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Abstract There has been a steadily growing range of
applications that can benefit from the facial reconstruction
techniques, which brings higher demand for reconstruction
of high-quality 3D face models. As an important expressive
part of the human face, nose receives less attention
than other expressive regions in the literature of face
reconstruction. When applying existing reconstruction
methods on facial images, the reconstructed nose models are
inconsistent with the desired shape and expression. In this
paper, we propose a coarse-to-fine 3D nose reconstruction
and correction pipeline to build a nose model from a
single image, where 3D and 2D nose curve correspondences
are adaptively updated and refined. We first correct the
reconstruction result coarsely using constraints of 3D-2D
sparse landmark correspondences, and we then heuristically
update 3D-2D dense curve correspondence based on the
coarsely corrected result. A final refinement step is
performed to correct the shape based on the updated 3D-
2D dense curve constraints. Experimental results show the
advantages of our method in the 3D nose reconstruction than
the current state-of-the-art methods.
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Fig. 1 First row: input images. Second row: baseline 3D face reconstruction
without nose correction [20]. Third row: our 3D face reconstruction with nose
correction.

1 Introduction

Faces have a high degree of freedom to allow humans
to express emotions, making the reconstruction of facial
geometry from 2D images difficult. Despite the vast amount
of work that attempts to utilize a large photo collection
to solve the ambiguities when building the 3D geometry
of faces, accurately reconstructing the face model from
single 2D images still remains challenging. 3D Morphable
Model (3DMM)-based fitting techniques are normally used
when we only have access to one facial image, which
allows us to make the reconstructed 3D face mesh match
the 2D contours in a facial image, such as the contours
of face, eyes and nose. In the applications with dynamic
facial models, such as facial motion re-targeting, researchers
mainly focus on the reconstruction quality of the parts
with frequent movements, like the eyes and mouth. But
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little attention has been paid to the nose. However, with
the steadily growing range of applications that can benefit
from the face reconstruction techniques, the demand for
accurate reconstruction of nose shapes is increasing. For
example, post face re-lighting requires a precise nose shape
to produce a natural lighting effect in the area surrounding
the nose; when creating virtual avatar in computer games,
the nose shape needs to be customized by automatically
manipulating bone controllers to match the input selfie; the
ability to reconstruct recognizable 3D nose shapes is also
important to improve the recognition accuracy [17, 25],
which could be applied for 3D face unlocking of smart
phones.

It is non-trivial to reconstruct accurate and identifiable
3D nose shapes from single images. There are two major
challenges. On the one hand, 3D parametric face models
(such as 3DMM) are unable to represent complex and
diverse nose shapes due to their limited representative
power; on the other hand, more importantly, it is more
difficult to establish sufficient feature constraints in the nose
region than the regions of eyes, mouth and facial silhouette.
To deal with the first challenge, previous works mainly
use non-parametric deformation to correct the parametric
reconstruction for further model enhancement [12, 14, 15].
However, they focus on only correcting the shape of the
whole face instead of the nose, and their sparse landmarks
and dense pixels are not semantically informative enough
to represent various nose shapes. Recently, Tang et
al. [20] introduced dense semantic curve constraints for
3D face reconstruction and correction, which makes the
reconstructed mesh better match the face contours in the
input image. However, their method mainly works for
expressive face regions, such as eyebrows, eyes and mouth,
where the curve features are simple and salient, as shown
in the second row of Figure 1. While in the nose region,
the curves can be very complex and diverse due to various
shapes and perspectives, leading to an erroneous match
between a pre-defined 3D nose contour and the nose contour
on the 2D input image. Finally, compared with eye and
mouth regions, 2D curve features on nose regions are less
salient due to the color similarity with its neighboring
regions, i.e., face and nose are both with the color of skin.

To tackle the aforementioned problems, we propose
a coarse-to-fine 3D nose reconstruction and correction
method, in which 3D and 2D nose curve correspondences
can be adaptively updated and refined. Although correct
dense correspondences between 3D and 2D nose curves are
not easy to establish, it is observed that sparse landmarks of
3D and 2D shapes of nose can be accurately established to
support the reconstruction. Based on this observation, our
idea is to use the sparsely reconstructed result to guide the

estimation of the dense 3D-2D correspondences. We first
correct the reconstruction result coarsely using constraints
of 3D-2D sparse landmark correspondences, and then
heuristically update 3D-2D dense curve correspondences
based on the coarsely corrected result. A final refinement
step is performed to correct the shape based on the updated
3D-2D dense curve constraints.

There are three problems to be solved for effectively
updating 3D-2D dense curve correspondence: 1) How to
determine the 3D nose contour due to the self-occlusion
and the variance of nose shapes and poses. 2) How to
extract a precise 2D nose contour with the non-salient curve
features of the boundary of the nose region. 3) How to
establish accurate correspondences between the 3D and 2D
contours of nose. In terms of extraction of 3D contours,
Tang et al. [20] used predefined vertex indices on a template
mesh as a fixed 3D nose contour, but this method is not
flexible for various nose shapes and poses. Instead, we
render the sparsely corrected nose to a depth map, which can
naturally form self-occlusion edges. We heuristically use
this edge as the 3D nose contour to update. For 2D contour
extraction, Tang et al. [20] applied Snake [13] on a feature
map, but the curve feature here is not distinctive enough. We
produce an enhanced feature map using RGB-D foreground
enhancement method [21], where we render a depth map
using the sparsely corrected 3D face mesh. Then Snake is
able to extract a more accurate 2D contour. In terms of the
estimation of 3D-2D contour correspondences, we integrate
3D contour information to 2D contour extraction, rather
than dealing with them separately as in [20]. Specifically,
we initialize the active contour in Snake algorithm using
the projection of the heuristically determined 3D contour.
In this way, no matter how complex the 3D nose curve
is, proper correspondences can be preserved. In contrast,
the matching method used in [20] may produce erroneous
correspondences when the curve is complex.

Our work is the first attempt to reconstruct accurate 3D
noses from single images to our knowledge. Experiments
show that our method outperforms the state-of-the-art
methods. We have the following technical contributions:
• We propose a coarse-to-fine 3D nose corrective

reconstruction approach, which can adaptively and
heuristically build and update dense 3D-2D nose
contour correspondences to adapt to different face
poses and nose shapes.
• We propose an improved 2D nose contour feature

detection method by integrating the RGB-D
foreground enhancement method.
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3D Corrective Nose Reconstruction from a Single Image 3

Fig. 2 Pipeline of proposed 3D corrective nose reconstruction method.

2 Related Work

Low-dimensional parametric 3D face models [1, 2, 5, 6,
8, 16, 18, 27] are widely used in the 3D face reconstruction
task for their simplicity, compactness and effectiveness.
However, limited by the wide range of types of models
and their formats in the model databases, low-dimensional
models cannot be used to reconstruct sufficiently accurate
face shapes, especially when the face is greatly different
from those in the model database. Therefore, it is a
necessary step to further correct the reconstructed low-
dimensional 3D faces to better match the input data.

There has been numerous studies [10, 14, 15] to
investigate how to use Laplacian deformation [19] to correct
low dimension 3D face reconstruction results. Their idea is
to correct the position of each vertex in a high dimensional
feature space to better match the input data, where the
local structure is maintained by a Laplacian coordinates
regulation term. Li et al. [14] used RGB-D data to correct
the whole face, and correct the nose depending on the
dense depth data, which is however unavailable when only
a single image can be accessed. Thus, for single image
input, Li et al.[15] approximately converted detected 2D
sparse landmarks to the 3D space to correct the whole face.
However, sparse landmarks in the nose area are not dense
enough to describe the nose shape, and the correction effect
is thus limited. For video input, Garrido et al. [10] corrected
the whole face based on dense optical flow constraints. But
the optical flow calculation depends on the video input and

is not applicable for the single image input. Considering that
the high dimensional Laplacian deformation [19] in vertex
space is of high computational cost and not robust to noise,
some researchers have also suggested [3, 10, 12] solving
Laplacian deformation in a low-dimensional subspace [23]
to speed up the computation and/or reduce noise. Similar
to the work of Li et al. [14], Bouaziz et al. [3] corrected
meshes relying on depth data, which is not applicable to a
single image either. For single image input, a series of recent
studies has indicated that the deformation problem can be
solved by utilizing the dense pixels difference between the
rendered image and input image [10, 12]. However, it
needs to solve parametric albedo and illumination model
at the same time, thus is also greatly affected by the
representation power of parametric illumination and albedo
model. Pixel level dense constraint (depth or photo pixel)
is usually a supplement to sparse landmark constraints, and
is especially suitable to represent medium level wrinkle
deformations in skin regions, such as forehead and cheek,
where sparse landmarks constraints cannot model them
well. On the other hand, pixel level dense constraint usually
contains a lot of noise and does not show salient contour-
level semantic features, thus cannot correct feature regions
properly. In addition, although low dimensional subspace
Laplacian deformation [23] is more efficient and smooth,
the deformation is limited to a narrow range.

The above works aim at correcting the whole face to fit the
input sparse or dense data. However, local feature regions in
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their reconstructed results, such as eyes, mouth and nose, are
still not identifiable or expressive enough. Compared with
sparse landmarks and dense pixel feature, contour features
contain more semantic information to model parts of the
face better, thus can be used to further correct local shapes.
For eyelid correction, Wen et al. [24] build a parametric
eyelid model to fit the extracted 2D eyelid contour, but
their 2D eyelid contour extraction relies on manually labeled
data for training. For lip correction, Garrido et al. [11]
learned a mapping from inaccurate 3D lips to accurate 3D
lips. But the accurate 3D lips data set needs to be collected
and processed by complex and expensive equipment, and
they also require manually labeled data to train the 2D lip
contour extraction model. Dinev et al. [7] also corrected
lips using a data-driven method. Different from [11], they
constructed a training data set using lightweight Laplacian
deformation techniques [19]. However, they need to
manually extract 2D lip contour, and sometimes they need
to heuristically label lips due to the occlusion between upper
and lower lips. All the above correction methods involving
some manual intervention in 2D contour extraction. Thus,
more lightweight and fully automatic 2D contour extraction
methods are preferable to reduce manual burden. More
recently, Tang et al. [20] propose a lightweight 2D contour
extraction approach to correct local facial features. When
extracting 2D contour, they propose a local-to-global snake
algorithm [13] to refine the initial connection lines between
landmarks. However, their method is more suitable for eye
and mouth regions where the features are salient and simple.
It does not work well for noses because of its more complex
shape.

To the best of our knowledge, there are no previous
works aiming at correct nose reconstruction in the field of
single-image-based facial reconstruction. Compared with
eye and lip correction [7, 11, 24], it is more challenging
to establish accurate 3D-2D dense contour correspondence
for nose correction. To deal with this challenge, we
couple the 3D reconstruction and 2D feature extraction
instead of dealing with them separately [7, 11, 24], which
effectively improves dense 3D-2D nose correspondence. In
our approach, in order to allow a flexible 3D nose contour
for various face poses and nose shapes, we heuristically
refine the 3D nose contour in a coarse-to-fine scheme in
reconstruction. To mitigate the ambiguity when extracting
2D nose contour with less salient curve features, we
combine the reconstructed depth information to improve
2D contour extraction instead of extracting features based
only on 2D input data [11, 20, 24]. For 3D-2D one-to-one
contour correspondence, considering that Iterative Closest
Point (ICP) method may find wrong correspondences
for complex nose shapes, we implicitly preserve correct

correspondence by deforming the 2D projection of the 3D
nose contour to produce the final 2D contour using the snake
algorithm [13].

3 Method

3.1 Overview

Previously, single image based 3D face reconstruction
commonly faced the difficulty of reconstructing accurate
and identifiable 3D nose shape. In this paper, we propose
and develop a method which makes the reconstructed 3D
nose accurately match the 2D nose contour in the input
image, as shown in Figure 2. The key challenge in 3D
nose reconstruction is to establish sufficiently accurate 3D-
2D feature correspondences that can adapt to various face
poses and nose shapes. Our basic idea is to update the
3D nose shape MN

i and the 3D-2D nose correspondence
CN

i in a coarse-to-fine manner. In the process, the 3D-2D
correspondence is heuristically updated based on the 3D
nose shape change. Then, the 3D nose shape is iteratively
refined based on the updated nose correspondences. Overall,
the process is composed of three stages: basic nose
reconstruction, sparse nose correction and dense nose
correction.

The mathematical notations used in this paper are
summarized in Table 1. The three-stage nose reconstruction
process can be formulated as a three-stage optimization
problem with the following objective:

E(P,M,CN) =σ0Ebasic(P,M,CN)

+σ1Esparse(MN ,CN)

+σ2Edense(MN ,CN),

(1)

where the targets to be solved include camera parameters
P, 3D face mesh M (nose part is MN), and 3D-2D nose
correspondence CN . CN = (CN,2D,CN,3D) contains one-
to-one nose correspondence between 2D point set CN,2D

and 3D mesh vertex set CN,3D. In each reconstruction
stage, only a single energy term in Equation 1 is activated.
(1) Basic Nose Reconstruction Stage. In this stage,
an initial 3D nose is reconstructed with energy weights
as σ0 = 1.0, σ1 = 0.0, σ2 = 0.0. The optimization
objective is E(P,M,CN) = Ebasic(P,M,CN)[LA,CA−N

0 ] [20],
where camera parameters P, whole face mesh M and
nose correspondence CN are all solved based on all 3D-
2D sparse correspondence LA = (LA,2D,LA,3D) and partial
3D-2D dense correspondence CA−N

0 = (CA−N,2D
0 ,CA−N,3D

0 )

(excluding nose dense correspondence, as it is not accurate
yet). This stage outputs the basic 3D nose shape MN

0 and
3D-2D nose dense correspondence CN

0 . (2) Sparse Nose
Correction Stage. In this stage, we refine the results
of first stage with energy weights as σ0 = 0.0, σ1 = 1.0,
σ2 = 0.0. The optimization is formulated as E(P,M,CN) =

4
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Tab. 1 Mathematical notations used in this paper.

Notations Description

Camera
P camera parameters, include P = {Pr,R, t}
Pr weak perspective projection matrix
R rotation matrix
t translation vector
Π get projected 3D point in image space
Πxy get 2D position (xy component) of projected 3D

point
Πz get depth value (z component) of projected 3D

point

Image
I input face image
IN nose region of input face image
FN

1 enhanced nose feature map in optimization stage
1

Mesh
M target 3D face mesh to be solved
Mi solved 3D face mesh of optimization stage i
MN

i nose region of solved 3D face mesh of
optimization stage i, ’N’ indicate ’Nose’

DN
i rendered nose depth map of 3D face mesh in

optimization stage i, ’N’ indicate ’Nose’

Corres.
LA all 3D-2D sparse landmarks correspondence, ’A’

indicate ’All’
LN nose 3D-2D sparse landmarks correspondence,

’N’ indicate ’Nose’
CN target 3D-2D dense nose correspondence to be

solved, ’N’ indicate ’Nose’
CN

i 3D-2D dense nose correspondence result of stage
i , ’N’ indicate ’Nose’

CA
i 3D-2D dense face correspondence result of stage

i, ’A’ indicate ’All’
CA−N

i 3D-2D dense face (excluding nose)
correspondence result of stage i, ’A-N’ indicate
’All’ face dense correspondence excluding
’Nose’ part

Operation
Φ

line
2D generate 2D nose contour by connecting

landmarks
Φ

contour
2D update 2D nose contour using snake

Φ
contour
3D extract 3D nose contour from depth map
F get enhanced feature map using RGB-D image

Esparse(MN ,CN)[LN ], where camera parameters P are fixed,
and only 3D nose shape MN and nose correspondence CN are
solved. The constraint is nose 3D-2D sparse correspondence
LN = (LN,2D,LN,3D). This stage outputs the roughly
corrected 3D nose MN

1 and updated nose correspondence
CN

1 . (3) Dense Nose Correction Stage. In this stage, we
further refine the second stage results, with energy weights
settings σ0 = 0.0, σ1 = 0.0, σ2 = 1.0. And the optimization
becomes E(P,M,CN) = Edense(MN ,CN)[CN

2∗ ], where we first
update nose correspondence from CN

1 to CN
2∗ as energy

constraints, and then solve the 3D nose shape MN and update
the nose correspondence CN , and get the final results MN

2 and
CN

2 .
Face Model. We propose 3D face model [27] for

reconstruction. In the model, a 3D face mesh can be
represented in two forms: high dimensional space and
low dimensional space. In high dimensional space, a 3D
face is represented by all the vertices, while in the low
dimensional space, it can be represented by a small number
of parameters. In the basic nose reconstruction stage, 3D
face mesh M is first obtained in low dimensional space,
which is represented by the following set of parameters:
M(α,β) = Mmean + Bid · α + Bexp · β [27], where α and β

represent identity and expression parameters respectively. In
all the three stages, 3D face mesh is also corrected in high
dimensional space. The face mesh is represented in the form
of high-dimensional vector containing positions of vertices:
M(V ) = {vi}n

i=1, where vi represents the 3D position of the
i-th vertex.

Camera Model. In the basic nose reconstruction stage,
camera parameters P are solved, and in the next two stages,
P is fixed and is used to inversely project 2D points of image
space to 3D space. It can be represented as P = {Pr,R, t},
including a weak perspective projection matrix Pr, a rotation
matrix R, and a translation vector t. We formulate the weak
perspective projection from 3D to 2D as:

vpro j = Π(v3d), (2)

which can be further expanded as:(
v2d

d

)
= Pr · (R · v3d + t), (3)

where vpro j =

(
v2d

d

)
represents the position after 3D point

v3d is projected to 2D image space. v2d is the projected 2D
position and d is the depth value. Π = Π(Pr,R, t) represents

the model-view matrix. Pr =

 f 0 0
0 f 0
0 0 1

 represents

the weak perspective projection matrix. R represents 3D
rotation matrix and t is 3D translation. For convenience,
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Fig. 3 Comparison with the state-of-the-art method on Stirling ESRC dataset [9]. First row: input images. Second row: results of our method. Third row: results of
method [20]

we decompose the 3D projection formula as:
v2d = Πxy(v3d), (4)

and
d = Πz(v3d), (5)

On the other hand, to get a unique result when inversely
projecting a 2D point to 3D, the 2D point’s depth value
should be known in advance. Thus the inverse projection
from v2d to the 3D point v3d is:

v3d = Π
−1(vpro j), (6)

which can be further expanded as:

v3d = R−1(Pr−1

(
v2d

d

)
− t). (7)

3.2 Basic Nose Reconstruction

Recent work [20] proposed a 3D facial reconstruction
based on dense contour features, which can produce
faithfully reconstructed 3D faces especially for exaggerated
faces. Such a method of establishing 3D-2D dense contour
correspondence does not produce good correspondences for
nose reconstruction, as the 2D nose contour is more difficult
to extract and 3D nose contour varies with different poses
and shapes. Therefore, we just apply the method of [20] for
initialization, and facial regions except nose are corrected.
The optimization objective of the initial nose reconstruction
is formulated as:

E(P,M,CN) = Ebasic(P,M,CN)[LA,CA−N
0 ]

= ω1E f it
sparse[L

A]+ω2E f it
dense[C

A−N
0 ]

+ω3E f it
reg +ω4Ecorrect

dense [CA−N
0 ],

(8)

where P, M and CN are camera parameters, objective
3D face mesh and nose correspondence respectively as
in Equation 1. ωi is the weight of each energy term.
E f it

sparse[LA] is the low-dimensional fitting energy using all
sparse landmarks LA as constraints. E f it

dense[C
A−N
0 ] indicates

the low-dimensional fitting energy using all dense contours
except for the nose contour CA−N

0 as constraints. E f it
reg

is the low-dimensional regulation energy which keeps the
parameters in a reasonable range. Ecorrect

dense [CA−N
0 ] represents

the high-dimensional correction energy based on all dense
contours excluding the nose CA−N

0 .
We solve the above optimization problem in three stages

according to the work [20]. In the first stage, we estimate a
3D mesh in a low dimensional space with sparse constraints,
and the energy weights are ω1 = 1.0, ω2 = 0.0, ω3 = 0.05,
and ω4 = 0.0. In the second stage, dense constraints are
introduced to the fitting for refinement. Energy weights are
ω1 = 0.005, ω2 = 15.0, ω3 = 2.0, and ω4 = 0.0. In the third
stage, high-dimensional correction is proposed based on
dense constraints. Energy weights are ω1 = 0.0, ω2 = 0.0,
ω3 = 0.0, and ω4 = 1.0.

Our initial results show that except for the nose region,
the other regions can better match the feature contours of the
image. Based on the initial reconstructed mesh, we initialize
the dense 3D-2D nose contour correspondence as follows:

CN
0 = (CN,2D

0 ,CN,3D
0 ) = (Φline

2D (LN,2D),Φcontour
3D (DN

0 )), (9)

where CN
0 is the initialized nose dense 3D-2D

correspondence, CN,2D
0 = Φline

2D (LN,2D) represents the
initialized 2D nose contour, generated by connecting nose

6



3D Corrective Nose Reconstruction from a Single Image 7

Fig. 4 Comparison with state-of-the-art optimization based methods on BU-3DFE dataset [26]. (a) input images; (b) results of Face2Face [22]; (c) results of Tang
et al. [20]; (d) results of our method; (e) ground truth 3D meshes. The reconstructed error (unit is millimeter) can be visualized in red/blue color maps, and the Root
Mean Squared Error (RMSE) and Stanard Deviation are shown below the color maps.

landmarks LN,2D with straight lines. CN,3D
0 = Φcontour

3D (DN
0 )

represents the 3D nose contour, extracted from rendered
nose depth map DN

0 . The nose depth map DN
0 is rendered

from reconstructed nose region mesh MN
0 . In DN

0 , pixels
belonging to nose regions are set as white and non-nose
pixels are set as black. The 2D contour is detected from
the binary mask and the projected 3D nose vertices that
are closest to the contour are found by nearest neighbor
searching, which results in the initial 3D nose contour
CN,3D

0 .

3.3 Sparse Nose Correction

The nose shape reconstructed from [20] has a largely
different look with ground truth. However, as stated before,
dense nose 3D-2D contour correspondence cannot be
directly generated like eyes and lips due to the difficulties of

extracting both 2D and 3D nose contours. It is observed that
although sparse nose landmarks are not sufficient to describe
a nose shape, they usually can be accurately detected. Based
on the observation, weak nose correction [19] is performed
using the sparse nose landmarks, thus the reconstructed 3D
nose shape can be roughly corrected to fit the 2D nose shape
better. Moreover, with this sparse correction result, dense
nose correspondences can be further refined. This sparse
nose correction optimization can be formulated as:

E(P,M,CN) = Esparse(MN ,CN)[LN ]

=
n

∑
i
‖£(v∗i )−£(vi)‖2

+ω ∑
l2D

j ∈LN,2D

∥∥v∗j − l3D
j

∥∥
2
,

(10)

7
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Fig. 5 Comparison with state-of-the-art learning based methods on BU-3DFE dataset [26]. (a) input images; (b) results of RingNet [18]; (c) results of D3DFR [6];
(d) results of our method; (e) ground truth 3D meshes. The reconstructed error (unit is millimeter) can be visualized in red/blue color maps, and the Root Mean
Squared Error (RMSE) and Stanard Deviation are shown below the color maps.

where MN is the nose mesh represented by its vertices.
LN is sparse landmark correspondence as optimization
constraints. £ is the Laplacian operator [19]. ω is a weight
to balance the landmark matching term and the Laplacian
term, with an experimentally determined value 5.0. With
the inverse projection Equation 6, each 2D point l2D

j in the
sparse correspondence can be approximately converted to a
3D point:

l3D
j = Π

−1

(
l2D

j

Πz(v j)

)
. (11)

The sparse nose correction not only makes the reconstructed
3D nose approach the 2D shape, but also heuristically
updates the 3D nose contour for a better dense 3D-2D nose
correspondence. The nose correspondence is updated by:

CN
1 = (CN,2D

1 ,CN,3D
1 ) = (CN,2D

0 ,Φcontour
3D (DN

1 )), (12)
where CN

1 is the updated nose dense correspondence in stage
of sparse nose correction. CN,2D

1 = CN,2D
0 is the 2D nose

contour before updating. CN,3D
1 = Φcontour

3D (DN
1 ) indicates

the heuristically updated 3D nose contour using sparsely
corrected nose result DN

1 .

3.4 Dense Nose Correction

After sparse nose correction, the 3D nose shape gets
closer to 2D input, but the quality of the result is not

sufficiently high to be used in personalized applications.
Thus, we further perform dense nose correction to get
accurate dense 3D-2D nose contour correspondence.

Update dense nose correspondence. In the previous
sparse correction stage, 3D nose contour is heuristically
updated to better match the 2D input. However, the 2D
nose contour is still inaccurate. Traditional works use a
low-level edge detection method [4] to detect 2D facial
contours. Their resulting contours may be noisy or jaggy
due to the lack of shape prior. Thus, we deal with this
problem by employing the snake algorithm [13] which can
combine both low-level image features and high-level shape
prior. On the one hand, snake is an active contour model,
which introduces an external fitting energy term to optimize
the objective contour to match the low-level image features,
such as edge and brightness. On the other hand, the internal
regular energy term can preserve the contour shape and
smoothness. The snake-based 2D contour updating can be
formulated as:

C = Φ
contour
2D (Cinit ,F), (13)

where C is the updated 2D contour, Cinit is the initial contour,
and F is the feature map of the target image to fit the active
contour.

Previous work [20] also employed snakes to extract the

8



3D Corrective Nose Reconstruction from a Single Image 9

facial contour. In their work, the initial contour is composed
of the straight lines connecting nose landmarks, and the
feature map is the intensity map of the gray image. Their
method produces good results for expressive regions, such
as eyes and lips, but not applicable to extracting nose
contour. Different from eyes and lips, edge features are
not salient in nose regions because the skin colors are
similar between a nose and its neighboring region. We
thus generate an enhanced feature map F using the RGB-D
saliency detection method in [21], where the depth map DN

1
is rendered from reconstructed 3D face mesh. Furthermore,
as the shape of nose is more complex than eyes and lips,
ICP method used in work [20] may result in wrong 3D-2D
correspondences. We instead set the initial contour Cinit as
the 2D projection of 3D nose contour Πxy(CN

1 ), which can
implicitly establish accurate 3D-2D correspondence in an
adaptive way. The above dense nose 3D-2D correspondence
updating process can be formulated as:

CN
2∗ = (CN,2D

2∗ ,CN,3D
2∗ ) =(Φcontour

2D (Πxy(C
N,3D
1 ),FN

1 ),

CN,3D
1 ),

(14)

where CN
2∗ is the updated dense correspondence, CN,3D

2∗ =

CN,3D
1 represents the 3D nose contour in the previous

sparse correction stage. CN,2D
2∗ = Φcontour

2D (Πxy(C
N,3D
1 ),FN

1 )

indicates the updated 2D nose contour based on the snake
method (Equation 13). In the 2D nose updating, the initial
nose contour Πxy(C

N,3D
1 ) is the 2D projection of 3D nose

contour CN,3D
1 , which can implicitly preserves the 3D-2D

correspondence when 2D contour deforms. The feature
map FN

1 used for the snake algorithm is an enhanced
feature map which is generated by the RGB-D saliency
detection method [21]. FN

1 = F(IN ,DN
1 ) represents the

feature map that is calculated based on the RGB image IN

and the depth map DN
1 of the nose. As both 3D and 2D

contours are evolved from CN,3D
1 , accurate dense 3D-2D

nose correspondences can be implicitly preserved without
any additional computation, such as ICP.

When calculating the enhanced feature map FN
1 using

the RGB-D saliency detection method, we compute the
probability of each pixel belonging to the foreground, which
thus results in enhanced edges. We modify the original
method [21] to better suit our task. Specifically, the random
walker seeds for foreground and background are sampled
on different sides of the banded area formed by CN,2D

1 and
Πxy(C

N,3D
1 ), and we set the random walker weight graph

using the depth information for regularization, which can
constrain the resulted foreground boundary close to the
input nose boundary in the depth map.

Dense Nose Correction. With the updated dense nose
3D-2D contour correspondences, we correct the nose shape

in the high-dimensional space:
E(P,M,CN) = Edense(MN ,CN)[CN

2∗ ]

=
n

∑
i=1
‖£(v∗i )−£(vi)‖2+

ω ∑
c2D

j ∈CN,2D
2∗

∥∥v∗j − c3D
j

∥∥
2
,

(15)

where MN is the target 3D nose to be corrected. CN
2∗ is

the 3D-2D correspondence of nose contour (Equation 14)
as constraints. ω is a weight to balance the landmark
matching term and Laplacian term, with an experimentally
determined value 5.0. For each 2D point c2D

j in the
dense correspondence, it can be converted into a 3D point
approximately by:

c3D
j = Π

−1

(
c2D

j

Πz(v j)

)
, (16)

where the depth value is rendered using the corresponding
3D vertices Πz(v j).

After the dense nose correction, accurate 3D nose shape
MN

2 is generated. Similar to Equation 12, the dense
correspondence can be further updated by:

CN
2 = (CN,2D

2 ,CN,3D
2 ) = (CN,2D

2∗ ,Φcontour
3D (DN

2 )), (17)

which is the final output of the dense 3D-2D contour
correspondence.

4 Experiment

4.1 Comparison with the state of the art

We compare our method with state-of-the-art image-
based 3D face reconstruction method [20] on Stirling ESRC
3D face dataset [9], as shown in Figure 3. The experimental
results demonstrate that our method outperforms it by
reconstructing better personalized and distinctive nose
shapes. Further quantitative comparison with optimization
based methods [20, 22] on BU-3DFE dataset [26] is
performed, which numerically demonstrate the advantage of
our method, as shown in Figure 4. Additionally, we compare
our method with recent learning based methods [6, 18], as
shown in Figure 5, which also shows the better performance
of our method.

4.2 Ablation study

We conduct ablation experiments to demonstrate the roles
of all the three stages of our method. The results after
each stage are shown in Figure 6. It demonstrates that both
sparse and dense correction can significantly improve nose
reconstruction. In the first row, nose wings are improved
in the final result. In the second row, the overall shape
and position of the model are improved. In the third row,
final reconstructed results have lower nose tips, which better
match the input images.

9
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Fig. 6 Results of the ablation study. First column: input images. Second
column: results of first stage. Third column: results of second stage. Fourth
column: results of third stage (final results of the proposed method). Numbers
below the first column are the resolution of nose region, while numbers below
the other columns are the mean pixel errors between the reconstructed nose
contour (blue) and the ground truth nose contour (green).

4.3 Fixed vs. updated 3D contour

A successful nose correction relies on adequate accurately
matched features on the nose region. The 3D nose contour
must match the 2D contour, otherwise the reconstructed
results can not accurately recover the shape of the nose in
the 2D image. Our 3D contour updating scheme is designed
for that aim. In Figure 7, we compare the results of using a
fixed 3D nose contour and our proposed heuristic 3D nose
contour updating scheme, where we can see that our method
can get much better results.

4.4 Discussion on the 2D contour updating

The traditional Snake method is to update the 2D contour
using the intensity feature map of the image. However, the
feature on the intensity map is not significant, which often
leads to an undesirable nose boundaries. Our enhanced
feature map generated from RGB-D data is designed to

Fig. 7 Comparative results for 3D nose contour updating. First column: input
images. Second column: results without 3D contour updating. Third column:
results with 3D contour updating. Numbers below the first column are the
resolution of nose region, while numbers below the other columns are the mean
pixel errors between the reconstructed nose contour(blue) and ground truth nose
contour (green).

cope with this problem. In Figure 8, we compare the
results based on feature maps generated from the intensity
map, the RGB saliency map and the RGB-D saliency map
respectively. The experimental results show that the RGB-
D saliency map significantly improves the quality of 2D
contour and further improves the quality of nose correction.
The 3D nose head shape generated by the proposed method
is more approximate to hook nose that better matches the
input image.

Fig. 8 Demonstration of the effectiveness of 2D contour update. First column:
input images. Second column: results on intensity map. Third column: results
on RGB saliency map. Fourth column: results on RGB-D saliency map.

5 Conclusion

In this paper, we propose a 3D nose reconstruction
method which adaptively updates the nose model to

10
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better match the input 2D facial image. Our method
utilizes a coarse-to-fine 3D nose corrective reconstruction
approach, which can adaptively and heuristically build
and update dense 3D-2D nose contour correspondences
to adapt to different face poses and nose shapes. We
also improve 2D nose contour detection using the
enhanced feature map generated from RGB-D data that is
rendered using intermediate nose model. The experiments
show our advantage over the current state-of-the-art
facial reconstruction method in terms of the quality of
reconstructed noses.
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