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Abstract Image segmentation is a basic problem

of medical image analysis and an auxiliary method

for disease diagnosis. However, the complexity of

medical images makes image segmentation difficult.

In recent decades, fuzzy clustering algorithms are

preferable due to its simplicity and efficiency. However,

fuzzy clustering algorithms are sensitive to noise. To

solve this problem, many algorithms with non-local

information have been proposed, which performed well

but with low efficiency. In this paper, an improved

fuzzy clustering algorithm by utilizing non-local self-

similarity and low-rank prior for image segmentation

is proposed. Firstly, cluster center initialization

is performed based on peak detection. Then, the

pixel correlation model between corresponding pixels

is constructed, and the similar pixel set is retrieved.

To improve efficiency and the robustness, a novel

objective function combining non-local information and

low-rank prior is designed in the proposed algorithm.

Experiments on synthetic images and medical images

illustrate that the algorithm can improve efficiency

greatly while achieving satisfactory results.

Keywords Image segmentation; fuzzy clustering; non-

local information; low-rank prior.
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1 Introduction

With the development of medical diagnostic

technology, various information, such as medical images

and electrocardiograms, can be adopted for clinical

decision support systems. Also, the combination of

medical knowledge and data processing technology

is a research hotspot and has received extensive

attention from researchers. Currently, data processing

technologies such as image segmentation, image

registration, 3D reconstruction, and etc. play an

important role in smart healthcare.

Generally speaking, medical image segmentation can

be adopted to partition the image into different tissues

or organs, which is helpful for clinical decision support

systems. However, the complexity of medical images

makes this problem difficult. In medical images, the

intensity value of a pixel is the average value of

the adjacent pixels due to the imaging principle [26].

Therefore, the intensity value of a pixel may be the

interaction of corresponding tissues or organs. So

far, various algorithms have been proposed for image

segmentation, such as threshold-based algorithms [3,

13, 23], fuzzy clustering algorithms [24], and so on.

Among these algorithms, fuzzy C-means (FCM) is

more preferable since it is suitable for modelling

the principles of medical images. In FCM, each

pixel is assigned membership in [0, 1] to denote the

belongingness to the corresponding clusters. That is,

each pixel can belong to several clusters concurrently

with different degrees, and much information can be

retained to enhance the segmentation results.

However, the traditional FCM algorithm is sensitive

to image noise due to only considering intensity

information, and many algorithms were proposed to

improve the robustness. For example, Bezdek proposed

a bias-corrected version of FCM (BCFCM) [1],

and Stelios proposed a fuzzy local information C-

means clustering algorithm (FLICM) [20]. In these
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algorithms, the neighboring information is introduced

in different forms to gain good performance. However,

when the image is contaminated heavily, these

algorithms are either ineffective or inefficient. To

retrieve satisfying results, improved FCM algorithms

based on non-local information (NLFCM) were

proposed [25]. In NLFCM, the information covering

the whole image can be utilized, not limited to the

vicinity. In algorithms such as BCFCM, FLICM

and NLFCM, neighboring pixels or similar pixels are

enforced to belong to the same cluster, thus improving

the insensitivity to image noise. In these algorithms,

the most important problem is to measure the relevance

between pixels. In these algorithm, pixel relevance

emerged in different forms. In [1], the pixel correlation

between neighboring pixels and the central one is

defined as the constant α. In [2], pixel relevance is

defined as the product of spatial relevance and intensity

relevance. Due to the limitation of spatial relevance,

the pixel relevance decreases greatly with the increase

of Euclidean distance between pixels. That is, only

nearby pixels can play positive roles, resulting in poor

performance. In [25], pixel relevance is defined as the

similarity between image patches, which can enhance

the results to some extent yet with poor efficiency.

In this paper, an improved fuzzy clustering algorithm

for segmentation algorithm is proposed. In the

algorithm, more information will be exploited and

adopted in image segmentation. Firstly, the cluster

centers are initialized by peak detection. Then,

a novel distance model to measure pixel relevance

is constructed, named as patch-weighted distance.

With accurate relevance, more information can be

utilized, just as that in NLFCM. Finally, low-rank

prior is merged into the framework of fuzzy clustering

algorithms to perform image segmentation.

The reminders of the paper are organized as follows.

Section 2 presents the motivation and contribution.

Section 3 presents the proposed algorithm in detail,

including clustering center initialization, a novel pixel

relevance model and the improved fuzzy clustering

algorithm. Section 4 shows the experimental results

as well as the result analysis. Section 5 summarizes

this paper and presents our future work.

2 Motivation and Contribution

In the improved FCM algorithms based on non-local

information, to ensure efficiency, a search window with

a large radius is adopted instead of the pixels covering

the whole image. In essence, the purpose of these

algorithms is to enforce the similar pixels to be classified

into the same cluster. However, the improvement of the

robustness is at the cost of efficiency [25]. Specifically,

if the radius of the search window is formalized as r,

the number of pixels considered in image segmentation

is (2r + 1)2 − 1. When the patch-weighted distance

model is introduced to measure pixel relevance, the

(2r + 1)2 − 1 weights should be computed first, which

will deteriorate the efficiency farther. To improve the

efficiency of these algorithms, this paper will propose

a segmentation method based on low-rank prior and

non-local self-similarity.

As we all know, almost all images have high

information redundancy either in the form of low rank

or sparse representation. The reason is that many

pixels share similar features. Based on low-rank prior

or sparse representation, images can be denoised [4–7].

For medical images, due to the limited intensity levels,

the phenomenon of low rank is particularly obvious.

In Figure 1, several medical images are adopted to

illustrate the property of low-rank. As shown in Figure

1, the patch matrices are approximately low-rank,

which means that most image patches share similar

features. Therefore, in the image segmentation process,

we can improve the efficiency by making those similar

pixels into the same cluster without considering those

dissimilar pixels.

In fact, the idea of low-rank prior is widely applied

in the fields of image denoising [7] and resolution

enhancement [10]. In [27], an improved superpixel

segmentation algorithm was proposed, which updates

the seed by averaging the pixels that have the most

homogeneous appearance, not all pixels belonging to

the superpixel. Also, this can also avoid inhomogeneous

intensity within the superpixel. In [10], low-rank

prior is exploited to estimate the missing pixels and

reconstruct the high resolution (HR) image. In the

segmentation algorithms based on soft sets [12], pixels

are divided into three regions: positive, boundary and

negative. In the process of image segmentation, only

the pixels in the positive and boundary regions are

utilized.

Moreover, fuzzy clustering algorithms tend to fall

into local minima, which will also reduce efficiency. It

is well known that the histogram of a given image can

reflect the frequency distribution of grayscale well [9],

and many segmentation algorithms based on histogram

have been proposed [8, 14]. In the histogram, the peaks

are the grayscales correlated with more pixels while

troughs are grey levels associated with fewer pixels.

Generally speaking, the peaks are close to the cluster

center while the valleys are faraway. Therefore, the
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peak value of the histogram can be adopted for cluster

initialization.

Recently, background knowledge or prior knowledge

is adopted in supervised algorithms to improve

accuracy, such as CNN-based methods [11]. However,

these algorithms may provide highly inaccurate results

for medical images for two reasons. First, there are

physiological variability between different subjects [19].

Second, large numbers of samples are required to train

CNN, which is difficult due to individual privacy and

other reasons. In clinical applications, the accuracy

and speed requirements of medical image segmentation

are very high [17]. In order to retrieve satisfactory

results with acceptable efficiency, non-local information

and low-rank prior are combined in the framework

of fuzzy clustering algorithms. The study performs

image segmentation in four steps: 1) initialize the

cluster centers by peak detection; 2) the relevance

between pixels will be modeled; 3) the low-rank prior is

exploited to retrieve the most relevant pixels; 4) image

segmentation will be performed in the framework of

fuzzy clustering.

The main contributions of this study are as follows.

1) An initialization method is presented, which will

avoid the local minima of traditional fuzzy algorithms;

2) a relevance model is presented in this paper, which

can measure the pixel relevance accurately; 3) an

efficient method for medical image segmentation is

presented by utilizing the low-rank prior and non-local

information simultaneously, which can improve the

efficiency while ensuring the efficacy. 4) the proposed

method is performed in the framework of FLICM,

which is free of parameter adjustment and can be easily

extended to other fuzzy clustering algorithms.

3 Proposed method

For the improved fuzzy algorithms based on non-local

information, the utilization of non-local information

will reduce efficiency, although good performance can

be retrieved. In this study, a novel fuzzy clustering

algorithm is proposed, which will be accomplished by

cluster center initialization, pixel relevance and low-

rank prior simultaneously.

3.1 Cluster center initialization

In the traditional fuzzy algorithms, the memberships

are initialized at random, and the cluster centers are

computed based on the intensity values and initial

memberships. For fuzzy clustering algorithms, random

initialization of the memberships may lead to unstable

performance, and often the process will be trapped into

local minima [15]. Intuitively, the cluster centers will be

located in regions with larger diversity. In other words,

the grayscales with higher frequency are suitable as the

initial cluster centers. In the proposed schema, the

cluster centers are initialized using peak detection [26].

3.2 Pixel relevance model

As mentioned before, the measurement of pixel

relevance is a key problem in fuzzy clustering

algorithms. In our opinion, only considering the most

(a) (b) (c) (d)

Fig. 1 Illustration of low-rank prior in medical images. (a) original images(the two rows are MR brain and CT lung images.);

(b) Distributions of singular values of corresponding patch matrices; (c) low-rank approximation with rank=20; (d) low-rank

approximation with rank=30.
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relevant pixels in image segmentation will improve the

efficiency. In previous work [24, 25], pixel relevance

was measured by the patch distance. However,

smaller distance between corresponding patches does

not always mean similar pixels. Let us take the example

in Figure 2 to illustrate this problem. As shown

in Figure 2(a), it is reasonable to classify the center

pixel and the upper pixel into the same cluster, while

the center pixel and the pixel below should belong to

different clusters. However, the distances are on the

contrary, shown in Figure 2(c). Hence, it is not suitable

to measure pixel relevance by the distance between

image patches.

In our opinion, the distance between corresponding

patches does not consider edge information.

Specifically, different neighbor pixels may have

different influences on the central pixel. Aiming at this

problem, the study presents a novel relevance model,

formalized in Algorithm 1. In the novel model, the

weight in different directions is introduced, which is

more suitable to measure pixel relevance accurately.

Through the novel model, the pixel relevances between

the center pixel and neighboring pixels in Figure 2(a)

are presented in Figure 3. As shown in Figure 3,

the relevance retrieved by the novel model is more

reasonable, which means that the novel model is

reasonable.

Algorithm 1 Pixel relevance retrieval

Input: The image I, and two related parameters α, γ to

control the relevance.

Output: Relevance between the central pixel p and the

pixels in the search window.

For any pixel p in the image, construct image patches Xp.

Retrieve the difference between corresponding patches in

different directions: dp(q) =
1

|Np|
∑
|Xp −Xq|, in which

Np is the set of neighboring pixels with cardinality of |Np|.
Retrieve the weights in different directions: wp(q) =

exp(−αdp(q))∑
q∈Np

exp(−αdp(q))

Retrieve the weighted distance in different directions,

dwp (q) =
1

|Np|
∑
q

(wp ⊗ |Xp −Xq|), where ⊗ is the dot

product for two vectors.

Retrieve the relevance between corresponding pixels:

s(p, q) = exp(−γdwp (q)).

3.3 Retrieval of relevant pixels by low-rank

prior

As mentioned before, the information in the

neighborhood or the whole image is adopted to resist

the effect of image noise. More information provided

by similar pixels will play positive roles to retrieve good

performance. However, more information means good

performance but poor efficiency. To ensure efficiency,

various limitations are considered. For example, the

size of the search window is limited, and only the

neighboring pixels are considered in FGFCM and

FLICM. In NLFCM, a large search window is adopted,

including similar and dissimilar pixels. Since only

similar pixels play positive roles, why not neglect the

dissimilar pixels?

When the image patches are analyzed by singular

value decomposition (SVD), most of the energy

is concentrated on several largest singular values.

Adopted by the ideas of denoising algorithms [4, 6],

this study will utilize the most relevant pixels to play

positive roles in image segmentation, while neglecting

other pixels in the non-local search window. As

we all know, the reason of low rank and sparse

representation is that many pixels in the image share

similar features [16]. Therefore, the number of pixels

in a cluster is closely related to the rank of image

patches. Specifically, a large rank means a small

number of pixels in the same cluster, while a low

rank means a large number of pixels in the same

cluster. However, measuring the rank accurately is

very difficult, and considering fewer pixels will degrade

performance. Hence, we will discuss the number of

similar pixels in the search window based on the rank

prior, which will be discussed in Section 4.

3.4 Image segmentation

This subsection will present the improved FLICM

algorithm in detail. FLICM introduces a fuzzy factor

to replace the effect of neighboring pixels, and avoids

the burden of parameter adjustment. However, when

applied to complex images, FLICM has the following

disadvantages: (1) when the image is severely noisy,

FLICM performs poor; (2) the relevance between

pixels is measured by the Euclidean distance, resulting

in omitting the faraway pixels; (3) to improve the

robustness, a large search window is adopted in FLICM,

yet degrades the efficiency. Aiming at these problems,

this study proposes an improved algorithm, in which

non-local information and low-rank prior are utilized

to retrieve good performance and acceptable efficiency.

In this study, the fuzzy factor is defined as,

G′ij =
∑
r∈Wj

s(j, r)(1− µir)m‖xr − vi‖2, (1)

where Wj is the set of the selected similar pixels
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in the search window, s(j, r) is the pixel relevance

between corresponding pixels. Compared with FLICM,

the improved algorithm has two improvements: (1)

the neighbor window Nj is replaced with Wj , which

is the set of selected similar pixels in the search

window; (2) the effect between pixels is measured as the

pixel relevance, not the term related to the Euclidean

distance. In addition, due to the consideration of low-

rank prior, only the most relevant pixels are utilized,

instead of all pixels in the search window, which will

improve efficiency while not degrade the performance.

In the subsequent parts, the proposed algorithm will

be denoted as LRFCM, meaning FCM with low-rank

prior.

Just as FCM-related algorithms, the constraints∑C
i=1 uij = 1 for all pixels are satisfied. Therefore,

the following equation will be constructed by Lagrange

Multiplier Method (LMM),

J =
C∑
i=1

n∑
j=1

[
µm
ij (xj − vi)2 +G′ij

]
+

n∑
j=1

λj

(
C∑
i=1

uij − 1

)
.

(2)

Based on
∂J

∂uij
= 0 and

∂J

∂vi
= 0, the memberships

and the cluster centers can be updated as,

uij =
1

C∑
k=1

(
|xj − vi|2 +G′ij
|xj − vk|2 +G′kj

)1/(m−1)
, (3)

vi =
n∑

j=1

umijxj/
n∑

j=1

umij . (4)

It is to be noted that the membership and the

cluster center in the revised fuzzy factor G′ij are not

considered in minimizing Eq.(2), just like FLICM [21,

22]. Through this processing, the performance will not

be reduced, but the burden of complex computation

can be avoided.

To summarize, the proposed algorithm can be

formalized in Algorithm 2.

4 Experimental results

In this section, LRFCM will be performed on

synthetic and medical images, and LRFCM will be

compared with typical FCM-related algorithms, such

as BCFCM, EnFCM, FGFCM, FLICM and NLFCM.

In the experiments, the values of related parameters are

(a) (b)

(c)

Fig. 2 Smaller patch distance does not mean similar pixels. (a) the enlarged image in which a square represents a pixel; (b) pixel

intensity values in Figure 2(a); (c) the distances between two image patches.

Fig. 3 Relevance between pixels in Figure 2(a).
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Algorithm 2 LRFCM for image segmentation

Input: The image I, pixel relevance retrieved by

Algorithm 1, the number of clusters C, the pre-defined

threshold ε, and the max number of iterations maxIter.

Output: The segmented image

Initialize: Set it = 0, and initialize the membership uitij
at random, satisfying

∑C
i=1 uij = 1.

while max{|uit+1 − uit|} > threshold do

Compute the cluster centers based on Eq.(4);

Compute the revised factor based on Eq.(1);

Update the membership uit+1
ij according to Eq.(3);

end while

Assign the j-th pixel to the k-th cluster, where k =

argk max{ukj}.

important for the segmentation results. For example,

the assignment of C will present different details. For

all algorithms, the value of m is assigned as 2, and the

threshold ε is adopted as 1e − 5. the value of α in

BCFCM, EnFCM and FGFCM is 2. NR is assigned as

8 in BCFCM, EnFCM, FGFCM and FLICM, meaning

that a neighboring window of size 3× 3 is constructed.

4.1 Clustering Indices

To compare the segmentation results, except for

the visual effect, there are several recognised indices,

such as the segmentation accuracy SA, the partition

coefficient VPC and the partition entropy VPE.

Specially, the SA denotes the percentage of correctly

classified pixels in the total pixels of the image,

formalized as

SA =
C∑

k=1

|Ak

⋂
Dk|

n
, (5)

in which C is the pre-defined number of clusters, Ak

denotes the set of pixels belonging to the k-th cluster,

Dk is the set of pixels belonging to the k-th cluster in

the ground truth. | · | is the cardinality of the set. VPC

and VPE are two indices to measure the fuzziness of the

segmentation results, defined as

VPC =
C∑
i=1

n∑
j=1

u2
ij/n (6)

VPE = −
C∑
i=1

n∑
j=1

(uij log uij)/n (7)

Generally speaking, the segmentation results should

be accompanied by less fuzziness. Therefore, an

algorithm with larger VPC and smaller VPE is

preferable. In addition, when binary images are

segmented, another three quantitative indices are

adopted: accuracy (Acc.), sensitivity (Sen.) and

specificity (Spe.). Formally,

Acc. = (TP + TN)/(TP + TN + FP + FN), (8)

Sen. = TP/(TP + FN), (9)

Spe. = TN/(TN + FP ), (10)

where P, N, T and F mean positive, negative,

true and false, respectively. Specifically, TP is

the number of positive samples that are classified

correctly, FN is the number of positive samples that

are misclassified, TN is the number of negative samples

that are classified correctly, and FP is the number of

negative samples that are misclassified. In essence,

segmentation accuracy is the ratio of pixels that are

classified correctly, including positive and negative

ones. Sensitivity and specificity reveal the likelihood

of classifying positive and negative pixels correctly.

Hence, the three measures have values between 0 and

1, and the algorithm with higher accuracy, higher

sensitivity, and higher specificity is preferable.

4.2 Parameter analysis

In this section, we will discuss the effect of

parameters on the performance of LRFCM, including

the radius of the search window and the number of

similar pixels retrieved in image segmentation. We

will perform LRFCM with different parameters on a

synthetic image with different noise so as to test the

effect of the two parameters. In the experiments,

Gaussian noise with different noise variance (NV) (5%,

10%, 15%, 20%,25%) and salt & pepper noise with

different noise density (ND) (5%, 10%, 15%, 20%,25%)

are added. Figure 4 presents the SAs of LRFCM on the

synthetic image with different radii. As shown in Figure

4(a), the segmentation accuracy reaches the maximum

value when the radius is 6. When the radius is less

than or greater than 6, the accuracy is not optimal.

In Figure 4(b), the accuracy will not increase after the

radius is greater than 6. Considering the efficiency and

the accuracy simultaneously, the radius of the search

window will be assigned as 6 in LRFCM.

Figure 5 presents the SAs of LRFCM on the synthetic

image with different numbers of similar pixels. As

shown in Figure 5(a), the SA reaches the maximum

value when the number of similar pixels is assigned

as 6 ∗ 6; in Figure 5(b), the SA will not increase too

much when the number of similar pixels is larger than

6 ∗ 6. Based on the experimental results, the number

6



Improved fuzzy clustering algorithm for image segmentation based on low-rank prior 7

of similar pixels in this paper will be assigned as 36 in

LRFCM.

4.3 Experiments on synthetic images

First, LRFCM will be performed on two synthetic

images, one is binary with intensity values of 20 and

120, and the other is 4 clusters with intensity values

0, 85, 170 and 255. To illustrate the performance

of LRFCM, different kinds of noise are added. The

segmentation results on the first image with salt &

pepper noise of 15% ND and the second one with

Gaussian noise of 40% NV are presented in Figure 6

and Figure 7.

As shown in Figure 6 and Figure 7, there is less

noise in the results of FLICM, NLFCM and LRFCM.

However, the result of LRFCM is better than those

of FLICM and NLFCM. Concretely, there are less

boundary pixels to be misclassified in the result of

LRFCM, which is due to the fact that only the

most similar pixels are utilized. To compare the

algorithms quantatively, the partition coefficients, the

partition entropies, together with the running time of

corresponding algorithms are compared, presented in

Table 1, Table 2 and Table 3.

As shown in Table 1, the partition coefficients of

LRFCM decrease with the increment of noise variance

or density. In Table 2, it is shown that the partition

entropies of LRFCM increase with the increment of

noise variance or density. These data means that

more fuzziness exists with the increment of noise

variance or density. Compared with FLICM, NLFCM

and typical FCM-related algorithms, LRFCM has

almost the largest partition coefficient and the smallest

partition entropy. In other words, the lest fuzzyness

exists in the results of LRFCM. It can be seen from

Table 3 that since only the most similar pixels are

considered in LRFCM, the running time of LRFCM is

much shorter than that of NLFCM, which is suitable for

the hypothesis of this study and means the utilization

(a) (b)

Fig. 4 Segmentation accuracy (SA) against the radius of the search window. (a) SA on images contaminated by Gaussian noise of

different noise variances (NV); (b) SA on images contaminated by salt & pepper noise of different noise densities (ND).

(a) (b)

Fig. 5 Segmentation accuracy (SA) against the num of similar pixels in image segmentation. (a) SA on images contaminated by

Gaussian noise of different NV; (b) SA on images contaminated by salt & pepper noise of different ND.

7
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of low-rank prior in image segmentation is reasonable. 4.4 Experiments on medical images

This subsection will perform LRFCM on

medical images, including pulmonary computed

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 6 Segmentation results on the binary image. (a) original image; (b) the image with salt & pepper noise of 15% density; (c)

result of FCM; (d) result of BCFCM; (e) result of EnFCM; (f) result of FGFCM; (g) result of FLICM; (h) result of NLFCM; (i)

result of LRFCM.

Tab. 1 Comparison of VPC on the synthetic images with various noise

image noise variance/density FCM BCFCM EnFCM FGFCM FLICM NLFCM LRFCM

Fig.6(a)

Gaussian 15% 0.899347 0.890279 0.854787 0.977020 0.978255 0.978729 0.978872

Gaussian 20% 0.897047 0.888389 0.87464 0.975003 0.978053 0.978624 0.978763

Gaussian 30% 0.895687 0.885539 0.853282 0.973682 0.977420 0.978190 0.978442

Gaussian 40% 0.898585 0.890340 0.798682 0.973306 0.978162 0.9787759 0.978281

salt&pepper 15% 0.955578 0.757233 0.733819 0.978166 0.906730 0.934470 0.935043

salt&pepper 20% 0.938112 0.693446 0.740691 0.965776 0.878473 0.917678 0.917775

salt&pepper 30% 0.874738 0.583499 0.753729 0.936455 0.787255 0.889891 0.895331

salt&pepper 40% 0.836736 0.522764 0.765399 0.758558 0.865334 0.879699 0.888197

Fig.7(a)

Gaussian 15% 0.873874 0.848987 0.745730 0.963526 0.954918 0.949699 0.963700

Gaussian 20% 0.865818 0.721211 0.760163 0.957356 0.951179 0.946778 0.959745

Gaussian 30% 0.869063 0.807500 0.809175 0.917179 0.934112 0.934183 0.937777

Gaussian 40% 0.896264 0.822705 0.768758 0.933176 0.939371 0.921836 0.945576

salt&pepper 15% 0.914623 0.623908 0.81487 0.946408 0.857431 0.887091 0.944991

salt&pepper 20% 0.894291 0.546232 0.806339 0.918317 0.811726 0.857621 0.923852

salt&pepper 30% 0.862423 0.408195 0.795892 0.856927 0.704051 0.783498 0.898437

salt&pepper 40% 0.841986 0.335888 0.793045 0.799909 0.590116 0.694143 0.781164

8



Improved fuzzy clustering algorithm for image segmentation based on low-rank prior 9

tomography (CT) images and brain magnetic

resonance (MR) images. As we all know, medical

images are the most effective ways to treat

corresponding diseases, including lung cancer and

Alzheimer’s disease. For example, accurate retrieval

of pulmonary nodules features from pulmonary CT

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 7 Segmentation results on the synthetic image. (a) the original image; (b) the image with Gaussian noise of 40% variance;

(c) result of FCM; (d) result of BCFCM; (e) result of EnFCM; (f) result of FGFCM; (g) result of FLICM; (h) result of NLFCM; (i)

result of LRFCM.

Tab. 2 Comparison of VPE on the synthetic images with various noise

image noise variance/density FCM BCFCM EnFCM FGFCM FLICM NLFCM LRFCM

Fig.6(a)

Gaussian 15% 0.259389 0.311032 0.347091 0.077777 0.069256 0.063234 0.061916

Gaussian 20% 0.264119 0.315188 0.307122 0.083304 0.070019 0.063733 0.063899

Gaussian 30% 0.266685 0.321476 0.349268 0.085874 0.071634 0.064952 0.064291

Gaussian 40% 0.260673 0.310419 0.463982 0.086131 0.069591 0.063313 0.064524

salt&pepper 15% 0.126445 0.539029 0.595000 0.056896 0.238843 0.198705 0.191500

salt&pepper 20% 0.173113 0.667667 0.584019 0.087555 0.302847 0.220559 0.222974

salt&pepper 30% 0.309961 0.868407 0.563511 0.162059 0.482266 0.286158 0.295273

salt&pepper 40% 0.357001 0.966003 0.545029 0.233355 0.550156 0.340687 0.388275

Fig.7(a)

Gaussian 15% 0.364426 0.463391 0.705751 0.122410 0.144173 0.152608 0.123734

Gaussian 20% 0.381606 0.758325 0.671778 0.139061 0.154500 0.160915 0.134129

Gaussian 30% 0.379798 0.530326 0.564839 0.244734 0.197553 0.194184 0.162361

Gaussian 40% 0.295549 0.470185 0.725430 0.180793 0.184629 0.214473 0.168085

salt&pepper 15% 0.244096 1.039818 0.561595 0.3690330 0.438400 0.356155 0.400681

salt&pepper 20% 0.303587 1.231628 0.578750 0.450168 0.564780 0.444922 0.427946

salt&pepper 30% 0.399474 1.56464 0.698233 0.658130 0.844623 0.653764 0.652714

salt&pepper 40% 0.463025 1.752415 0.990631 0.964364 0.985934 0.958883 0.936927
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images can assist the doctors in the early diagnosis of

lung cancer, which is crucial and can mprove survival

chances.

First, LRFCM will be adopted to retrieve pulmonary

nodules. As we all know, pulmonary nodules often

appear in different forms, such as pleural adhesion,

solitary pulmonary nodules (SPN), ground glass

opacity (CGO) and vascular adhesion. Also, different

medical specialists will have different proposals. For

example, five medical specialists present different

segmentation proposals for the same pulmonary CT

image, as shown in Figure 8. To balance the proposal of

different imaging specialists, a 50% rule [10] is adopted

to retrieve the reference nodule. That is, if a pixel

is located in the results of more than one half of all

specialists, it is considered to belong to the reference

nodule.

As mentioned before, the predefined number of

clusters is important in fuzzy clustering algorithms,

since different number of clusters can present different

details. To emphasize the pulmonary nodules, the pre-

defined number for pulmonary nodule segmentation is

uniformly set to 2. The pulmonary CT images adopted

in the experiments are presented in Figure 9 (a)-(d),

which includes pulmonary nodules of different types.

Specifically, the nodules of Figure 9 (a), (b) and (d) are

solid, whereas the nodule in Figure 9(c) is ground-class.

Also, lobulated or spiculated signs appear in Figure

9(a), Figure 9(b) is accompanied by ural retraction,

and signs of vessel convergence emerge in Figure 9

(d). Based on the 50% rule, the reference images are

retrieved and presented in Figure 9(e)-(h).

The segmentation results of corresponding

algorithms are presented in Figure 10, and the

SAs of the algorithms are presented in Table 4. As

shown in Figure 10 and Table 4, LRFCM performs the

best in lung CT images with lobulated or spiculated

signs, FCM and BCFCM perform best in CT images

with ural retraction, EnFCM performs best in ground-

glass CT images, and NLFCM performs the best in

CT images with signs of vessel convergence. As can

be seen from Table 4, LRFCM performs in top two of

all algorithms for lung CT images of any kind, which

means that the principle of the proposed algorithm is

reasonable.

To compare the performances in medical images

further, brain images from Brainweb [18] are adopted to

evaluate these algorithms. As we all known, there are

3 main clusters in brain images: gray matter (GRY),

white matter (WHT) and cerebral spinal fluid (CSF).

The images adopted are 30 brain region slices in the

axial plane generated with T1 modality and 1mm slice

thickness. To illustrate the robustness of LRFCM, 5%

Rice noise was added, and the intensity non-uniformity

parameter was set to 40%. The segmentation results

of related algorithms on the 77th slice are presented in

Figure 11, and the SAs of different algorithms on GRY,

WHT and CSF are tabulated in Table 5.

As shown in Figure 11, image noise still exists in

the results of FCM, BCFCM, EnFCM and FGFCM. In

the results of FLICM and NLFCM, many details are

lost. Comparatively, LRFCM is not only insensitive to

Tab. 3 Comparison of the running time (in seconds) on the synthetic images with different noise

image noise variance/density FCM BCFCM EnFCM FGFCM FLICM NLFCM LRFCM

Fig.6(a)

Gaussian 15% 0.296402 0.733205 0.015600 0.140401 3.822025 213.003765 30.482596

Gaussian 20% 0.234001 0.717605 0.031200 0.124801 3.478822 247.089984 32.214207

Gaussian 30% 0.265202 0.686404 0.031200 0.093601 3.712824 235.187108 32.526208

Gaussian 40% 0.234001 0.702004 0.015600 0.078000 3.541223 239.711137 32.510608

salt&pepper 15% 0.234001 0.936006 0.015600 0.093601 10.530067 438.924414 32.682209

salt&pepper 20% 0.218401 1.357209 0.015600 0.873606 7.597249 506.223245 37.845843

salt&pepper 30% 0.374402 2.246414 0.015600 0.156001 14.008890 837.77217 38.98465

salt&pepper 40% 1.279208 6.583242 0.015600 0.093601 13.790488 846.570627 55.879558

Fig.7(a)

Gaussian 15% 2.667617 7.004445 0.078000 0.5304030 32.931811 3424.565152 173.363912

Gaussian 20% 3.151220 27.066174 0.046800 0.499203 25.350162 2564.562840 168.309479

Gaussian 30% 8.065252 16.099303 0.046800 0.499203 76.456090 2221.454240 237.807924

Gaussian 40% 5.163633 19.484525 0.031200 0.561604 41.324665 5603.789921 263.516889

salt&pepper 15% 1.794012 8.611255 0.046800 0.546003 51.105928 2205.620139 190.945224

salt&pepper 20% 2.839218 11.887276 0.124801 0.452403 51.792332 2500.134426 214.719776

salt&pepper 30% 2.636417 20.514132 0.093601 0.483603 76.50289 3225.788678 225.483846

salt&pepper 40% 2.511616 32.463808 0.062400 0.670804 118.62316 6755.716906 319.521248
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image noise, but can retain image details. This can

also be illustrated in the comparison of segmentation

accuracy, presented in Table 5. It should be noted

that the data in Table 5 are the average values of 30

slices adopted in the experiments. As shown in Table

5, LRFCM can retrieve more accurate GRY and CSF,

and a little less than BCFCM when applied in WHT.

The running time of the algorithms is presented in

(a) (b) (c)

(d) (e) (f)

Fig. 8 Segmentation scheme provided by different imaging specialists. (a) a pulmonary CT image; (b)-(f) are segmentation

proposals from different imaging specialists.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 9 Pulmonary computed tomography images adopted in experiments. (a)-(d) are the CT images adopted in the experiments;

(e)-(h) are the reference images by the 50% rule.

Tab. 4 Segmentation accuracies of related algorithms

image FCM BCFCM EnFCM FGFCM FLICM NLFCM LRFCM

Figure 9(a) 89.3194 89.6175 87.6304 89.7665 90.9091 90.9588 91.5549

Figure 9(b) 94.7342 94.7342 94.4362 94.9081 94.0636 93.4178 94.6846

Figure 9(c) 98.3376 98.2523 98.5934 98.2950 97.4851 96.0358 98.3376

Figure 9(d) 95.6981 95.8333 95.2381 95.9686 96.5368 97.4838 96.7532
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Table 6. As shown in Table 6, the running time is

much smaller than NLFCM, which is suitable to the

hypothesis of this study. In addition, the brain tissues

are reconstructed based on the segmentation results of

all algorithms, shown in Figure 12. It is illustrated

that the 3D reconstruction results of LRFCM can retain

more details while improving robustness, which means

the rationality of combining low-rank prior and non-

local information in LRFCM.

5 Conclusion

In this study, an improved algorithm for image

segmentation is proposed, which combines non-local

information and low-rank prior into the framework

of fuzzy clustering. In the proposed algorithm, a

novel pixel relevance model is presented, by which

non-local information can be utilized to improve the

robustness. With the help of low-rank prior, only

the information provided by the most similar pixels

can be utilized, which will improve the efficiency of

improved algorithms based on non-local information.

(a) (b) (c) (d) (e) (f) (g)

Fig. 10 Pulmonary computed tomography images adopted in experiments. (a) result of FCM; (b) result of BCFCM; (c) result of

EnFCM; (d) result of FGFCM; (e) result of FLICM; (f) result of NLFCM; (g) result of LRFCM.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 11 Segmentation results on the 77-th slice of related algorithms. (a)original image; (b)result of FCM; (c) result of BCFCM;

(d) result of EnFCM; (e)result of FGFCM; (f)result of FLICM; (g)result of NLFCM; (h)result of LRFCM.

12
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Experiments on synthetic and medical images illustrate

the advantages of the proposed algorithm over other

FCM-related algorithms.

In our future work, the ideas of this study will

be extended to medical image series segmentation.

The relevance will be measured by the similarity

between pixel cubes, and information covering the

whole image series can be utilized. We hope that

the 3D reconstruction of tissue or organ be retrieved

directly, and the features can be retrieved directly to

guide disease diagnosis.
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