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Abstract This paper presents an unsupervised clustering
random-forest-based metric for affinity estimation of the
large and high-dimensional data. The combinational
criteria for the node splitting in forest construction is
feasible to handle the rank-deficiency when measuring the
clustering compactness. The binary forest-based metric
is extended to continuous metrics by exploiting both the
common traversing path and the smallest shared parent
node. The proposed forest-based metric is feasible and
efficient for affinity estimation by passing down data pairs
in the forest with a limited number of decision trees.
A pseudo-leaf-splitting (PLS) algorithm is introduced to
account for spatial relationships, which regularises affinity
measures and relieves inconsistent leaf assignments. The
random-forest-based metric with the PLS facilitates the
establishment of consistent and point-wise correspondences.
The proposed method has been applied to automatic
phrase recognition using color and depth videos and point-
wise correspondence. Extensive series of experiments
demonstrate the effectiveness of the proposed method in
affinity estimation compared with the state-of-the-art.

Keywords Affinity estimation, forest-based metric,
unsupervised clustering forest, pseudo-leaf-
splitting.

1 Introduction

Affinity estimation is an essential step in various
computer vision and image processing tasks. The affinity
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estimation of motion trajectories, for example, is utilized in
motion segmentation [12, 43] and action recognition [50].
The automatic phrase recognition employs the trajectory
affinity to define motion patterns in color and depth videos
[38]. The point-to-point affinity and shape correspondence
are essential for attribute transfer and data reuse [8, 30, 37,
44, 45], as well as the shape comparisons in morphological
studies [9, 39]. It is, however, computationally non-trivial
to estimate pairwise affinities for a large-scale dataset,
where the complexity grows quadratically dependent on
the cardinality of the dataset. Some distance metrics,
such as the earthmover distance, make the computation
cost higher for high-dimensional data. This paper presents
the unsupervised random-forest-based metric for efficient
affinity estimation, demonstrating its efficacy on automatic
phrase recognition and point-wise correspondence of a
shape corpus.

The random forest has gained popularity in computer
vision for decades, being well-known for its scalability
and real-time testing as a valuable generalization to unseen
data [19, 21, 24, 27, 35, 47, 54]. The clustering random
forest works in an unsupervised fashion [10, 18, 34, 46,
55, 58, 59] to estimate the underlying data distribution
and affinity without prior labels. Alzubaidi et al. [2]
utilized the density forest [18] with a Gaussian distribution
assumption in tree nodes, where the clustering compactness
was measured by the covariance matrix. However, the zero-
valued determinant in the case of rank-deficiency makes the
criteria invalid. The combinational node splitting criteria as
an integration of the trace-based distribution measurement
and the scatter index [38] are feasible to handle the rank-
deficiency for optimal node splitting.

Recently, a series of researches address the forest-based
metric for affinity estimation. The cascaded clustering
forest (CGF) was proposed to refine the voxel-wise affinity
by iteratively updated geodesic coordinates [40] with a
set of clustering models. Mixed metric random forest
(MMRF) utilized the self-learning of data distributions
for matching consistencies across images [41], taking
advantage of the weak labeling and classification criterion
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Fig. 1 The proposed unsupervised random forest-based metric for affinity estimation. The forest-based continuous metric is defined by utilizing both the length of
the common traversing path and the cardinality of the smallest shared parent node. A pseudo-leaf-splitting algorithm is proposed to account for spatial relationships,
regularising affinity measures and inconsistent leaf assignments. The decremental covariance matrix evaluation technique is used to ease the learning complexity.

to optimize node splitting. The oblique clustering forest
(OCF) [48] extended the splitting criterion from traditional
orthogonal hyperplanes to oblique hyperplanes, reducing
the tree depth and the model complexity. The spatial
consistent (SC) clustering forest employed a data-dependent
learning guarantee of unsupervised clustering randomized
trees [42]. The above clustering forests introduce additional
computations, such as cascaded clustering models [40], the
fine-tuning with the penalized weighting of the classification
entropy [41], the dominant principal component and
regressions [48], and the data-dependent learning guarantee
for tree pruning [42], to improve performances on data
clustering and affinity estimation. In contrast, this work does
not introduce additional computation costs to construct the
clustering forest. Instead, we extend the binary forest-based
metric to a continuous one for affinity estimation. In light
of the observation that training the unsupervised clustering
forest is typically more time-consuming than the supervised
classification forest due to the entropy estimation of the
high-dimensional data, the decremental covariance matrix
evaluation technique is introduced to avoid the assessment
of covariance matrices from scratch and ease the learning
complexity.

Affinities are measured efficiently by the hierarchical
clustering forests, in contrast to the learning-based feature
fusion for the affinity graph by the iterative optimization
of convex problems [32]. Two points are intuitively
assumed to be similar in case that they arrive at the same
leaf. The generalized forest-based metric is derived by
the average affinities from individual trees. The forest-
based binary metric has been used to measure data similarity
[18, 58]. The continuous affinity measure has been
proposed based on the common traversal path from the
root to leaf nodes as well as the node cardinality on

the path [59]. To relieve the weight computation on
the traversal path, we present a forest-based metric as a
linear combination of normalized common-traversal-path-
based and the smallest-shared-parent-based metrics. The
proposed metric takes into account both the unbalanced data
distribution and partial similarity. Once given the pairwise
affinities of a dataset, it is straightforward to compute the
low-dimensional embedding. Ganapathi-Subramanian et
al. [22] constructed a joint latent embedding function
as a combination of diffusion embedding and a linear
mapping for descriptor transport in a shape corpus, where
the nonlinear embedding function relied on the predefined
feature descriptors. The paper addresses the forest-based
metric and affinity estimation. The embedding is conducted
by the existing multi-dimensional scaling (MDS) algorithm
[1], which is computed based on affinity estimation without
explicit representation learning.

This work introduces a pseudo-leaf-splitting (PLS)
algorithm to handle the inconsistent leaf assignments, since
the random forest built upon independent data points is
insufficient to accommodate global data structures. The
random-forest-based metric with the PLS regularises the
point-wise correspondences. The proposed PLS technique
differs from existing methods [25, 26, 36, 44] in that it
bridges the gap between separate point-wise correspondence
and consistency refinements. The deep learning-based
methods have been used for shape correspondence [7,
23, 33, 52], which are learned from prior ground truth
correspondence or the metric space alignment. The 3DN
[52] and the 3D-coded [23] were the unsupervised end-to-
end network to infer global displacements fields between a
shape and the template, utilizing Chamfer and earthmover
distance-based loss functions. The FMNet [33] optimized
a feature extraction network via a low-dimensional spectral
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map. The ADD3 used anisotropic diffusion-based spectral
feature descriptors [7]. The FMNet [33] and ADD3 [7]
are learned in a supervised manner, requiring prior ground
truth correspondence. Unlike deep neural network-based
descriptor learning, this work exploits unsupervised forest-
based metric learning for point-wise correspondence.

This paper presents a combined forest-based metric and
a PLS regularization scheme to improve the forest-based
metric for affinity estimation, as shown in Fig. 1. The
main contributions of this work are: (1) the continuous
forest-based metric is presented by exploiting both the
common traversing path and the cardinality of the smallest
shared parent node, enabling efficient and effective affinity
estimation of the large and high-dimensional data. (2)
The PLS scheme is proposed to regularise the forest-based
metric to account for the global spatial and structural
relationships, relieving inconsistent leaf assignments. (3)
The proposed method has gained success in affinity
estimation of facial trajectories and 3D points, enabling
efficient and automatic phrase recognition and consistent
correspondence of 3D shape corpus compared with the
state-of-the-art.

2 Unsupervised Random Forest

Given the unlabeled dataset T = {ti|i = 1, ..., N}, a set
of trees are trained independently. The unsupervised density
forest estimates the underlying data distribution using a
Gaussian distribution assumption [18]. The combinational
node splitting criteria integrate a trace-based distribution
measurement and a scatter index [38]. The objective
function I of the j-th node with data Tj is defined as follows.

I = −
∑
i=l,r

mT i
j

mTj

ln
(
tr

(
σ(T i

j )
))

+ λ
∥µl − µr∥∞∑
i=l,r ϕ(T

i
j , µi)

,

(1)
where tr(·) is the matrix trace. σ denotes the covariance
matrix of the Gaussian distribution. mT i

j
denotes the size of

the left or the right children nodes, and mTj the parent node
size. ϕ(T i

j , µi) = maxt∈T i
j
∥t − µi∥∞. µl and µr are the

centroids of the left and right child nodes. The constant λ is
set to 50 empirically.

Since the covariance matrices need to be repeatedly
evaluated when given the randomly selected parameters, it
is time-consuming to evaluate the covariance matrix σ from
scratch for the optimal splitting parameters when building
the forest. This work introduces a decremental covariance
matrix evaluation technique (see Appendix A). The
complexity of the covariance matrix evaluation is reduced
from O(mρ2) to O(ρ) by the decremental technique, where
m is the cardinality of the node. ρ denotes the data
dimensionality. The trace evaluation complexity is reduced

Fig. 2 Toy datasets. (a) punctured sphere, (b) 3D clusters, (c)
twin peaks, and (d) corner.

Fig. 3 The affinity matrices obtained by the proposed forest-based metric and
the L2-norm followed by kNN on (a) corner and (b) 3D clusters datasets.

to O(κρ) given κ randomly selected parameters.

3 Forest-based Affinity Estimation

3.1 Binary Forest-Based Metric

The forest leaves L define a partition of the training data.
When feeding an instance t to a tree, it will finally reach a
leaf ℓ(t) ∈ L, after a sequence of binary tests stored in the
branch nodes. When the instances are assigned to the same
leaf node, they are assumed to be similar and the pairwise
affinity is set to 1, and 0 otherwise. The symmetric affinity
matrix A is defined as a weighted combination of Ak from
independent trees.

A =
1

nT

nT∑
k=1

Ak, (2)

where nT is the tree number. Since only points inside
one leaf node are considered to be similar, the affinity
matrix from the random forest automatically accounts for
neighboring relationships. Thus, A can be viewed as a
geodesic affinity matrix of the original dataset. On the
contrary, when using the L2 distance metric, there is no
prior on local neighboring relationships. The kNN-like
algorithm is needed to find neighbors from the pairwise
distance matrix with additional time costs.

The affinity matrix obtained by the binary metric is often
relatively sparse since only the point pairs sharing the same
leaf node are assumed to be similar. Generally speaking, the
leaf node should not be too small to account for the affinity
of the dataset. Moreover, randomized trees are required to
provide enough similar candidate points in leaf nodes.
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3.2 Continuous Forest-Based Metric

Aside from the binary affinity, a continuous forest-based
metric is proposed based on the common path Pij of two
instances ti and tj when they traverse from the root to leaves
ℓ(ti) and ℓ(tj). The distance dcp(ti, tj) is computed by the
common path as follows:

dcp(ti, tj) =
νij − |Pij |o

νij
, (3)

where νij = max(νi, νj) is the maximum depth of ℓ(ti) and
ℓ(tj). | · |o returns the cardinality of a set. If two instances
reach the same leaf node, the distance is zero. Otherwise, the
distance is set to 1 when the two instances have no common
path. The binary affinity definition is a special case of Eq.
(3) by setting the common path to null in case the instances
do not reach the same leaf. However, there is no guarantee
that the decision tree is balanced for an arbitrary dataset. In
this case, the similarity is defined based on the cardinality
of the data stored in the smallest shared parent (SSP) node
Tpij of ℓ(ti) and ℓ(tj).

dsp(ti, tj) =
|Tpij |o − ζij

|Tr|o − ζij
, (4)

where ζij = min(|ℓ(ti)|o, |ℓ(tj)|o) is the minimum leaf
size of ℓ(ti) and ℓ(tj). When ti and tj go into the same
leaf node, the SSP node Tpij is the leaf itself, and distance
dsp is zero. On the other hand, when the shared parent
node is the largest one, i.e. the root node Tr, dsp is
set to 1. In case that the leaf size nl is selected as the
termination criterion of the tree growth, the above SSP-
based metric can be simplified as dsp(ti, tj) = ϑ(|Tpij |o −
nl), where the normalization constant ϑ = (|Tr|o − nl)

−1.

For the unbalanced data distribution, the distance between
two instances in the small cluster is shorter than that in the
large cluster based on the above definition in Eq. (4). It is
rational considering two instances are likely to be far apart
in the large cluster. Compared with the adaptive forest-based
metric [59], here the cardinality of the SSP node is used to
determine the affinity without the weight computation in the
shared traversal path. The combined forest-based metric df
is defined as a linear fusion of the common path-based dcp
and the SSP-based dsp.

df = wcpdcp + wspdsp, (5)

where the constant weight wcp + wsp = 1. The entry in the
affinity matrix A is defined as Aij = 1− df (ti, tj).

Proposition 1. The functions defined in Eq. (3), Eq.
(4), and Eq. (5) are non-negative metrics with following
properties:

• Identity: d(ti, ti) = 0;

• Positivity: d(ti, tj) ≥ 0;

• Symmetry: d(ti, tj) = d(tj , ti);

• Triangle inequality: d(ti, tk) ≤ d(ti, tj) + d(tj , tk).

The proof of Proposition 1 is given in Appendix B. The
above binary, the common-path-based, the SSP-based, and
the combined distance metrics are applied to a set of toy
data (see Fig. 2 and Fig. 3). The difference eA between the
affinity matrices A computed by the clustering forest-based
metrics and AL2 by the L2 norm and the kNN is shown in
Fig. 4.

eA =
∥A ⊕AL2∥2F

nA
, (6)

where ⊕ is the xor of matrix entries. nA is the size of
A. ∥ · ∥F is the Frobenius norm. The combined random-
forest-based metric can achieve the lower eA than the binary,
the common-path-based, and the SSP-based metrics. All
metrics can reduce the difference eA when enlarging the
forest size. The Dice similarity metric [20] eI is used to
compare the k nearest neighbors obtained by the proposed
metrics with those by the L2 norm as shown in Fig. 5. The
nearest neighbors obtained by the combined random-forest-
based metric are more consistent with the L2 metric than
other metrics. We observe that the consistency increases
with the enlarging forest size. Moreover, when enlarging
the forest size, the performance of the binary random-
forest-based metric can be similar to that of the combined
metric (see Fig. 4(a) and Fig. 5(a)), because a large
number of randomized decision trees tend to provide enough
neighboring candidates.

The look-up of feature values and the comparison with the
thresholds when traversing trees are very fast and negligible
in time. Although the cost of pairwise distances of small
subsets or sampled point pairs is much lower than the
dense pairwise distance computation, the kNN-graph-based
method is time-demanding for the high-dimensional dataset.
The proposed forest traversal and leaf assignments have a
linear complexity regarding the data size. More importantly,
the time complexity of our method has no relations with the
dimensionality, which is desirable for the high dimensional
data. In the extreme case of forest-based metric, i.e., the
binary metric, there are no multiplication operations in the
affinity estimation. Since the instances in the same leaf node
are assumed to be similar, the complexity depends on the
number of the leaf nodes, and there is no pairwise distance
computation by the binary forest-based metric. As to the
continuous metrics, such as dsp, there are just normalization
operations in the affinity estimation.

4 Pseudo Leaf Splitting

It is efficient to acquire the pairwise affinity matrix
between datasets by the random-forest-based metric.
However, there is no regularization for the point-wise
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Fig. 4 The affinity matrices difference eA of the combined forest-based metric (Fuse), the binary metric (Bin), the common-path-based metric (Path), and the
SSP-based metrics on four toy datasets, including (a) corner, (b) punctured sphere, (c) twin peaks, and (d) 3D clusters.

Fig. 5 The Dice similarity eI of nearest-neighbors obtained by the combined forest-based metric (Fuse), the binary metric (Bin), the common-path-based metric
(Path), and the SSP-based metrics on four toy datasets, including (a) corner, (b) punctured sphere, (c) twin peaks, and (d) 3D clusters.

correspondence because the random forest is built upon
the independent feature descriptors without considering
the relationship. For instance, when establishing
correspondence C between dataset X and Y , the forest-
based metric can be used to produce the candidate matching
pair {(xi, yi) ∈ C|xi ∈ X, yi ∈ Y }. The above
correspondence has no guarantee for the relationship
preservation, i.e., g(xi, xj) ∝ g(yi, yj) when (xi, yi) ∈
C and (xj , yj) ∈ C. g is some function to measure
the relationship, e.g. the geodesic distance on 3D mesh
surfaces. This work introduces the PLS to handle the lack
of affinity regularization in the forest-based metric.

To begin with, the leaf node ℓ∗ with the largest span is
located as the starting leaf, and

ℓ∗ = argmax
xi,xj∈ℓ

g (xi, xj) . (7)

The span of starting node ℓ∗ is denoted as η∗ =

max
xi,xj∈ℓ∗

g (xi, xj) . Generally speaking, the leaf of extreme

points can be identified in this way, e.g. the leaf node of
the tiptoe in 3D human mesh dataset. The mixed Gaussian
model (GMM) is used to fit the point distribution in the leaf
node. For simplicity, the dominant mode acquired by the
mean shift method [16] is used to represent the leaf. Let µ∗

ℓ

denote the center of the dominant mode in ℓ∗. Point x∗ ∈ ℓ∗

is selected as the seed when
x∗ = J(X) = arg min

x∈ℓ∗
∥x− µ∗

ℓ∥. (8)

J(X) returns the seed point of dataset X . The point
set belonging to X and ℓ∗ is split according to the seed
selection. In our system, the seed point is assigned to the

left leaflet. The binary test in leaf splitting is defined as

φ∗(x) =

{
1, if g(x, x∗) < 0.5η∗,

0, otherwise.
(9)

Given the starting leaf node and the seed selection, the
leaf splitting is propagated to other leaves. The unprocessed
leaves are sorted according to the distance to the seed point
x∗ ∈ ℓ∗. The propagation begins from the nearest leaf node
of ℓ∗. Let ℓk be the current leaf node. As to point x ∈ ℓk,
the binary test in leaf splitting of dataset X is defined as

φk(x) =

{
1, if g(x, x∗) ≤ 0.5(ηk1 + ηk2),

0, otherwise,
(10)

where ηk1 = min
x∈ℓk

g(x, x∗), and ηk2 = max
x∈ℓk

g(x, x∗). Only

the leaf node with the ambiguous correspondence needs to
be split, which can be determined simply by checking the
span of the leaf node. In case that the span is greater than the
predefined threshold, i.e. 10% of the largest span of dataset
X in our experiments, the leaf nodes are split. The process
of the pseudo-leaf-splitting is shown in Algorithm 1.

The PLS is a general technique to regularise the pairwise
affinity obtained by the forest. Here the function g is used to
measure the point-wise relationship between points inside
a dataset, where the leaflet splitting tests are set according
to the span of the dataset. There are no requirements that
two sets share the same span when using the forest-based
metric and the PLS regularization to establish the point-wise
correspondence. The proposed scheme can handle the non-
isometrically deformed datasets by using the data-dependent
binary tests in Eq. (9) and Eq. (10).
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Algorithm 1 Pseudo Leaf Splitting
Input: Random forest RF , dataset X .
Output: Pseudo leaf splitting.
for Each tree in RF do

Locate starting leaf ℓ∗ with the largest span (Eq. (7));
Compute the centroid of the dominant mode in ℓ∗;
Get a seed point x∗ ∈ ℓ∗ (Eq. (8));
Split leaf node ℓ∗ as Eq. (9);
Sort unprocessed leaves by the distance to x∗;
for Each inconsistent leaf node do

Leaf splitting as Eq. (10);
end for

end for

It is computationally complex to find the consistent
correspondence of the shape corpus. Existing techniques
coped with the consistent correspondence in the shape
corpus by minimizing the overall distortion using the
dynamic programming [36], the positive semi-definite
matrix decomposition [25], and the functional map networks
[26]. The additional refinement is required for consistent
correspondence when given the initial pairwise mapping.
The gap between the point-wise correspondence of shapes
and the consistency refinement can be avoided by taking into
account the point distribution in the shape corpus. Different
from the example-based classification forest for the shape
correspondence [44], there is no need for labeled training
data using the proposed forest-based metric.

The correspondence function between surface mesh Xp

and Xq is denoted as τpq(x
p
i ) = xq

j , where affinity
Apq

ij = maxxq
j∗∈Xq Apq

ij∗. When given a group of surface
meshes, the point-wise correspondence by the PLS is
consistent and satisfies the cycle constraints. That is,
when τpq(x

p
i ) = xq

j and τqr(x
q
j) = xr

k, τpr(x
p
i ) =

xr
k. It can be ascribed to the seed selection based on the

Gaussian fitting of the dominant mode in ℓ∗. The mapping
between starting seed points of Xp and Xq is τpq(x

p∗) =

JqJ
−1
p (xp∗) = xq∗. It is obvious that the correspondence of

seed points satisfies the cycle constraints, where τpr(x
p∗) =

JrJ
−1
q JqJ

−1
p = JrJ

−1
p = xr∗. Taking into account the

similarity propagation nature of the PLS, the point-wise
correspondence satisfies the cycle constraints.

5 Experiments

Datasets and Metric. The proposed method is applied to
the affinity estimation of the uttering datasets, including the
KinectVS [38], the OULUVS [56], and the OuluVS2 [4].
The KinectVS consists of twenty subjects uttering twenty
phrases six times [38]. The color and depth video data are
obtained by Kinect with a resolution of 640 × 480. The
OULUVS dataset [56] consists of the color videos of twenty

subjects uttering ten phrases five times with a resolution of
720× 576. The OuluVS2 [4] consists of color videos of 53
subjects uttering ten phrases three times with a resolution of
1920× 1080.

The AAM algorithm [17] is used to extract 35 patch
trajectories around lips and jaws as [38], where the shape
and texture features of patches are concatenated together to
represent the trajectories. In our experiments, the affinity
matrix obtained by the forest-based metric is sorted, and
r nearest neighbors are viewed as matching candidates of
probe trajectories. r is set at 1 (Top-1), 5 (Top-5), and 10
(Top-10) in the affinity evaluation. If the trajectory with the
same label as the probe occurs in the candidate set, there
is a hit. The trajectory labeling accuracy is computed as
nhit/nprobe, where nhit and nprobe denote the numbers of
hits and probe trajectories respectively.

We evaluate the proposed method on the 3D shape corpus,
including TOSCA [11], Scape [3], SHREC07-NonSym
[11, 25], and Faust datasets [6]. The wave kernel signature
(WKS) [5] and the normalized geodesic distance vector are
used as the feature descriptor of 3D points. The geodesic
distance vector of point x is composed of the geodesic
distance between x and all other points on the surface
meshes by the fast marching algorithm. The correspondence
accuracy of 3D surface meshes X and Y is defined as

eXY =
1

nX

nX∑
i=1

g(τ (xi), τ
′(xi)), (11)

where τ and τ
′

are the estimated and the ground truth point-
wise mapping functions. nX is the point number of X. g is
the geodesic distance function. The percentages of correct
matchings with a set of geodesic errors, including 0.02, 0.05,
0.10, and 0.16, are reported in our experiments.

5.1 Affinity Estimation

The proposed method is applied to affinity estimation
on the facial trajectories and 3D points. We compare the
proposed criteria with the classical Gini index [59], the
determinant of the covariance matrix [18], and the variance
of feature differences [55] on the facial trajectories (Fig. 6
(a, b, c)) and 3D shape datasets (Fig. 6 (e, f, g)). The node
splitting criteria based on the determinant of the covariance
matrix [18] fail in all datasets due to the rank deficiency of
the covariance matrices. The forests built by the Gini index
of the dummy set [10, 58, 59] depend on the construction of
the synthetic data, being limited to locate the data clusters
effectively. The node splitting criteria try to find a feature
pair to produce the largest variance of feature difference
[55], which do not model the data distribution of children
nodes. On the other hand, our splitting criteria handle the
data distribution and produce the best results with the Fuse
metric. The tree numbers are set to 17 and 50 on the visual
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Fig. 6 Labeling accuracies by the combined random-forest-based metric (Fuse), the binary (Bin), the common-path-based (Path), and the SSP-based metrics, the
random forests with node splitting criteria of the determinant of the covariance matrix [18], the variance of feature differences [55], and the Gini index [59] on (a)
KinectVS, (b) OuluVS, (c) OuluVS2, (e) TOSCA, (f) Scape, and (g) Shrec-NonSym datasets. The Top-5 and g0.02 accuracies with and without the PLS on facial
trajectories and 3D points are shown in (d) and (h) respectively.

Fig. 7 Labeling accuracies of facial trajectories on OuluVS2 of different camera
views including 0o, 30o, and 60o.

uttering datasets and 3D shape datasets.
The comparison of different metrics, i.e., the binary

(Bin), the common-path (Path), the SSP, and the combined
distance metrics (Fuse), on the facial trajectories and 3D
points are shown in Fig. 6 (a, b, c) and Fig. 6 (e, f,
g). The Fuse metric shows apparently better performance
than the binary one, and produces an improvement to the
Path and the SSP-based metrics. For two pairs with the
common paths of the same length, the one with the smaller
SSP is more similar than the other. Both the Path and SSP
metrics contribute to the affinity estimation based on the tree
traversal in forests.

Fig. 6 (d) and Fig. 6 (h) show the labeling accuracies of
the facial trajectories on the KinectVS, OuluVS, OuluVS2,
as well as the 3D points matching accuracies on the TOSCA,
Scape, and Shrec-NonSym datasets with and without the
PLS regularization. The labeling performance based on
the affinity estimation with the PLS regularization is better
than the one without the PLS on all datasets. Because the
shape feature defined as the difference of patch positions
in adjacent frames possesses the motion information, the
symmetric facial trajectories on the left and right half faces
are less likely to be confused. Thus, the improvements with

Fig. 8 The pairwise shape correspondence between (a) the reference and the
target shapes (b) without and (c) with the PLS regularization.

the PLS regularization in the facial trajectory datasets are
limited compared with those in 3D shape datasets.

The facial tracker is designed for the frontal faces, and
the tracking performance deteriorates when given profile
facial images in the OuluVS2 phrase dataset [4]. Fig. 7
shows the effects of the facial landmark tracking on the
affinity estimation of trajectories. The less accurate facial
landmark tracking in the profile views makes it harder to
locate the correct facial trajectories. The facial trajectory
labeling accuracy of the frontal view is better than the profile
views in the Top-1, Top-5, and Top-10 experiments.

5.2 Dense Correspondence Between Shapes

An unsupervised random forest-based metric with the
PLS regularization scheme is employed to estimate the
point distribution (Fig. 8). The comparisons of the
pairwise correspondence by the proposed method with the
functional maps (FM) [37], the blended intrinsic maps
(BIM) [30], the coarse-to-fine combinatorial method [45],
and the classification random forest (CRF) [44] are shown
in Table 1. Similar to [44], we only conduct the experiments
on the classes with more than six objects for the enough
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Fig. 9 (a) The correspondence errors with different forest sizes on the TOSCA dataset. (b) The average geodesic errors corresponding to various sizes of training sets
of the proposed method (RFfusion) and the classification random forest (CRF) [44]. (c) The comparison of pairwise correspondence errors with different feature
channels on the human motion data [49]. (d) The comparison of consistent correspondence errors on the SHREC-NonSym dataset by the proposed method, the FMN
[26], the SDP [25], the CFM [51], and the OBF [36] methods.

training data of the forest. Here all shapes except the
query are used to train the forest. Our method can
achieve more than 96% correct matchings within 0.05

geodesic errors. In experiments, the WKS and the geodesic
distance vectors are used as the point descriptor. Table 1
illustrates the correspondence accuracy based on the WKS
(RFwks), the geodesic distance vector (RFgeo), and the
feature fusion (RFfusion). In our experiment, the accuracy
of the dense correspondence by the RFfusion outperforms
those using the RFwks or the RFgeo. The fusion of the local
shape descriptor WKS and the contextual geodesic vector
facilitates the searching for the optimal node splitting.

Tab. 1 Comparison of pairwise correspondences by the proposed methods with
and without the PLS regularization, the combinatorial [45], the FM [37], the
BIM [30], and the CRF [44] on the TOSCA dataset.

Methods
Correspondence (%)

g0.02 g0.05 g0.10 g0.16

Combinatorial [45] 24.8 56.0 80.8 90.5
BIM [30] 44.3 84.6 95.7 97.7
FM [37] 66.5 86.8 94.0 96.7
CRF [44] 65.6 94.5 99.1 99.2

RFgeo 21.9 46.3 71.7 84.2
RFwks 44.8 84.1 93.1 96.2
RFfusion 67.3 96.5 99.4 100
w/o PLS 35.6 63.3 72.5 79.8

The point-wise matching based on the forests with
different numbers of trees is shown in Fig. 9 (a). The
forest size is larger than that of the supervised CRF [44].
The relatively large number of randomized decision trees are
needed to estimate the correspondence in an unsupervised
manner. The more training data, the more accurate
correspondence can be obtained (see Fig. 9 (b)).

We have applied the proposed method to the motion
dataset [49], where the first 10% shapes are used to train the
forest. There is no requirement that the training and testing

Fig. 10 The comparison in terms of (a) the average errors, (b) the average error
on the worst pair, and (c) the 10 cm recall of the proposed method, the CO [13],
the CNN [53], and the CNN-S [53] on the Faust dataset.

shapes are from the same kind of motions. Our method
can achieve more than 95% correct matchings within 0.05
geodesic errors as shown in Fig. 9 (c).

The proposed method is compared with the convex-
optimization-based nonrigid registration (CO) [13] and the
CNN classifier-based method [53] on the Faust database
[6]. Similar to [13, 53], the correspondence is computed
between pairs of meshes from the same subject (intra-
subject) or different subjects (inter-subject). Aside from the
testing pairs, all other meshes are used to build the random
forest. Our method outperforms the CO and the CNN-
based methods in the average error, the average error of
the worst pair, and the 10-cm recall as shown in Fig. 10.
The CNN followed by the non-rigid registration (CNN-S)
produced the best results. However, the CNN and the CNN-
s were built upon 2D depth maps, where the partial scans
and additional registration operations were required.

Fig. 11 and Table 2 show the comparison with the deep
learning-based shape correspondence models, including the
3D-coded [23], the FMNet [33], and the ADD3 [7] on the
Scape dataset. The proposed forest-based metric with the
PLS regularization outperforms the compared supervised
and unsupervised deep learning-based models with the
matching accuracy of 0.65 vs. 0.48 (3D-coded) and 0.27
(ADD3) regarding the g0.02. The supervised FMNet has
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Fig. 11 The comparison with deep learning-based methods. (a) Reference. (b)
and (c) are the proposed method without and with the PLS regularization. (d)
3D-coded [23]. (e) FMNet [33].

the best performance, which is learned from the prior ground
truth correspondence and the mapping in both the spatial and
spectral domains. On the other hand, the proposed approach
only requires unsupervised forest-based metric learning for
point-wise affinity.

Tab. 2 Comparison of the proposed method with deep learning-based shape
correspondence methods on the Scape dataset.

Methods 3D-coded [23] FMNet [33] ADD3 [7] Ours

g0.02 0.48 0.78 0.27 0.65

5.3 Consistent Correspondence in Shape Corpus

Aside from the pairwise shape correspondence, the
proposed method is compared with existing consistent
correspondence methods, including the positive semi-
definite matrix decomposition (SDP) [25], the optimization-
based framework (OBF) for the distortion minimization
[36], the functional map network (FMN) [26], and the
consistent functional maps (CFM) [51] on the SHREC-
NonSym dataset as shown in Table 3 and Fig. 9 (d). The
proposed method takes advantage of the point distribution
modeling by the clustering forest and the PLS regularization
scheme, outperforming the compared methods with the
correspondence accuracies of 44.2 (g0.02) on the Shrec-
NonSym dataset.

Tab. 3 Comparison of consistent correspondence by the proposed RFfusion

with and without the PLS regularization, the FMN [26], the SDP [25], the CFM
[51], and the OBF [36] methods on the Shrec-NonSym dataset.

Methods
Correspondence (%)

g0.02 g0.05 g0.10 g0.16

FMN [26] 42.7 70.9 89.8 95.8
SDP [25] 16.9 45.6 71.7 85.7
CFM [51] 12.8 36.0 68.3 84.5
OBF [36] 19.5 47.8 70.2 79.0

RFfusion 44.2 74.3 90.9 97.1
w/o PLS 15.8 30.6 58.9 69.4

Table 4 illustrates the correspondence by the proposed
method, the SDP [25], the OBF [36], and the fuzzy
correspondences (FC) [29] on the TOSCA and Scape
datasets. The proposed method outperforms the SDP
[25] and the OBF [36] with significant margins in the
local matching with 0.02 geodesic errors, which means the
proposed method has an edge in the matching specificity.
As to the 0.16 geodesic errors, the proposed method can
realize the full matching as the SDP [25] and the OBF [36]
methods.

Tab. 4 Comparison of the matching with 0.02 geodesic errors (g0.02) and 0.16
geodesic errors (g0.16) by the proposed RFfusion with and without the PLS
regularization, the SDP [25], the OBF [36], and the FC (♯) [29] on the TOSCA
and the Scape datasets.

Error SDP [25] OBF [36] RFfusion w/o PLS

TOSCA
g0.16 100 97.6 100 79.8
g0.02 34.1 37.5 60.2 35.6

Scape
g0.16 100 100 100 77.3
g0.02 41.2 48.6♯ [29] 65.3 34.8

As shown in Table 1, 3, and 4, the proposed forest-based
metric with the PLS regularization refines the forest-based
metric and produces an improvement with a large margin
in both pairwise and consistent correspondence in the shape
corpus.

5.4 Phrase Recognition

The phrase recognition accuracies of the proposed
method (RFfusion) on the depth and color videos are
illustrated in Fig. 12. The accuracy of subject-
independent (SI) experiments is lower than that of subject-
dependent (SD) experiments. The performance variations
in the SD and the SI experiments can be ascribed to
personal speaking characteristics and person-specific texture
differences regarding the mustache and the lip shapes. The
SI experiments on the frontal phrase set of the OuluVS2 with
an average accuracy of 84.8% are comparable to the state-
of-the-arts [31, 57] (see Fig. 13 and Table 5). The system
based on the deep neural networks produces a large margin
improvement [14, 15], where a large number of parameters
need to be learned from annotated training data.

Tab. 5 Phrase recognition accuracies on the OuluVS2 dataset.

Methods Zhou[57] Lee[31] Chung [14] Chung[15] Ours

Accuracy 73.5 81.1 93.2 94.1 84.8

Fig. 14 illustrates the phrase recognition accuracies of
each subject on the color videos (RFcolor) with a patch size
of 15× 15 and the depth videos (RFdepth) with a patch size
of 7 × 7 of the KinectVS dataset. We set the patch sizes of
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Fig. 12 Phrase recognition accuracies of each subject in (a) KinectVS and (b) OuluVS datasets by the RFfusion in the subjection-dependent (SD) and independent
(SI) experiments.

Fig. 13 Phrase recognition accuracies of each subject of the OuluVS2 phrase
dataset.

Fig. 14 Phrase recognition accuracies of each subject on the color videos
(RFcolor) with a patch size of 15 × 15, and the depth videos (RFdepth)
with a patch size of 7 × 7 on the KinectVS dataset.

the color and depth videos as [38], where the patch size of
depth videos is smaller than the color videos considering the
relatively low signal-to-noise ratio of the depth video.

5.5 Comparison with Forest-based Correspondence

The proposed method utilizes the multivariate Gaussian
distribution and the clustering forest-based metrics for
affinity estimation and correspondence. We compare with
the recent work on forest-based metrics, including the
OCF [48], the MMRF [41], the SC forest [42], and
the classification forest (CLA) [28], on supervoxel-wise
correspondence as shown in Table 6. The dataset consists
of 150 clinically obtained cone beam CTs (CBCT) [42],
where each CBCT is decomposed into 5000 supervoxels.
The proposed approach extends the binary forest-based
metric to a continuous one, and achieves the Dice similarity
coefficient (DSC) of 0.93 on the maxilla, outperforming
the MMRF (0.88), the SC (0.89), and the CLA (0.81)
using the binary metric. Here the OCF achieves the
best performance with the DSC of 0.93 and 0.95 on the
mandible and the maxilla. Note that the proposed approach

does not introduce additional computational costs to forest
construction, in contrast to additional dominant principal
component estimations and regressions in the OCF [48].

Tab. 6 Comparisons on supervoxel-wise correspondence by forest-based
methods.

MMRF [41] SC [42] OCF [48] CLA [28] Ours

Mandible 0.91 0.92 0.93 0.88 0.88
Maxilla 0.88 0.89 0.95 0.81 0.93

6 Conclusions

We have presented the unsupervised random-forest-based
metrics for the affinity estimation of the large and high-
dimensional data, taking advantage of both the common
traversing path and the smallest shared parent node. The
proposed forest-based metric combined with the PLS is
feasible to account for the spatial relationship for consistent
correspondence. The proposed PLS scheme regularises
the forest-based metric and avoids the gap between the
the point-wise correspondence and additional consistency
refinements inside a shape corpus. The proposed method is
applied to phrase recognition using color and depth videos,
as well as the point-wise correspondence of 3D shapes. The
experiments demonstrate the effectiveness of the proposed
method compared with the state-of-the-art.
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A Decremental Covariance Matrix
Evaluation

Since the covariance matrices need to be evaluated
repeatedly when given the random selected parameters,
it is time consuming to evaluate the covariance matrix
σ from scratch for the optimal splitting parameters when
building the forest. Let ρ be the data dimensionality, the
time complexity of the covariance matrix construction is
O(κ · min(m2

Tl
ρ,mTl

ρ2) + κ · min(m2
Tr
ρ,mTrρ

2)) for
κ randomly selected parameters. The complexity of the
trace evaluation is O(κmTl

ρ + κmTrρ). The decremental
evaluation technique of covariance matrices is presented
using the fact that the data in each node are a subset of the
root node.

Let σp, σl, σr denote the covariance matrices of the parent
and two children nodes respectively. The ij-th entry of σp

is defined as σpij = E((ti − µp)(tj − µp)
′). Without losing

generality, here the left child node is assumed to be larger
than the right one. To begin with, the covariance matrix of
the smaller child node, i.e. the right one, is computed. The
entry of σr is defined as σrij = E((ti−µr)(tj−µr)

′). For a
point pair (ti, tj) belonging to both the parent and the right
child nodes, the differences of corresponding entries in σp

and σr are computed as follows.
σ̃pij − σ̃rij = −(ti+ tj)(µp−µr)

′
+∥µp∥2−∥µr∥2, (12)

where σ̃pij = σpij · (mTp − 1), and σ̃rij = σrij · (mTr − 1).
Let σ∗

r denote the sub-matrix of σp with the columns and
rows corresponding to points in the right child node.

The trace of the covariance matrix σr of the right child
node is derived as

tr(σr) =
tr(σ∗

r )(mTp − 1) + 2
∑mTr

i=1 tio
′

r −mTror

mTr − 1
,

(13)
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where or is the displacement vector from the centroid of the
right child node to the parent, and or = µp − µr. The right
child-related constant or = ∥µp∥2 − ∥µr∥2. Given tr(σr),
the trace of σl is computed as follows.

tr(σl) =
tr(σp)(mTp − 1)− tr(σr)(mTr − 1) + ol

mTl
− 1

,

(14)
where ol = mTp∥µp∥2 −mTr∥µr∥2 −mTl

∥µl∥2.
Once given the randomly selected splitting parameters,

the centroids µl and µr of the left and right children nodes,
as well as the norms ∥µl∥ and ∥µr∥ are computed. And
then, the trace of the covariance matrix of the smaller
child node, e.g. the right one, is computed based on the
submatrix extracted from the parent node as Eq. (13).
The trace of the covariance matrix of the other child
node is computed when given tr(σp) and tr(σr) as Eq.
(14). Since just the traces of the covariance matrices are
needed to estimate the information gain in our system, the
complexity of the covariance matrix evaluation is reduced
from O(mTl

ρ + mTrρ) to O(ρ). When given κ randomly
selected parameters, the trace evaluation complexity is
reduced to O(κρ).

B Proof of Proposition 1.

We will prove the functions defined in Eq. (3), Eq. (4),
and Eq. (5) are metrics as follows.
Eq. (3). Let ti, tj , tk be three input instances and the
corresponding leaf nodes as ℓ(ti), ℓ(tj), ℓ(tk). The common
paths are denoted as Pij ,Pjk, and Pik.

Identity: dcp(ti, ti) = (|Pii|o − |Pii|o)/νii = 0;

Positivity: Because |Pij |o ≤ νi and |Pij |o ≤ νj , |Pij |o ≤
νij . Thus, dcp(ti, tj) = (νij − |Pij |o)/νij ≥ 0;

Symmetry: |Pij |o = |Pji|o, so dcp(ti, tj) = dcp(tj , ti);

Triangle inequality: Suppose that Pij is the longest
common path. Then |Pij |o ≥ |Pik|o and |Pij |o ≥ |Pjk|o. It
follows that |Pik|o = |Pjk|o and dcp(tj , tk) = dcp(tk, ti) ≥
dcp(ti, tj).

Thus, dcp(tj , tk) ≤ dcp(ti, tj)+dcp(ti, tk), dcp(ti, tk) ≤
dcp(ti, tj) + dcp(tj , tk), and dcp(ti, tj) ≤ dcp(ti, tk) +

dcp(tj , tk).

Similarly, when Pjk or Pik is the longest common path,
the triangle inequality property holds.
Eq. (4). Identity: dsp(ti, ti) = (|Tpii |o − |Tpii |o)/(|Tr|o −
|Tpii |o) = 0;

Positivity: Because |Tpij |o ≥ ζij and |Tr|o ≥ ζij ,
dsp(ti, tj) ≥ 0;

Symmetry: |Tpij |o = |Tpji |o, so dsp(ti, tj) = dsp(tj , ti);

Triangle inequality: Suppose that Tpji is the smallest
shared parent node. It follows that |Tpik

|o = |Tpjk
|o and

dsp(tj , tk) = dsp(tk, ti) ≥ dsp(ti, tj).
Thus, dsp(tj , tk) ≤ dsp(ti, tj)+dsp(ti, tk), dsp(ti, tk) ≤

dsp(ti, tj) + dsp(tj , tk), and dsp(ti, tj) ≤ dsp(ti, tk) +

dsp(tj , tk).

Similarly, when Tpjk
or Tpik

is the smallest shared parent
node, the triangle inequality property holds.
Eq. (5). Since the function is a weighted combination of
two metrics as defined in Eq. (3) and Eq. (4), it is obvious
that the function defined in (5) is a metric.
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