
BADF: BVH-Centric Adaptive Distance Field Computation for Deformable
Objects on GPUs

Xiaorui Chen 1, Min Tang 1, cheng li 1, Dinesh Manocha 2, RuoFeng Tong 1
 1 Zhejiang University 2 University of Maryland

Abstract

We present a novel method (BADF) for accelerating
the construction of ADFs (adaptive distance fields) of
rigid and deformable models on GPUs. Our approach
is based on constructing a bounding volume hierarchy
(BVH) and we use that hierarchy to generate an octree-
based ADF. We exploit coherence between successive
frames and sort the grid points of the octree to acceler-
ate the computation. Our approach is applicable to rigid
and deformable models. Our GPU-based algorithm
is about 20 − 50X faster than CPU-based algorithms.
Our BADF algorithm can construct the distance fields
for deformable models with 60K triangles at interactive
rates on an NVIDIA GTX GeForce 1060. Moreover, we
observe 3X speedup over prior GPU-based ADF algo-
rithms.

1. Introduction

Distance fields are scalar fields that represent the min-
imum distance from any point in space to a shape or ob-
jects in the scene. They are typically computed for a fi-
nite number of points in 3D based on uniform or adaptive
sampling. Adaptive distance fields (ADFs) are sampled ac-
cording to local detail and stored in a spatial hierarchy for
efficient processing. They are used in many applications in-
cluding motion planning, proximity queries, surface recon-
struction, physics-based simulation, etc. [13]. Compared to
uniform distance fields (UDFs), ADFs offer many advan-
tages in terms of quick query processing and lower storage
overhead.

Distance fields are typically computed by repeatedly
performing distance queries between given points and the
boundary of an object. Each query can be accelerated using
hierarchic data structures, e.g., spatial hashing or bound-
ing volume hierarchies (BVHs). For rigid models, distance
fields can be computed once during a pre-process stage.
However, for deformable models, the distance fields need
to be updated or recomputed on-the-fly, which can be chal-
lenging for real-time applications.

Many techniques have been proposed for faster distance
field computation of rigid and deformable models that can
exploit multiple cores on CPUs and GPUs. In particular,

GPU parallelism can be used to perform the distance queries
for multiple points in parallel [14, 18]. While UDF compu-
tation techniques use simple, regular grid based representa-
tion, ADF methods typically use an octree structure to store
the distance fields. The computation of multiple data struc-
tures in terms of bounding volume hierarchies and octrees
slows down the algorithms. In practice, distance field com-
putation can be expensive and may not be fast enough for in-
teractive applications or for the manipulation of deformable
models.

Main Result: We present a novel BVH-based algorithm
(BADF), to accelerate the distance field computation on
GPUs. Our approach is designed to achieve higher per-
formance on commodity processors for interactive applica-
tions. We present new techniques to build integrated data
structures and exploit coherence between successive frames
for faster computation. The major components of our ap-
proach include:

• BVH-centric streamlined data structure: We use a
fast algorithm to construct the BVH and later use that
BVH to compute an octree-based ADF. We first sort
the model triangles based on the Morton code [21] and
then compute a BVH tree using the spatial informa-
tion of the Morton code. We use the node relationship
within a BVH tree and the location information of the
Morton code to generate the octree for ADF computa-
tion. The BVH tree bounding box is refitted to reduce
the range of distances. Finally, the distance queries are
performed according to the octree representation.

• Accelerate distance queries with spatial-temporal
coherence: Our algorithm records the nearest triangle
on the boundary for each query point after the distance
query for the current frame. During the next frame,
the distance to the nearest triangle is used as an up-
per bound and we perform efficient pruning for BVH-
based culling. This reduces the BVH traversal over-
head for distance queries.

• Accurate distance field by sorting query points: We
avoid redundant distance query calculations of the oc-
tree’s grid points by sorting all the grid points based its
Morton code and processing the sorted grid points for
distance queries. Compared to prior techniques, our

1

Submitted to CVM 2020

Construct with Morton

Code

Generate Octree

Distance Query

BVH Octree Query with Coherency

Figure 1. Algorithm Pipeline: Our BVH-centric algorithm first
construct a BVH with Morton codes. We use this BVH for par-
allel distance queries and construct an octree-based ADF. We uti-
lize coherence to accelerate the distance queries. The ADF can be
computed at almost interactive rates for deformable objects.

approach can be used to compute ADF at a finer reso-
lution with a similar runtime performance.

An overview of our approach is given in Figure 1. We
implement BADF and highlight its performance on rigid
and deformable models with up to 1M triangles (See Ta-
ble 1). We highlight our results using a grid resolution of
1283 on an NVIDIA GTX GeForce 1060. For models of up
to 69k triangles, our approach can compute ADF at 46.6 ms
per frame (i.e. 20fps). Compared to a recent GPU-based
algorithm [18], we obtain up to 3X speedup.

2. Background

We give a brief overview of disance field computation
algorithms and describe our notation.

2.1. UDF and ADF

A signed distance field is a volumetric representation
of 3D objects. In a 3D domain B ∈ R3, the signed dis-
tance field can be represented as a signed distance func-
tion, Φ:R3→R, defined by the smallest Euclidean distance
among all the points on the boundary ∂B to a given inquiry
point ξ, i.e.:

Φ(ξ) = s(ξ) inf
ξ∗∈∂B

‖ξ∗− ξ‖, s(ξ) =

{
−1, ξ ∈ B,
1, otherwise.

(1)
Signed distance fields can be further classified as UDFs or
ADFs based on whether they use uniform or adaptive sam-
pling of a 3D space, respectively [8]. ADF algorithms sub-
divide the space adaptively into an octree and only store the
distance to the object scene at the octree’s nodes. Compared
to the uniform sampling of UDFs, ADF algorithms are su-
perior in terms of computation time and memory overhead.

ADFs have been used for various applications, includ-
ing ray tracing [11], collision detection [19], surface recon-
struction [4], motion planning [9], visualization [16], and
geometric modeling [7].

2.2. ADF construction

The construction of ADFs is faster than the construction
of UDFs. However, current ADF computation algorithms
are unable to compute distance fields at interactive rates for
complex deformable models. The main challenges are com-
puting the octree and performing distance queries for each
grid point of the octree.

Different techniques have been proposed to accelerate
the ADF computation by exploiting the parallelism of the
GPUs. Bastos et al. [1] present a method to compute ADFs
on a GPU and store the octree nodes using a hash-based
structure. Liu et al. [18] describe a method to compute dis-
tance fields on GPUs. They use BVH as an acceleration
structure for distance queries and construct it in a top-down
manner. All these methods work well on rigid models and
do not offer interactive performance for deformable models.

2.3. Voronoi Diagrams and Distance Fields

Distance fields are closely related to the generalized
Voronoi diagram (GVD) computation. A GVD divides the
3D space into generalized Voronoi cells based on the prim-
itives closest to each point in the space. Hoff et al. [9]
propose a fast method to compute the approximate GVD
using interpolation-based polygon rasterization hardware.
With the continuous development of GPU architectures and
general-purpose programmability, many faster techniques
have been proposed for GVD computation [5, 6, 10, 22, 26].
The GVD can be regarded as a subset of the locus of dis-
tance field critical points. We can calculate the GVD based
on the distance field or we can use an expansion algorithm
to calculate the distance field in 3D space based on the
GVD.

2.4. Octree Generation

There is considerable work on octree computation, in-
cluding bottom-up and top-down strategies.
Bottom-up Algorithms: Zhou et al. [28], Karras et al. [15],
and Jeroen et al. [2] present techniques to compute octrees.
Many prior methods are based on bottom-up approaches
and Morton codes. Zhou et al. [28] use the resulting oc-
tree for point cloud reconstruction, so it needs to preserve
the vertices, edges, and face during octree computation. For
a given level, Jeroen et al. [2] mask each particle and group
the results with a parallel compaction algorithm. The mask-
ing and grouping procedures are repeated for every single
level until all the particles are assigned to leaf nodes or the
maximal depth of the tree is reached. Karras et al. [15]
construct the BVH in parallel. That algorithm detects all
the edges and generates an octree based on the information
of the edges. On the basis of Karras, Morrical et al. [20]
further figure out the relationship between multiple objects.
For those conflict cells containing multiple objects, Morri-

cal further differentiates by algorithm. Our approach im-
proves on this method for octree computation.
Top-down Algorithms: Zhou et al. [29] use a top-down
construction in another study about kd-tree construction.
However, using such parallel constructs on the GPU causes
most of the computation cores to be idle, especially at the
root of the tree. Liu et al. [18] use a top-down approach to
reduce the idle time of a processor core and instead compute
multiple BVHs. In contrast to these methods, our approach
is better suited to exploiting the multiple cores on the GPU.

2.5. Distance Queries

The time complexity of calculating the distance field al-
gorithm isO(m∗n), wherem is the number of query points,
and n is the time taken for each query point. Many tech-
niques use BVHs to reduce the query time. Other methods
tend to reduce the number of query points. The ADF formu-
lation proposed by Frisken et al. [8] reduces a larger number
of sampling points by using an adaptive grid. Many other
techniques have been proposed to accelerate the distance
field computation.

• Exact Distance Field Around an Object: Sramek
and Kaufmann [24] and Jones et al. [12] present a
method to compute distance field shells that only cal-
culates the distance field near the surface of the object.
This method can reduce the sampling points by half,
but it can not be applied everywhere in the 3D space.

• Level Sets for Propagating Accurate Distances:
Breen [3] and Kimmel [17] propose level sets for
propagating accurate distances throughout the volume.
Breen et al. [3] first calculate the closest points for the
narrow band and zero set, and then uses the fast march-
ing method to compute the closest point.

• Different Types of Query Points: Yin et al. [27] di-
vide the sampling points into three types: the points
having triangles at the lowest level, the points on the
boundary of the lowest level nodes but without trian-
gles, and the points at the center of the non-lowest-
level nodes siblings. This method can reduce a large
number of sampling points, but computes an approxi-
mate distance for some of the query points.

3. BADF: Adaptive Distance Field Generation

In this section, we present our novel algorithm for gener-
ating adaptive distance fields. The overall pipeline is high-
lighted in Fig. 1.

3.1. BVH Generation

Our BVH generation algorithm (as shown in Fig. 2) is
based on the GPU algorithms proposed by Karras [15].
Their algorithm can construct a BVH fully in parallel. We

extend that method so that it can be directly used to generate
the octree. After we sort all the leaf nodes that correspond
one-to-one with the triangle positions in lexicographic or-
der, the range of leaf nodes covered by each internal node
can be represented as a linear range [i, j]. We record δ(i, j)
of each node, which denotes the length of the longest com-
mon prefix between Morton code keys ki and kj . For any
m,n ∈ [i, j] , δ(m,n) ≥ δ(i, j). We can calculate the δ of
each node by comparing the Morton code keys of its left-
most and rightmost leaf nodes. This δ is used for octree
generation.

Figure 2. BVH Generation: We highlight our parallel BVH com-
putation algorithm. The range of keys covered by each node is
indicated by the horizontal bar. The split position, corresponding
to the first bit that differs between the keys, is indicated by a red
circle. We also compute a δ for each internal node, which is used
for octree generation.

3.2. Octree Generation

After constructing the BVH, we use the parent-child
node inheritance relationship and spatial information from
that relationship to generate the octree. On the original
BVH tree, if the δ of the node can be divided by 3, it
means that this node is an internal node of the octree, e.g.
if δi = 3, it implies that the nodei is the child of the root
node in the octree. For a parent node with a prefix of length
δparent and a child node with a prefix of length δchild, if
δchild/3 − δparent/3 > 0, there is an octree node that can
be generated between the child and parent nodes in the BVH
tree. We first set up a maximum octree resolution controlled
by the user as an input parameter. Based on the resolution,
we determine the bit length of the Morton code of the oc-
tree leaf nodes. We traverse the BVH in a top-down manner,
and check if we can insert the octree node on its left or right
children. If so, we can record the Morton code prefix for
this node. The detailed algorithm is shown in Algorithm 1.

Algorithm 1 Octree Generation: We traverse the BVH in
a top-down manner, and check if we can insert the octree
node on its left/right children.

1: procedure OCTREE GENERATION
2: . Traverse the BVH.
3: lvnumi ← number of node in level i
4: d← max depth of octree
5: for Ni in each BVH Node in parallel do
6: δi ← δ of Ni

7: δl ← δ of Ni.LeftChild
8: δr ← δ of Ni.RighttChild
9: if δl/3− δi/3 > 0 then

10: if δl/3 = d then
11: Add to Octree leaf Node Queue Q
12: if δr/3− δi/3 > 0 then
13: if δr/3 = d then
14: Add to Octree leaf Node Queue Q
15: . Now generate the octree.
16: for Li in each Queue Q in parallel do
17: for k=d:1 do
18: if k-th ancestor ofLi has not been initialized

then
19: initialize k-th ancestor of Li

Figure 3. Octree Generation: We traverse the BVH in a top-
down manner (a), and check if we can insert the octree node on its
left/right children (b). Our combination of BVH and octree results
in faster computation.

3.3. BVH Refitting

To facilitate faster distance queries, we need to refit the
constructed BVH. This is necessary because the BVH is ob-

tained by a Morton code and the bounding volume of each
node corresponds to the sub-space, which may not be the
tightest bounding volume of all its triangles. In the process
of refitting a BVH, we use a bottom-up approach and re-
calculate the bounding boxes of each node in parallel in the
GPU. Specifically, we first refit all the leaf nodes in paral-
lel, then iteratively refit all the internal nodes with children
nodes that have already been refitted. In practice, this par-
allel algorithm is quite efficient on GPU, and BVH refitting
takes only approximately 0.3 − 0.8% of the overall ADF
construction time.

Figure 4. BVH Refitting on GPU: Before refitting, the bounding
boxes are generated by space occupied by octree nodes. We obtain
tight fitting bounding boxes surrounding triangles after refitting.

3.4. Query Reduction

After we compute an octree, we perform a distance query
on each octree grid point to construct the final distance field.
However, these grid points are repeated for adjacent octree
nodes. For each octree node, we need to perform 8 queries
for its 8 corners. Most of these queries are redundant since
these corners are often shared by many octree nodes. There-
fore, we assign each corner a Morton code, and use the
code to ensure that there is only one queries for each corner.
In practice, we can reduce the number of queries by up to
2− 3x.

3.5. Distance Queries

We reuse the BVH to speed up distance queries on the
octree corners, which addresses a major efficiency bottle-
neck in our algorithm. The detailed algorithm is highlighted
in Algorithm 2. As shown in Algorithm 2, we perform all
the queries in parallel on the GPU (line 25 -45). Each GPU
thread works on a query point Ci. In each thread, we tra-
verse the BVH in a top-down manner, and store all the ac-
tive BVH nodes into a stack S. We process all the BVH
nodes in S until it becomes empty (lines 31-43). For each
BVH node, if its left or right child is a leaf node, we com-
pute the distance between the triangle in the child and Ci

and update the minimum distance minDist. After all the
BVH nodes in S are processed, we compute the minDist
and its corresponding triangle minItem (line 45) for Ci.

Figure 5. Utilizing Spatial-Temporal Coherence for Distance
Query: We record the triangle with the minimum distance (the
purple one) to the query point during the last frame. The distance
to that triangle is used as an upper bound during the next query
and reduces the overhead of tree traversal.

We also utilize spatial-temporal coherence to accelerate
distance queries for deformable objects. Specifically, we
record the triangle(s) with the minimum distance (the purple
one in Fig. 5) to the query point in the last frame and use its
distance at the current frame as the initial minimum distance
for the new query. This storing of distances from the last
frame and using them to compute upper bounds accelerates
the computation of ADF by 1.5X for deformable models.

3.6. Sign Calculation

We use the angle weighted pseudonormal algorithm [23]
to calculate the normal. This algorithm calculates the
pseudo-normal by assigning the normal deflection by cal-
culating the angular weights corresponding to the faces ad-
jacent to the vertices. The sign of the query point is judged
by the product of the pseudo-normal direction of the query
point and the nearest point.

4. Results and Comparison

In this section, we describe our implementation and com-
pare the performance with prior methods.

4.1. Implementation

We have implemented our ADF construction algorithm
on an NVIDIA GeForce GTX 1060 (with 1280 cores at 1.5
GHz and 6GB memory). Our implementation uses CUDA
toolkit 9.1 and Visual Studio 2013 as the underlying devel-
opment environment. We use a standard PC (Windows 7
Ultimate 64 bits/Intel I7 CPU@4G Hz/8G RAM) to eval-
uate performance. We perform single-precision floating-
point arithmetic for all the computations on the GPU. We
also integrate our algorithm into a GPU-based cloth simu-
lation system, I-Cloth [25], where the ADF computation is
used for collision handling. . We have evaluated our BADF
algorithm for different resolution distance fields for multi-
ple rigid and deformable models.

Algorithm 2 Distance Query: We use the BVH to speed
up distance queries on the octree corners.

1: . Perform Distance Query between a Triangle and a
Point.

2: procedure DISTQUERYTP(Triangle(a, b, c), Point p)
3: . Calculate the distance from p to three corners.
4: dist0 = distance(a, p)
5: dist1 = distance(b, p)
6: dist2 = distance(c, p)
7: . Calculate the distance from p to three edges.
8: dist3 = distance(ab, p)
9: dist4 = distance(bc, p)

10: dist5 = distance(ca, p)
11: . Calculate the distance from the point to the

triangle plane.
12: dist6 = distance(∆abc, p)
13: . Get the maximum distance
14: return min(disti) for i ∈ [0, 6]

15:
16: . Perform Distance Query between a Bounding Box

and a Point.
17: procedure DISTQUERYBP(Box(bi, i ∈ [0, 7]), Point

p)
18: . Calculate the distance from the point to the eight

vertices.
19: disti = distance(bi, p) for i ∈ [0, 7]
20: . Get the maximum distance.
21: return min(disti) for i ∈ [0, 7]

22:
23: . Perform Distance Query for the Octree Corners.
24: procedure DISTANCE QUERY(Octree Corners Ci,

BVH B)
25: for query point Ci in parallel do
26: create local stack S
27: . Use coherency for deformable objects
28: minItem = T ′i
29: minDist = DistQueryTP (minItem,Ci)
30: S.push(B.root())
31: while doS.emty() == false
32: curNode = S.pop()
33: if curNode.rightChild().isleaf() then
34: dist = DistqueryTP (curNode.rightItem(), Ci)
35: if dist < minDist then
36: minDist← dist
37: minItem ←

curNode.rightItem()

38: else
39: dist← DistQueryBT (curNode.rightBox(), Ci)
40: if dist < minDist then
41: S.push(curNode.rightChild())

42: . Same to do with the left child.
43: Processing curNode.leftChild()

44: . Get the maximum distance.
45: Record minDist and minItem for Ci.

Table 1. ADF Construction Time of Rigid Models on an
NVIDIA GeForce GTX 1060

Benchmarks Triangles Construction Time

Andy 34K 65.9ms
Bunny 70K 46.6ms

Armadillo 213K 53.6ms
Dragon 871K 88.9ms
Buddha 1.1M 101.3ms

4.2. Benchmarks

The construction time of our algorithm for different rigid
models is shown in Table 1. As shown in the table, our
algorithm is capable of constructing ADF for models with
several hundreds of thousands triangles within tens of mil-
liseconds on a commodity GPU.

We also use two benchmarks with deforming objects for
evaluation, as shown in Fig. 7. We replace our distance field
algorithm with collision detection and collision response in
the I-Cloth cloth simulation system [25]. We use ADF to
compute the distance between the cloth and an object and
use that to add penalty forces on the cloth nodes to compute
the separation forces, which are a function of the distance.

The first deformable benchmark used for evaluation cor-
responds to Andy: a boy performing Kungfu. It is a human
body model with 33k triangles and the jacket has 22k tri-
angles. In this scenario, the overall cloth simulation can
run at approximately 7− 10 FPS. Another benchmark used
is the Sphere-cloth: A ball moving forward and backward
is interacting with a cloth hanging with two corners. This
benchmark has a piece of rectangle cloth with 16k triangles
and a sphere with 1k triangles. Our cloth simulation (with
ADF computation) can run at approximately 10 − 13 FPS.
As shown in Fig. 8, our algorithm runs pretty fast for all the
frames except the 1st frame. This highlights the benefit of
our algorithm in terms of using frame-to-frame coherence.

4.3. Comparison

Prior GPU-based ADF construction algorithm: We com-
pared our results with [18]. Since the source code imple-
mentation of that algorithm is not available, we estimated
its performance on GTX 1060 based on the reported perfor-
mance data and the number of GPU cores. We observe that
BADF is up to 3X faster and provides an average speedup
of 1.9X, as shown in Fig. 9.

Our algorithm shows good performance improvement
because we use a more parallel GPU-based algorithm to
construct the octrees and BVH trees. Liu and Kim [18]
construct an octree and a BVH using a top-down construc-
tion method, so the time complexity of the algorithm is
O(nlogn). In contrast, we use the parallel construction
method, so the time complexity of our ADF construction

algorithm is O(n). Therefore, as the number of triangles
increase, we observe better performance improvement on
these benchmarks using our algorithm.
Rigid Models vs. Deformable Objects: Our algorithm is
better suited to constructing dynamic or time-varying dis-
tance fields (e.g., for deforming objects). Our approach can
exploit the frame-to-frame coherency between the frames.
The use of coherence can provide 1.5X speedup, on aver-
age.
Different ADF Resolutions: We also evaluate the perfor-
mance of our ADF construction algorithm by varying spec-
ified resolutions. As show in Fig. 10, as the resolution
increases, the ADF construction time slows down accord-
ingly.

5. Conclusion and Limitations

We present a GPU-based ADF construction algorithm
for rigid or deformable objects. We have also integrated
it into an interactive cloth simulation system to compute
proximity constraints and collision response. The main data
structure of our algorithm is a tight BVH that is constructed
in parallel on GPU. This BVH is used both for octree gen-
eration and perform efficient distance queries on the octree
nodes. We also utilize frame-to-frame coherence to acceler-
ate the queries. Our algorithm can compute ADF for com-
plex deformable models at interactive rates on commodity
GPUs and offers up to 3X speedup over prior methods.

Our approach has some limitations. First, the quality and
resolution of ADF depends on a user specified resolution
and shape of the models. Secondly, the benefit of frame-
to-frame coherence are observed after the first few frames.
Moreover, when we use the ADF for cloth simulation, the
penalty force based method can not guarantee all the pene-
trations can be overcome in current time step.

There are many avenues for future research. In addi-
tion to overcoming the limitations, we would like to extend
our algorithm form using a single GPU to multiple GPUs
and use that for interactive distance field computation on
deformable models with millions of triangles.

References

[1] T. Bastos and W. Celes. GPU-accelerated adap-
tively sampled distance fields. In 2008 IEEE Inter-
national Conference on Shape Modeling and Applica-
tions, pages 171–178. IEEE, 2008. 2

[2] J. Bédorf, E. Gaburov, and S. P. Zwart. A sparse oc-
tree gravitational n-body code that runs entirely on the
GPU processor. Journal of Computational Physics,
231(7):2825–2839, 2012. 2

[3] D. E. Breen, S. Mauch, and R. T. Whitaker. 3d scan
conversion of csg models into distance volumes. In

Figure 6. ADF Construction Results of Rigid Models for the Armadillo, Bunny, Buddha and Dragon

Figure 7. Benchmarks for Deformable Models: We use two complex benchmarks, Andy (up) and Sphere (down), and our ADF algorithm
can compute distance fields at 15− 22FPS.

IEEE Symposium on Volume Visualization (Cat. No.
989EX300), pages 7–14. IEEE, 1998. 3

[4] F. Calakli and G. Taubin. Ssd: Smooth signed dis-
tance surface reconstruction. In Computer Graphics
Forum, volume 30(7), pages 1993–2002. Wiley On-
line Library, 2011. 2

[5] T.-T. Cao, K. Tang, A. Mohamed, and T.-S. Tan. Paral-
lel banding algorithm to compute exact distance trans-
form with the GPU. In Proceedings of the 2010 ACM

SIGGRAPH symposium on Interactive 3D Graphics
and Games, pages 83–90. ACM, 2010. 2

[6] I. Fischer and C. Gotsman. Fast approximation of
high-order voronoi diagrams and distance transforms
on the GPU. Journal of Graphics Tools, 11(4):39–60,
2006. 2

[7] S. F. Frisken and R. N. Perry. Designing with distance
fields. In ACM SIGGRAPH 2006 Courses, pages 60–
66. ACM, 2006. 2

Figure 8. ADF Computation of Deformable Models: For
the two benchmarks, Andy and Sphere, we observe significant
speedup on ADF construction by using the temporal-spatial co-
herency between animation frames. We observe improved perfor-
mance after the first few frames due to coherence.

0ms

50ms

100ms

150ms

200ms

250ms

300ms

350ms

Bunny Armadillo Buddha Dragon

Computation of Rigid Model

Our method Liu's method

Figure 9. Performance Comparison with [18]: We observe
up to 3X speedups among all the benchmarks. These speedups are
obtained due to better parallelism, reuse of BVH, frame-to-frame
coherence, and culling of redundant queries.

[8] S. F. Frisken, R. N. Perry, A. P. Rockwood, and T. R.
Jones. Adaptively sampled distance fields: A general
representation of shape for computer graphics. In Pro-
ceedings of the 27th annual conference on Computer
graphics and interactive techniques, pages 249–254.
ACM Press/Addison-Wesley Publishing Co., 2000. 2,
3

[9] K. E. Hoff III, J. Keyser, M. Lin, D. Manocha, and
T. Culver. Fast computation of generalized voronoi
diagrams using graphics hardware. In Proceedings
of the 26th annual conference on Computer graph-
ics and interactive techniques, pages 277–286. ACM
Press/Addison-Wesley Publishing Co., 1999. 2

[10] H.-H. Hsieh and W.-K. Tai. A simple GPU-based ap-
proach for 3d voronoi diagram construction and visu-
alization. Simulation modelling practice and theory,
13(8):681–692, 2005. 2

[11] O. Jamriška and V. Havran. Interactive ray tracing of
distance fields. In Central European Seminar on Com-
puter Graphics, volume 2, pages 1–7, 2010. 2

Figure 10. Performance with Different Resolutions: As the
resolution increasing, the ADF computation time slows down ac-
cordingly. BADF can compute the distance fields at interactive
rates for higher levels of the octree.

[12] M. W. Jones. The production of volume data from
triangular meshes using voxelisation. In Computer
Graphics Forum, volume 15(5), pages 311–318. Wi-
ley Online Library, 1996. 3

[13] M. W. Jones, J. A. Baerentzen, and M. Sramek. 3d
distance fields: A survey of techniques and applica-
tions. IEEE Transactions on visualization and Com-
puter Graphics, 12(4):581–599, 2006. 1

[14] M. W. Jones and M. Chen. A new approach to the con-
struction of surfaces from contour data. In Computer
Graphics Forum, volume 13(3), pages 75–84. Wiley
Online Library, 1994. 1

[15] T. Karras. Maximizing parallelism in the construc-
tion of BVHs, octrees, and k-d trees. In Proceedings
of the Fourth ACM SIGGRAPH/Eurographics confer-
ence on High-Performance Graphics, pages 33–37.
Eurographics Association, 2012. 2, 3

[16] T. Kerwin, B. Hittle, H.-W. Shen, D. Stredney, and
G. Wiet. Anatomical volume visualization with
weighted distance fields. In Eurographics Workshop
on Visual Computing for Biomedicine, volume 2010,
page 117. NIH Public Access, 2010. 2

[17] R. Kimmel. Fast marching methods for computing
distance maps and shortest paths. 1996. 3

[18] F. Liu and Y. J. Kim. Exact and adaptive signed dis-
tance fieldscomputation for rigid and deformablemod-
els on GPUs. IEEE transactions on visualization and
computer graphics, 20(5):714–725, 2014. 1, 2, 3, 6, 8

[19] N. Mitchell, M. Aanjaneya, R. Setaluri, and E. Sifakis.
Non-manifold level sets: A multivalued implicit sur-
face representation with applications to self-collision
processing. ACM Transactions on Graphics (TOG),
34(6):247, 2015. 2

[20] N. Morrical and J. Edwards. Parallel quadtree con-
struction on collections of objects. Computers &
Graphics, 66:162–168, 2017. 2

[21] G. M. Morton. A computer oriented geodetic data base
and a new technique in file sequencing. 1966. 1

[22] G. Rong and T.-S. Tan. Variants of jump flooding algo-
rithm for computing discrete voronoi diagrams. In 4th
International Symposium on Voronoi Diagrams in Sci-
ence and Engineering (ISVD 2007), pages 176–181.
IEEE, 2007. 2

[23] F. Ségonne, J. Pacheco, and B. Fischl. Geometrically
accurate topology-correction of cortical surfaces using
nonseparating loops. IEEE transactions on medical
imaging, 26(4):518–529, 2007. 5

[24] M. Sramek and A. E. Kaufman. Alias-free voxeliza-
tion of geometric objects. IEEE transactions on visu-
alization and computer graphics, 5(3):251–267, 1999.
3

[25] M. Tang, T. Wang, Z. Liu, R. Tong, and D. Manocha.
I-Cloth: Incremental collision handling for GPU-
based interactive cloth simulation. ACM Transac-
tion on Graphics (Proceedings of SIGGRAPH Asia),
37(6):204:1–10, November 2018. 5, 6

[26] X. Wu, X. Liang, Q. Xu, and Q. Zhao. GPU-based
feature-preserving distance field computation. In 2008
International Conference on Cyberworlds, pages 203–
208. IEEE, 2008. 2

[27] K. Yin, Y. Liu, and E. Wu. Fast computing adaptively
sampled distance field on GPU. 2011. 3

[28] K. Zhou, M. Gong, X. Huang, and B. Guo. Data-
parallel octrees for surface reconstruction. IEEE
Transactions on Visualization and Computer Graph-
ics, 17(5):669–681, 2011. 2

[29] K. Zhou, Q. Hou, R. Wang, and B. Guo. Real-time
kd-tree construction on graphics hardware. In ACM
Transactions on Graphics (TOG), volume 27(5), page
126. ACM, 2008. 3

