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Abstract Deep convolutional networks have obtained 
remarkable achievements on various visual tasks due 
to their strong capabilities in learning abundant 
features. A well-trained deep convolutional networks can  
be compressed to 20%∼40% of the original size by 
trimming many under-expressive filters. This can be 
partly traced back to the fact that many overlapping 
features are generated by potentially redundant filters. 
Model compression is used to reduce the unnecessary 
filters but does not take advantage of redundant filters 
since training phase is not affected. Modern networks 
with residual/dense connections and inception blocks 
are considered to be able to mitigate the overlap in 
convolutional filters, but not necessarily overcoming the 
issue. To address these issues, we propose a new training 
strategy, called Weight Asynchronous Update (WAU), 
which significantly helps to increase the diversity of 
filters and enhance the representation ability of 
network. The proposed method can be widely applied to 
different convolutional networks without changing the 
network topology. Specifically, our experiments show 
that the stochastic subset of filters is updated in 
different iterations can significantly reduce the filter 
overlap of convolutional networks. Extensive 
experiments show that WAU yields noteworthy 
improvements in test
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error, e.g. 2.96% on CIFAR-100 and 1.2% AP@0.5 on

COCO.
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1 Introduction

In the past few years, deep learning methods based on

Convolutional Neural Networks (CNNs) have obtained

significant achievements in machine vision [12, 33],

shape representation [13, 14, 32], automatic speech

recognition [3, 22], natural language processing [20,

34, 35], etc. In particular, many advanced deep

convolutional networks have been proposed to handle

visual tasks. For example, the success of Deep Residual

Nets has inspired researchers to explore deeper, wider

and more complex frameworks [8, 29].

Deep convolutional networks possess strong learning

capability owing to their rich sets of parameters.

However, this characteristic brings about the evident

nuisance of over-parameterization, which further

leads to overlapped/redundant features. It also

causes overfitting to the training set and the

lack of generalization to new data. Several

modern networks, which have hundreds layers (e.g.

ResNet [5], DenseNet [8], Inception [26]), employ

their architectural advantages to alleviate the above

problems. One main factor is that residual connections

through early layers and feature fusion can be

considered as noise addition in the feature space, with

which the network is regularized and hence the overlap

of learned deep features is reduced.

A trained network may be further compressed by 
pruning, quantization or binarization, which typically 
exploits the redundancy in the weights of the trained 
network. In general, the purpose of model compression
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is to minimize the memory cost, and to accelerate the

speed of inference without losing performance, rather

than optimizing the capacity of networks in training.

Exploring the best performance of the modern networks

is still a challenge.

To this end, this work aims to expand the capacity of

the network by reducing the overlap of the filters. Our

method includes the following two major techniques,

which are also the key contributions of this work:

• Weight Asynchronous Update (WAU). We perform

the backward propagation asynchronously to

update a subset of convolutional filters to reduce

the overlap of the filters. Since the proposed

method does not change the original network

architecture, it can be easily applied to neural

network models to boost the performance of

various visual tasks.

• Asynchronous-Synchronous-Asynchronous (ASA)

training flow. Reducing the model capacity

every mini-batch would lead to missing relevant

relationship among deep features and target

outputs [4]. To address this issue, we first apply

WAU to “warm-up” the network and facilitate

initial orthogonality. Then, sync training is

applied, which is beneficial to global learning, as

sync training strengthens the connection among

filters and enhances the relationship between

feature maps and output. Finally, async training

is used again to break the convergent evolution of

the previous training phase and reduce the overlap

of filters.
The remainder of this paper is organized as follows.

Section 2 briefly reviews the related work on model

compression, weight inactivate and its extension in

regularization. Section 3 explains the motivation for

designing WAU. Section 4 and Section 5 respectively

elaborates on the proposed method and its enhanced

method (ASA training flow) in detail. In section 6,

we discuss the evaluation results and compare them

with those of representative approaches. Finally, the

conclusions and future work are discussed in section 7.

2 Related work

Recently, a large number of works have been

published concerning network optimization. Over

the past few years, with efforts of researchers in

this area, significant progress has been made on

some longstanding problems. These approaches can

be grouped into three types according to network

optimization: (1) model compression; (2) weight

inactivate; (3) regularization. We review each of these

approaches in turn.

2.1 Model compression

In order to reduce computational and memory costs,

pruning the well-trained model is the most widely used

method in current model compression [7]. This method

finds an effective criterion to judge the importance

of parameters and prunes the redundant connections

or filters. The pruned smaller model is able to re-

train the knowledge from the original larger model

without significant loss of performance. However,

network pruning aims to reduce the redundancy of

model, but not take advantage of increasingly deeper

and wider networks. The reason is that network

pruning reduces over-parameterization in the inference

phase, but does not provide a solution for the training

phase. We propose a training scheme that also focuses

on mitigating over-parameterization and especially

increasing the capacity of deep convolutional networks.

2.2 Weight inactivation

For model pruning, inactivating the least effective

filters is beneficial for constructing efficient CNNs

without sacrificing the performance. Inspired by this

characteristic, several training strategies have been

explored to re-train the redundant filters with the

conduction of the ranking criterion. DSD [4] applies

a hard threshold mask on kernel weight according

to Taylor expansion of the cost function [18]. DSD

intends to divide filters into two fixed groups via hard

mask |wi| < λ and prunes the least salient group in

the second training phase, but it cannot break the

symmetry within the groups. Currently, RePr [21]

prunes top-N least orthogonal filters according to the

filter orthogonality ranking in the whole network in

each epoch have overtaken DSD. However, there is a

problem of RePr that lower dimensional filers tend to

be pruned in practice. It leads to RePr performing well

in shallow networks while the performance decreases in

deep networks. Therefore, we argue that the degree

of overlap is hardly conducted by a certain criterion.

Our training scheme does not determine by an external

criterion and generates the kernel masks to re-train. A

simple and generic strategy requires less computation

cost.

2.3 Regularization

In order to reduce the generalization error, some

regularization methods are proposed in recent years.

Dropout [25], an effective approach to overcome over-

fitting, which ensembles several weak classifiers to

gain a more robust strong classifier by dropping
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neuron randomly. Additionally, Batch Normalization

(BN) is widely used in modern standard CNNs to

reduce the Internal Covariate Shift problem. However,

the theoretical and empirical evidence demonstrates

that combining Dropout and BN usually causes

unsatisfactory performance [15]. Recently, Shake-Shake

regularization [28] has broken the records of CIFAR10,

which disturbs the forward and backward propagation

with the stochastic affine combination. But, Shake-

Shake [30] slows down the convergence due to the strong

interference, where it requires 1800 epochs to make

ResNet-110 converge on CIFAR-10, and can only be

used in specific 3-branch convolutional networks (e.g.

ResNeXt [29]).

To overcome the above deficiencies, we design an

effective WAU, which can also be regarded as a

regularizer with disturbing learning to add noise into

the network. Firstly, WAU is friendly to be used with

BN and is available to any convolutional networks.

Secondly, WAU does not cost more time to converge

and even requires less number of parameters updating

iterations. Experimental results demonstrate that the

proposed WAU, with a simple but powerful weight

update strategy, is superior to neuron ranking criterion

and has good performance in the learning of deep

networks.

3 Motivation

In each standard backward propagation (BP) step,

the parameters W of filters F are updated with learning

rate η. For the example of a single layer perceptron, the

updating equation of each parameter wi of the hidden

layer h is expressed as follows:

wi = (1 + η)
∂h

∂wi

∂α

∂h

∂lm
∂α

, (1)

where α represents an activation unit. The partial

derivative of wi is determined by a mini-batch loss

denoted as lm, which originates from the same

information entropy −
∑n
j=1 yj log ŷj . yj and ŷj

represent the ground truth and prediction of sample

xj in n classes, respectively. The behavior of updating

all parameters W at the same iteration is referred

to as synchronous learning. However, updating all

weights through the identical information entropy

over thousands of iterations can result in poorly

differentiated features within the same layer. In fact,

this phenomenon widely exists in the modern deep

neural networks, which we call convergent evolution in

this paper.

The convergent evolution usually exists in filters

from the same hidden layer. Because the most widely

accepted understanding of adaptive filters in CNN

is that the filters of bottom layers learn low-level

visual features, while the filters of top layers learn

high-level semantic information. It seems to show

less correlation and discriminative semantic features in

different layers. However, the previous work [16] shows

that the ensemble of the residual blocks is also proved

by lesion study of deleting individual blocks in [27],

and the convergent evolution also appears in different

convolution networks, so-called convergent learning. It

shows that the convergent learning not only exits in

the same layer, but also between different layers. This

echoes the evolution theory in biology: the independent

evolution of similar features in species of different

lineages, due to the same type of environment and

similar lifestyle [19]. In short, the low-discriminative

filters result in the inefficiency of deep convolutional

network.

(a) Synchronous (b) Asynchronous

Fig. 1 The comparison of features between Sync and Async.

(a) Features learned by sync updating. (b) Features learned by

async updating.

Based on this motivation, we introduce the

Weight Asynchronous Update (WAU) to prevent the

convergent evolution and network symmetry. WAU

allows different filters to be updated in different

iterations. This constraint increases the diversity of

filters within the same layer and between the different

layers. To demonstrate the effectiveness of WAU, we

compare the generated features by kernels in sync

updating and async updating. As shown in Fig. 1(a),

the highly related filters lead features to gain similar

and weakly differentiated representations. Apparently,

the various and diverse features are generated by WAU

training strategy. As shown in Fig. 1(b), it mitigates

the overlap and improves the representation ability

of convolutional networks. The L2 regularization is

applied to constrain the filters that are close to zero.

Thus, more plain green regions do not contain useful

information in Fig. 1(a) than Fig. 1(b).
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4 Weight asynchronous update

WAU aims to reduce the potential overlap by

updating the dynamic subset F̂ of convolutional filters

F in each mini-batch. Each convolutional filter (3D

tensor) is considered as a single neural unit. To ensure

the sparsity of a single layer, we sample filters on layer-

level by fixing the async rate r ∈ [0, 1]. In other words,

all the filters would be updated one time on average

within 1/r cycles. The expectation of the number of F̂

of layer l in iteration t is defined as follows:

E[F̂l,t] = |Fl,t|r. (2)

We use the SGD algorithm as an example to explain

how the filters update asynchronously in a mini-batch.

The standard SGD optimizer is shown in the equations

as below:

gt = ∇θt−1f(θt−1), (3)

∆θt = −η ∗ gt, (4)

θt = θt−1 + ∆θt. (5)

The SGD optimizer calculates the gradient gt of

the objective function with respect to the current

parameter f(θt−1). In Eq. 4, η denotes the learning

rate and ∆θt is the descent gradient at iteration t. θt
can be obtained by updating θt−1 with ∆θt.

For each mini-batch, we sample active filters F̂l,t from

Fl,t to make every filter having the same probability

r of weight update via stochastic sampling function

S. Updating the weight of the network asynchronously

is implemented by applying a mask function ψ which

depends on F̂l,t as shown below:

θt = θt−1 + ψ(∆θt) (6)

ψ(∆θt) =

{
∆θt if θt ∈ F̂l,t
0 if θt ∈ Fl,t − F̂l,t

(7)

F̂l,t = S(Fl,t, r) (8)

Figure 2 illustrates the weight asynchronous update

training strategy in t-th iteration. There is no impact

on forward propagation (all convolutional filters F

are active as normal networks). During the back-

propagation, each layer has a dynamic subset F̂ which

does not update the parameters in t-th iteration. These

convolutional filters are represented as transparent

kernels by multiplying kernel mask ψ in shape 1×1×cl.
The goal of WAU is to change the way of updating

the convolution filters. Our sampling function S does

not explicitly influence the work of the optimizer and

BN, but only decides whether the weight is updated or

not. Specially, for the adaptive optimizer [1, 10] which

forward backward

2w

2h
2̂F

2c '2c
2w

2h
2F

1c
1w

1h
1F

21 1 c 

11 1 c 

1c '

1h

1w

1̂F
kernel mask

kernel mask

Fig. 2 Weight asynchronous update training strategy. c, w and

h are represented as channel, width and height, respectively.

needs to save the previous variables, it also works in

the normal way when using our training scheme.

5 ASA training flow

The extended version of WAU is introduced in this

section. Inspired by [4], we propose an ASA training

flow that includes three processes: async weight update,

sync weight update and re-async weight update.

• Async. The CNNs [5, 8, 12] use various weight

initialization to avoid learning redundant features,

but they are unable to handle the redundant

features in the training phase. The first Async

step not only learns the values of the weights, but

also aims to expand the gap between the filters

and warm up the network, which is equivalent to

initializing the network by learning the real-world

data.

• Sync. The hierarchical relationships of the features

generated by kernels in different layers, which

are formed in standard back-propagation. The

weights of the network are updated synchronously

to enhance the relationship of deep features and

the outputs [4].

• Re-Async. The filters are updated asynchronously

to ensure that the weights of the redundant filters

can be differentiated in different directions. The

hyper-parameters, such as async rate and weight

decay r, are consistent with the first Async step.

The re-Async step increases the diversity of the

kernel, as well as the capacity of the network.

Compared with sparse networks, it is possible to

converge to better local minima from Sync step.
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The pseudo-code of our proposed approach is shown

in Algorithm 1.

Algorithm 1 ASA training flow.

for all N epochs do

F̂ = S(F, r);

for all C mini-batches do

Network back propagation with F̂ ;

F̂ = S(F, r);

end for

end for

for all N epochs do

Reinitialize the optimizer state and the learning rate

schedule;

for all C mini-batches do

Network back propagation with F ;

end for

end for

for all N epochs do

Reinitialize the optimizer state and the learning rate

schedule;

F̂ = S(F, r);

for all C mini-batches do

Network back propagation with F̂ ;

F̂ = S(F, r);

end for

end for

6 Results

First, we compare the standard CNNs [5, 6, 8, 12,

24, 29, 31] with convolutional networks that added

WAU strategy; in addition, we extend to some visual

tasks. Secondly, we verify the effectiveness of ASA

training flow. As our theoretical analysis shows, we

have experimentally proved that the WAU method

effectively reduces the overlap filters. Finally yet

importantly, we demonstrate that the WAU method

has a faster convergence speed and should be more

friendly combined with BN for better performance. In

order to prove the effectiveness of our approach, we

follow the original training protocol to train the neural

networks without fine-tuning, such as the same strategy

of decreasing learning rate and hyper-parameters. The

corresponding code and model are available at our

community (https://github.com/djzgroup/wau).

6.1 Comparison of different convolutional

networks

It is worth mentioning here that if there is no

special mention, the hyper-parameters are set to be

the same in all experiments (for example, the weight

decay rate is set to 0.0001 and the default asynchronous

rate is r=0.5). Compared to synchronous weight

update, our WAU method achieves significant accuracy

enhancement on different convolutional networks.

Table 1 shows the testing accuracy of WAU on

CIFAR-10 and CIFAR-100. Specifically, on CIFAR-

10, AlexNet [12] gets large improvement by using our

async training method, where the accuracy is enhanced

by 1.66% compared to the baseline. For other famous

convolutional networks (e.g. ResNet [5], VGG [12],

PreResNet [6], ResNext [29], Wide ResNet [31],

DenseNet [8]), our WAU is also effective to improve

their capacity and get better performance than the

baselines (at least 0.43% accuracy improvement). For

DenseNet-40 and DenseNet-100, our WAU strategy

promote them achieve better results (1.63% and 1.10%

improvement respectively) compared to sync training

method. In our experiment, ResNext[29] uses two

special convolutional structures, pointwise convolution

and group convolution. It can be found from Table 1

that ResNext has significantly improved after using

WAU.

Furthermore, for the more complex and challenging

dataset CIFAR-100, which is a 100-class classification

problem and that requires much more diversified filters,

the performance of networks trained with WAU is still

better even obtains larger improvement than CIFAR-10

compared with the baseline.

For AlexNet [12], the accuracy enhancement is 1.06%

(2.72% vs 1.66%) more on CIFAR-100 than on CIFAR-

10. For VGG-BN [24], the performance is boosted

by 2.96% and 2.53% (2.96% vs 0.43%) compared to

the baseline and CIFAR-10 respectively. Particularly,

DenseNet-40 gains the biggest boost, which improves

the relative accuracy is 4.13%.

Table 1 exhibits that our method WAU can

improve the performance of most convolutional network

frameworks. The WAU training flow is a generic

strategy since it does not depend on the specific

network framework. Simply, in contrast to the

weight synchronous update, our WAU method can

produce more diverse filters (Fig. 1(b)) to learn more

discriminative data representation; therefore, better

performance can be obtained.

In addition, the effectiveness of the proposed WAU

strategy can also improve performance of other models

in various tasks, e.g. object detection which is shown

in Table 2 and Table 3.

As shown in Table 2, we experimented with Faster

R-CNN using VGG-16 pre-trained on ImageNet. The

model was trained on the COCO trainval35k dataset

and evaluated on the minival set. AP represents the

average results of different classes with 10 Intersection
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6 Dejun Zhang et al.

Tab. 1 Overview of the performance improvement (Imp.) from our WAU. The proposed WAU shows significant gain over the

baseline on both CIFAR-10 and CIFAR-100 [see [11], chap. 3].

Test Accuracy (%)

Networks Depth CIFAR-10 CIFAR-100

Baseline WAU Baseline WAU

AlexNet [12] - 77.26 78.92 (1.66↑) 45.17 47.89 (2.72↑)
ResNet-50 [5] 50 92.68 93.38 (0.70↑) 70.58 71.41 (0.83↑)
VGG-BN [24] 19 93.01 93.44 (0.43↑) 70.76 73.73 (2.96↑)
PreResNet [6] 110 93.58 94.12 (0.54↑) 72.53 73.23 (0.70↑)
ResNext [29] 29 95.56 96.11 (0.55↑) 80.54 82.75 (2.21↑)

Wide ResNet [31] 28 95.54 96.16 (0.62↑) 80.91 81.10 (0.19↑)
DenseNet [8] 40 89.91 91.54 (1.63↑) 63.28 67.41 (4.13↑)
DenseNet [8] 100 91.10 92.20 (1.10↑) 68.08 70.22 (2.14↑)

Tab. 2 Object detection results of Faster R-CNN [23] on the

COCO minival set [17]. All models are trained on the trainval35k

set with images of image scale 600 pixels.

Network AP@.5 AP

VGG-16 w/o WAU 46.9 26.9

VGG-16 with WAU 48.1 (1.2↑) 27.4 (0.5↑)

Tab. 3 Object detection results using Faster R-CNN [23] tested

on the Pascal VOC 2007 test set. Models are trained on the

Pascal VOC 2007 trainval set.

Network Baseline Ours(WAU)

Faster R-CNN w/o WD 70.10 70.74 (0.64↑)
Faster R-CNN with WD 69.80 70.80 (1.00↑)

over Union (IoU) thresholds of 0.50:0.05:0.95, and

AP@.5 is result with the IoU thresholds of 0.5.

Remarkably, our method gain 1.2% AP@.5 and

0.5% AP improvement compared to the VGG-16

baseline. This model has many fewer parameters (by

a factor of 11×) than the vanilla ConvNet, leading

to significantly higher error rates, but we choose to

equalize inference time rather than parameter count,

due to the importance of inference time in many

practical applications.

The object detection networks are trained on the

train split and tested on the test split of the Pascal

VOC dataset. We use AP@.5 for characterizing the

performance that is the standard Pascal VOC metric.

Table 3 shows that our WAU strategy also boosts the

performance of the baseline on Pascal VOC dataset in

object detection task. However, we notice that training

Faster R-CNN in WAU training strategy presents

different performances without and with Weight Decay

(WD), which respectively improve by 0.64% mAP and

1% mAP. The weight decay will be briefly analyzed in

Section 6.6.

To sum up, the results of experiments demonstrate

the simple WAU method is suitable for modern

frameworks and various tasks. The improvement of

the performance is partly traceable to the contribution

of diverse filters which generated by WAU, which is

discussed in next subsection.

6.2 The diversity of kernels with WAU

training

Prakash et al. [21] and Li et al. [16] employed

correlation analysis to estimate the similarity between

filters. In this paper, the diversity of kernels are also

evaluated by correlation matrix of filters according

to the Pearson Correlation Coefficient of Canonical

Correlation Analysis (CCA):

Pi,j = E[(Fi − µi)(Fj − µj)]/σiσj ,

where, µi = E(Fi), σi =
√
E[(Fi − µi)2]

(9)

where µ and σ respectively denote as mean value and

standard deviation, and E represents the mean of

filters.

To demonstrate the diversity of the kernels increased

by WAU, we visualize the correlation matrix of filters,

which are random sampled within a layer or a residual

block of ResNet-110.

Figure 3(a) illustrates the CCA of the filter

activations at the same layer in the trained ResNet-

110. The darker color patches represents higher

correlation. It shows that almost half filters reveal

a large correlation to others in the lower triangle,

and many filters are in high correlation. There is no

surprise that convergent evolution of kernels usually

occur within the same layer, since the phenomenon is

demonstrated in section 3.

In Fig. 3(b) illustrates the CCA visualization of filter

activation between two basic blocks inside a Residual

Block of ResNet-110, which reveal the convergent

6

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Weight Asynchronous Update: Improves the Diversity of Filters in Deep Convolutional Network 7

(a) Within Layer (b) Inter Layer

Fig. 3 Comparison between Sync and Async. For (a) and (b),

the upper triangle and lower triangle respectively represent the

results of Sync and Async weight updating training methods.

(a) The correlation of 32 filters within a single layer. (b) The

correlation of 64 filters between two layers inside a Residual

Block.

evolution also exists at the layer level.

From the perspective the lower triangle of Fig. 3(a)

and Fig. 3(b), there is no strong evidence show

that widening and deepening the model can result in

increasing the diversity of kernels. That is because of

the convergent evolution in the model.

Therefore, preventing the convergent evolution and

increasing the diversity of kernels are beneficial for

expanding the capacity of original model. The

upper triangle of two correlation matrix in Fig. 3

demonstrates that the async flow training strategy

significantly reduces the filters correlation within layers

and between layers. Apparently, the trained kernels

learn representations from different directions by using

WAU, and the mitigation of over-parameterization

increases performance.

6.3 Analysis of the ASA training flow

More studies were carried out on the ASA training

flow. We conduct experiments with ResNet-32 trained

on the CIFAR-10 training set and evaluate on the

testing set. We set the Async rate used by the ASA

strategy is “0.5, 1.0, 0.5”. A Sync-Async-Sync (SAS)

training flow is introduced as our baseline. We set the

training epochs to N = 164, thus the total training

epochs are 492. We re-initialize the optimizer state and

the learning rate schedule when we change the weight

update method.

As shown in Table 4, both training flow strategies

improve the test accuracy due to asynchronous weight

update. The ASA training flow gets better result at

the 1st training phase compared to SAS training flow.

In the 2nd phase, ASA training flow method obtains

more significant improvement than SAS training flow

approach (0.54% vs 0.16%). Both methods show similar

performance enhancement at the 3rd phase (0.11% v.s.

0.12%). After the final phase, the test accuracy gain

of our ASA training reaches to 0.65% compared to the

1st phase, and it surpasses SAS training flow strategy

by 0.64% (93.40% v.s. 92.76%).

Table 5 shows that compared to other related

training strategies [2, 4, 21], WAU is more effective

to boost the performance of deep networks and easier

to implement. Strict ranking criterion requires long

training phase for meaningful neuron ranking, and in

most training time the filters are still in a state of

sync updating. In contrast, our stochastic weight

inactivation enables the updatable filters F̂ to continue

to change in different iterations.

6.4 Discussion of convergence speed

There is no doubt that meaningful filters are able

to modify the model performance. As shown in

Fig. 1(a) and Fig. 1(b), we collect learned features

from a group of filters in ResNet-110 [5] via different

training methods. Most channels learn meaningless

deep features by using standard BP. In contrast, after

taking advantage of async learning, the filters learn

more distinguished information and exploit extra deep

network potentiality.

In order to reduce the influence of hyperparameters,

we followed the training strategy of most convolutional

neural networks. Figure 4 shows the behaviors of

different convolutional networks. In all experiments,

we used a strategy of decreasing learning rate. So it

would be a huge increase around 6k, 8k, 15k iteration

because of the learning rate decay.

Our method converges much faster than the sync

method before the first learning rate is reduced. A

large number of error information transferred to the

filters, which significantly accelerates the convergence

speed than the sync training strategy. This is the key

reason why our model achieves high accuracy in the

early stage, with four times less iterations.

6.5 What’s the difference with dropout

Our WAU has some similarities to the well-known

Dropout. The asynchronously updating scheme can

be intuitively regarded as Dropout only on back

propagation. However, there are two major differences

between WAU and Dropout:

• The approach of weight inactivation. The goal

of Dropout is main to prevent overfitting. It

employs Bernoulli random variable r to multiply

every single element-wise with the outputs h of

hidden layer. Each r takes the value 1 with the

hyper-parameter probability p and has probability

7
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8 Dejun Zhang et al.

Tab. 4 Overview of different training flow. Both training flow strategies have obtained improvement, and the ASA training flow

performs better.

1st phase 2nd phase 3rd phase

ASA 92.75 93.29 (0.54↑) 93.40 (0.65↑)
SAS 92.49 92.65 (0.16↑) 92.76 (0.27↑)

Tab. 5 Comparison of test error on CIFAR-10.

Baseline Various Training Schemes WAU

Original [5] DSD [4] BAN [2] RePr [21] Asynchronous ASA

8.7 7.8 8.2 7.7 7.49 (1.21↓) 7.06 (1.64↓)
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(a) AlexNet
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(b) ResNet-50
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(c) VGG19-BN
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(d) DenseNet-40
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(e) PreResNet-110
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(f) ResNet-29
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(g) Wide ResNet-28
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(h) DenseNet-100

Fig. 4 Comparing the testing accuracy and convergence speed

of our WAU method with the baseline on various convolutional

networks on CIFAR-10.

1 − p of being 0, which is a vector independent

of each other. By contrary, WAU method is to

balance sparsity of inactivation, which prevents the

nodes are inactivated in extreme cases. The weight

inactive mask is randomly formed by a hyper-

parameter async rate that fixes the sparsity of each

layer and each iteration.

• Cooperate with batch normalization. Dropout

and BN play significant roles in deep network

regularization. However, these two powerful

techniques do not produce double power in CNNs

when used together (and may actually cause

higher generalization error). Previous work [15]

revealed that this is due to the disharmony

between normalization of BN and Dropout. BN

accumulates the statistics variance during training

phase and maintain it in inference. Dropout

transfer the variance from training to inference.
We further found that there is still a conflict

between Dropout and affine transform yl = γlx̂l +

βl of BN, where x̂l is denoted as normalized input

xl. Affine transform avoids mapping the inputs

to saturated region by the activation function after

normalization [9]. However, Dropout break the

harmony on scale and shift part.

We test block B1, which consists of a sequence

of layers i.e. Conv-Dropout-BN-ReLU, with 0.5

dropping probability. As the green curve shows in

Fig. 5, combining BN and Dropout slows down the

convergence speed and drops the network performance

to 55%. When using B2 i.e. Conv-Dropout-

Normalize-ReLU, which removes the affine transform

of BN, it mitigates the conflict with Dropout and boosts

the accuracy by 20%.

The red carve in Fig. 5 shows that the cooperative

effort between WAU and BN achieves a competitive

93.6% accuracy. Replacing B1 by B2 has a subtle

effect on the network representation performance.

WAU maintains the balance of internal covariate
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Weight Asynchronous Update: Improves the Diversity of Filters in Deep Convolutional Network 9

Fig. 5 Ablation of Affine Transform in BN. The performance

curve of four different models on the task of image recognition.

They are respectively represent WAU with/without affine

transform of BN, and Dropout with/without affine transform

of BN.

shift (ICS) [9] when going from training to inference.

Because WAU is quite different from Dropout, it

does not prune or inactivate the neuron in forward

propagation and thus has no impact on the network

architecture.

6.6 Hyper-parameters

6.6.1 Asynchronous rate

In this section, we focus on the effect of the

hyper-parameter r on the deep neural models. We

take r ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}, and

WAU will collapse to the baseline when r = 1.0. The

performance curves of AlexNet [12] on CIFAR-10 are

plotted in Fig. 6 and the corresponding test results are

reported in Table 6. With the extreme small async

rate r ∈ {0.1, 0.2, 0.3} in which the updating rate

is very low, the performance of our method is worse

than the baseline (light green). With other higher

async rate (r ∈ [0.4, 0.9]), the testing accuracy of us is

much better than the baseline, because of our models

have faster convergence speed in early epoch. For all

the extensive experiments that are conducted in this

paper with different CNNs, our models get significant

accuracy gain by taking default async rate r = 0.5

without careful tuning.

6.6.2 Weight decay

The proposed WAU strategy independently

optimizes the dynamic filter subset F̂ , which allows

to explore larger weight space. Therefore, it has

more probability to escape saddle points and reach

local minimum points. To reduce the exploration of

optimizer as the learning rate decays for building more

stable model, we increase the punishment of weight

and set the weight decay rate to 0.001.

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0
5 5

6 0

6 5

7 0

7 5

8 0

Te
st 

Ac
cu
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y (

%)
E p o c h

 0 . 1   0 . 6
 0 . 2   0 . 7
 0 . 3   0 . 8
 0 . 4   0 . 9
 0 . 5   1 . 0

Fig. 6 The Influence of Hyperparameter r. Appropriate async

rate all result in improved performance, and the parameters are

not strictly sensitive.

Tab. 6 Results of classification by using WAU with different

async rate.

Rate Accuracy

0.1 66.59 (-10.67↓)
0.2 66.74 (-10.52↓)
0.3 66.40 (-10.86↓)
0.4 79.29 (+2.03↑)
0.5 78.92 (+1.66↑)
0.6 78.12 (+0.86↑)
0.7 78.82 (+1.56↑)
0.8 78.15 (+0.89↑)
0.9 78.95 (+1.69↑)

1.0 (baseline) 77.26
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7 Conclusions

We proposed a novel training strategy WAU, which

is able to reduce the overlap of convolutional filters and

produce filters that are more diverse by updating weight

asynchronously. In addition, we present a new training

flow method termed Async-Sync-Async training flow

to enhance the relationship among filters by inserting

a sync updating in training phase, which further

reduces the generation error. Experiments on various

convolutional networks and different visual tasks

demonstrate that the explored WAU method provides

an effective solution to obtain faster convergence speed

and improve the performance of convolutional models.

In particular, visualizations show that our WAU

method changes the behavior of convolutional filters

and obtains better data representation. Remarkably,

compared to the baseline, the network that added WAU

can achieve 2.96% accuracy improvement in CIFAR-100

and 1.2% AP@.5 in COCO object detection task.

The Weight Asynchronous Update improves the

performance of various deep convolutional networks

shown in the results of experiments. In the future,

we intend to extend this work to generic network

frameworks like Multi-layer Perceptron, Recurrent

Neural Network, and make it available to Natural

Language Processing and Speak Processing tasks.

Additionally, another important future direction is to

design an effective and general criterion to accurately

describe the similarity between filters of different

dimensions. The criterion is used to evaluate the

redundancy of the kernels. We can re-train the

redundancy parameters in the network according to the

criterion to improve accuracy.
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