.23e-2 1.84e-2 2.17e-2 5.08e-3 3.40e-2 2.10e-2
K=11 4.30e-3 4.22e-3 3.76e-2 1.91e-2 2.28e-2 5.38e-3 3.45e-2 2.21e-2
K=12 4.58e-3 4.71e-3 4.30e-2 1.97e-2 2.38e-2 5.66e-3 3.50e-2 2.30e-2
K=13 4.97e-3 5.51e-3 4.83e-2 2.02e-2 2.46e-2 5.93e-3 3.54e-2 2.39e-2

Tab. 2 Maximum errors of E2(k, t) for λ = 0.15

E2(k, t) New M0 M1 M2 M3 M4 M5 M6
K=1 2.23e-5 4.18e-5 7.87e-5 2.24e-4 8.09e-4 2.15e-5 1.26e-4 7.60e-4
K=2 4.58e-5 5.49e-5 1.01e-4 2.76e-4 8.83e-4 4.64e-5 1.57e-4 8.32e-4
K=3 7.15e-5 7.69e-5 1.24e-4 3.31e-4 9.53e-4 7.37e-5 1.78e-4 9.01e-4
K=4 9.99e-5 1.03e-4 1.63e-4 3.88e-4 1.02e-3 1.06e-4 1.90e-4 9.64e-4
K=5 1.33e-4 1.33e-4 2.06e-4 4.45e-4 1.07e-3 1.51e-4 2.30e-4 1.02e-3
K=6 1.31e-4 1.67e-4 2.47e-4 4.99e-4 1.12e-3 1.85e-4 2.66e-4 1.06e-3
K=7 1.82e-4 2.05e-4 2.83e-4 5.49e-4 1.14e-3 1.93e-4 2.97e-4 1.09e-3
K=8 2.09e-4 2.45e-4 3.76e-4 5.90e-4 1.15e-3 2.49e-4 3.24e-4 1.10e-3
K=9 3.34e-4 2.86e-4 4.92e-4 6.58e-4 1.12e-3 5.03e-4 3.46e-4 1.07e-3
K=10 3.16e-4 3.33e-4 6.39e-4 7.23e-4 1.04e-3 4.18e-4 3.97e-4 1.01e-3
K=11 3.49e-4 3.97e-4 9.32e-4 7.76e-4 9.93e-4 5.09e-4 4.70e-4 9.73e-4
K=12 4.44e-4 4.50e-4 1.35e-3 8.06e-4 1.03e-3 5.78e-4 5.54e-4 1.02e-3
K=13 3.84e-4 6.19e-4 1.88e-3 7.97e-4 1.04e-3 5.42e-4 6.48e-4 1.04e-3
K=14 4.99e-4 8.43e-4 2.50e-3 7.23e-4 9.85e-4 8.13e-4 7.48e-4 9.79e-4

Tab. 3 Maximum errors of F1(t)

F1(t) New M0 M1 M2 M3 M4 M5 M6
λ = 0.05 4.28e-5 1.56e-4 4.15e-4 2.87e-4 3.87e-4 5.29e-5 2.80e-4 5.46e-4
λ = 0.10 4.51e-5 1.64e-4 4.25e-4 4.52e-4 6.09e-4 5.68e-5 3.08e-4 1.03e-3
λ = 0.15 4.82e-5 1.73e-4 4.32e-4 6.19e-4 9.59e-4 6.05e-5 3.39e-4 1.58e-3
λ = 0.20 5.75e-5 1.82e-4 4.36e-4 8.46e-4 1.36e-3 6.38e-5 3.71e-4 2.17e-3
λ = 0.25 7.27e-5 1.90e-4 4.37e-4 1.13e-3 1.82e-3 6.68e-5 4.09e-4 2.83e-3

when λ = 0.05i, i = 1, 2, 3, 4, 5 in Eq.(52). Table

3 reveals that, for F1(t), the precision of the new

method is much greater than those of the other 7

methods. Similar comparison experiments in other

Fl(t) = (xl(t), yl(t)), l = 4, 5, 6, show the similar result.

Table 3 also indicates that, when construct curves

interpolate the third type data points, the new method

has obviously advantage in curve precision than the

other seven methods. Among the rest seven methods,

M0 has better results than M1-6.

6 Conclusion

The discussion in this paper shows that computing

knots for a given set of data points is equivalent to

the problem of constructing the quadratic polynomial

or cubic polynomial curve. We propose a new

method that based on the fact that the curve segment

between four adjacent points can be approximated by

a quadratic polynomial or a cubic polynomial. If

four adjacent consecutive data points form a convex

polygon, they can determine a unique interpolation

quadratic polynomial curve. When the four data points

do not form a convex polygon, a cubic polynomial

curve with one variable is used to interpolate the four

points, the variable is determined by minimizing the

cubic coefficient of the cubic curve. The method for

constructing quadratic and cubic polynomials makes

the method of computing knots consistent in the sense

as follows. The cubic coefficient for the constructed

quadratic polynomial curve is zero, while the cubic

coefficient for the constructed cubic polynomial curve

is as small as possible. Minimizing the cubic coefficient

of the cubic polynomial curve could make the cubic

polynomial curve approximate the polygon composed

of the four data points well, and hence make the curve

have the shape suggested by the four data points.

As the knots are determined by the quadratic curve

(four data points form a convex polygon) and the

cubic curve(four data points do not form a convex

polygon), they can reflect the distribution of the data

points. When the quadratic and cubic polynomial

11

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

12 Fan Zhang et al.

functions are determined, computing knot for each

data point is an easy task. One of the advantages

of the new method is that the knots computed by

the new method have quadratic polynomial precision,

while the ones proposed in [5, 8, 9, 18, 19, 22] have

only linear precision. This means that from the

approximation point of view, the new method and

the one [30] are better than the other six methods.

Therefore, when used for curve construction, the

resulting curve could have higher precision than the

methods with linear precision. The second advantage

of the new method is that it is affine invariant which

is very important. Further more, our method is

a local method, thus, it is easy to modify a curve

interactively, consequently making the curve design

process more efficient and flexible. Experiments show

that approximation precision with our method is better

than the ones proposed in [5, 8, 9, 18, 19, 22, 30].

It is known that, when constructing a cubic spline

interpolant, with the suitable end conditions and

the knots, the constructed parametric cubic spline

reproduces parametric cubic polynomials. Our next

plan is to investigate whether there is a method of

choosing knots with cubic precision. We also intend

to extend the new method to data parameterization for

constructing surface to fit the scattered data points.

For each local region, the parameters associated with

the data points will be computed by using a local

method, and the constructed surface will have GC1

continuity.

Acknowledgements

This work was supported in part by the National

Natural Science Foundation of China under Grant

61602277, 61772319, in part by the Natural Science

Foundation of Shandong Province under Grant

ZR2016FQ12, ZR2018BF009, in part by Key Research

and Development Program of Yantai City under Grant

2017ZH065, in part by CERNET Innovation Project

under Grant NGII20161204, and in part by the Science

and Technology Innovation Program for Distributed

Young Talents of Shandong Province Higher Education

Institutions under Grant 2019KJN042.

Open Access This article is distributed under the

terms of the Creative Commons Attribution License which

permits any use, distribution, and reproduction in any

medium, provided the original author(s) and the source are

credited.

References

[1] J. H. Ahlberg, E. N. Nilson, and J. L. Walsh. The

theory of splines and their applications. Academic

Press, 1967.
[2] M. Antonelli, C. V. Beccari, and G. Casciola. High

quality local interpolation by composite parametric

surfaces. Computer Aided Geometric Design, 46:103–

124, 2016.
[3] U. Bashir, M. Abbas, and J. M. Ali. The g2 and

c2 rational quadratic trigonometric bézier curve with

two shape parameters with applications. Applied

Mathematics and Computation, 219(20):10183–10197,

2013.
[4] B. Bastl, B. Juettler, M. Lavicka, J. Schicho, and

Z. Sir. Spherical quadratic bézier triangles with chord

length parameterization and tripolar coordinates in

space. Computer Aided Geometric Design, 28(2):127–

134, 2011.
[5] B. Bastl, B. Juettler, M. Lavicka, and Z. Sir.

Curves and surfaces with rational chord length

parameterization. Computer Aided Geometric Design,

29(5):231–241, 2012.
[6] K. W. Brodlie. A review of methods for curve and

function drawing. Mathematical methods in computer

graphics and design, pages 1–37, 1980.
[7] C. Deboor. A practical guide to splines, volume 27.

springer-verlag New York, 1978.
[8] J. J. Fang and C. L. Hung. An improved

parameterization method for b-spline curve and surface

interpolation. Computer-Aided Design, 45(6):1005–

1028, 2013.
[9] G. Farin. Curves and surfaces for computer-aided

geometric design: a practical guide. Elsevier, 1989.
[10] G. Farin. Rational quadratic circles are parametrized

by chord length. Computer Aided Geometric Design,

23(9):722–724, 2006.
[11] I. D. Faux and M. J. Pratt. Computational geometry for

design and manufacture. Horwood Chichester, 1979.
[12] M. S. Floater and M. Reimers. Meshless

parameterization and surface reconstruction.

Computer Aided Geometric Design, 18(2):77–92,

2001.
[13] C. Gotsman, X. f. Gu, and A. Sheffer. Fundamentals of

spherical parameterization for 3d meshes. volume 22,

pages 358–363, 2003.
[14] X. F. Gu and S. T. Yau. Global conformal surface

parameterization. pages 127–137, 2003.
[15] X. Han. A class of general quartic spline curves with

shape parameters. Computer Aided Geometric Design,

28(3):151–163, 2011.
[16] P. J. Hartley and C. J. Judd. Parametrization and

shape of b-spline curves for cad. Computer-Aided

Design, 12(5):235–238, 1980.
[17] S. Y. Jeong, Y. J. Choi, and P. Park. Parametric

interpolation using sampled data. Computer-Aided

Design, 38(1):39–47, 2006.

12

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Computing knots by quadratic and cubic polynomial curves 13

[18] E. T. Lee. Choosing nodes in parametric curve

interpolation. Computer-Aided Design, 21(6):363–370,

1989.
[19] X. M. Li, F. Zhang, G. N. Chen, and C. M. Zhang.

Formula for computing knots with minimum stress

and stretching energies. Science China Information

Sciences, 61(5):052104, 2017.
[20] C. G. Lim. A universal parametrization in b-spline

curve and surface interpolation. Computer Aided

Geometric Design, 16(5):407–422, 1999.
[21] F. M. Lin, L. Y. Shen, C. Yuan, and Z. Mi. Certified

space curve fitting and trajectory planning for cnc

machining with cubic b-splines. Computer-Aided

Design, 106:13–29, 2019.
[22] W. Lv. Curves with chord length parameterization.

Computer Aided Geometric Design, 26(3):342–350,

2009.
[23] S. P. Marin. An approach to data parametrization

in parametric cubic spline interpolation problems.

Journal of Approximation Theory, 41(1):64–86, 1984.
[24] B. Q. Su and D. Y. Liu. Computational Geometry.

Shang Hai Academic Press, 1982.
[25] S. Tsuchie and K. Okamoto. High-quality quadratic

curve fitting for scanned data of styling design.

Computer-Aided Design, 71:39–50, 2016.
[26] H. Xie and H. Qin. A novel optimization approach to

the effective computation of nurbs knots. International

Journal of Shape Modeling, 7(2):199–227, 2001.
[27] Z. Y. Yang, L. Y. Shen, C. M. Yuan, and X. S.

Gao. Curve fitting and optimal interpolation for cnc

machining under confined error using quadratic b-

splines. Computer-Aided Design, 66:62–72, 2015.
[28] C. Yuksel, S. Schaefer, and J. Keyser. Parameterization

and applications of catmull–rom curves. Computer-

Aided Design, 43(7):747–755, 2011.
[29] C. M. Zhang, F. Cheng, and K. T. Miura. A method for

determining knots in parametric curve interpolation.

Computer Aided Geometric Design, 15(4):399–416,

1998.
[30] C. M. Zhang, W. P. Wang, J. Y. Wang, and X. M.

Li. Local computation of curve interpolation knots

with quadratic precision. Computer-Aided Design,

45(4):853–859, 2013.
[31] G. Zhao, W. Li, and J. Zheng. Target curvature

driven fairing algorithm for planar cubic b-spline

curves. Computer Aided Geometric Design, 21(5):499–

513, 2004.

Fan Zhang Fan Zhang received his

B.S. and Ph.D. degrees in computer

science from Shandong University in

2009 and 2015, respectively. From

2012 to 2014, he was invited to visit

the Department of Computer Science,

University of Kentucky, USA, as a joint-

training Ph.D. student. He is currently

an associate professor with the School of Computer

Science and Technology, Shandong Business and Technology
University, Yantai, Shandong. His research interests include

image processing, computer vision, computer graphics and

CAGD.

Jinjiang Li Jinjiang Li received the

B.S. and M.S. degrees in computer

science from the Taiyuan University

of Technology, Taiyuan, China, in

2001 and 2004, respectively, and the

Ph.D. degree in computer science from

Shandong University, Jinan, China, in

2010. From 2004 to 2006, he was an

Assistant Research Fellow with the Institute of Computer

Science and Technology, Peking University, Beijing, China.

From 2012 to 2014, he was a Post-Doctoral Fellow with

Tsinghua University, Beijing. He is currently a Professor

with the School of Computer Science and Technology,

Shandong Technology and Business University. His research

interests include image processing, computer graphics,

computer vision, and machine learning.

Peiqiang Liu PEIQIANG LIU

received the Ph.D. degree in computer

software and theory from Shandong

University, Jinan, China, in 2013.

He is currently a Professor at

Shandong Technology and Business

University. His research interests

include algorithms and complexity

theory, and computational biology.

Hui Fan Hui Fan received the

B.S. degrees in computer science from

Shandong University, Jinan, China, in

1984. He received the Ph.D. degree

in computer science from Taiyuan

University of Technology, Taiyuan,

China, in 2007. From 1984 to 2001,

he was a Professor at the computer

department of Taiyuan University Technology. He is

currently a Professor at Shandong Technology and Business

University. His research interests include computer

aided geometric design, computer graphics, information

visualization, virtual reality, and image processing.

13

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

