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Abstract Reconstructing dynamic scenes with commodity
depth cameras has many applications in computer graphics,
computer vision, and robotics. However, due to the
presence of noise and erroneous observations from data
capturing devices and the inherently ill-posed nature of non-
rigid registration with insufficient information, traditional
approaches often produce low-quality geometry with holes,
bumps, and misalignments. We propose a novel 3D dynamic
reconstruction system, named HDR-Net-Fusion, which
learns to simultaneously reconstruct and refine the geometry
with a sparse embedded deformation graph of surfels
on the fly with a hierarchical deep reinforcement(HDR)
network, which consists of two parts: A global HDR-
Net rapidly detecting local regions with large geometric
errors, and a local HDR-Net serving as a local patch
refinement operator to promptly complete and enhance such
regions. To train the global HDR-Net, we formulate it as
a novel reinforcement learning problem to implicitly learn
the region selection strategy with the goal of improving
the overall reconstruction quality. The applicability and
efficiency of our approach are demonstrated using a large-
scale dynamic reconstruction dataset. Our method can
reconstruct the geometry with higher quality than traditional
ones.
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1 Introduction

3D reconstruction is a key technique in computer graphics
with various applications in virtual and augmented reality
and animation. In recent years, many advances have been
made in both reconstruction quality and speed. Since
the early success of KinectFusion [33], scanning with
a commodity RGB-D camera and building the captured
geometry in an online fashion has become commonplace
in modern reconstruction systems. Subsequent work
has either improved system scalability to support larger
scenes and finer details by introducing new persistent
data structures [28, 34, 54], or has focused on enhancing
reconstruction quality through accurate frame-to-model
registration [2, 7, 8].

While research on reconstructing and modeling static
indoor scenes [4] has matured in the past few years,
reconstructing dynamic objects (e.g. humans, animals and
other freely moving objects) still remains an open problem
in both the graphics and robotics communities (referred
to as dynamic SLAM [9, 20, 21, 40, 41]). Given an
input sequence recording a non-rigid deforming object, the
goal of dynamic reconstruction is to recover the moving
object’s underlying shape in a canonical pose as well as
the deformation field for each frame so that the geometry
at each instant of time can be recovered. The seminal
work of DynamicFusion [32] described a general pipeline
adopted by many other algorithms: by parametrizing
the per-frame deformation as a warp field defined on a
sparse set of transformation nodes skinned from the full
geometry, the underlying shape can be registered to the
depth observations at a particular time via solving a non-
rigid iterative closest point (NR-ICP) problem [3], yielding
the transformation for every node. To further improve
the robustness, many industrial and academic solutions
use dedicated hardware [16, 35], or exploit a common
deformable template [58, 59] as a prior to regularize the
final result. On the other hand, multi-view reconstruction
systems like Fusion4D [8] and FusionMLS [29] leverage
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Fig. 1 HDR-Net-Fusion simultaneously reconstructs and performs patch-based geometric refinement in an online fashion. Compared to traditional reconstruction
methods, our method can automatically complete missing regions and refine noisy patches, improving the overall reconstruction quality. In this figure, the yellow
regions indicate refined patches over the geometry.

more complete observations from a large number of cameras
to reconstruct the geometry with higher quality.

However, reconstructing scene dynamics is inherently an
ill-posed problem because the solution space for occluded
regions which are not observed by any camera can be
infinitely large [11]. Various regularization terms, such
as as-rigid-as-possible constraints, are used to tackle this
problem to some extent, but they are not always met in
real-world scenarios. Another challenge is the low-quality
output provided by the capture device, which tends to
contain noise and erroneous depth observations, resulting
in artifacts in the final reconstructed model such as holes
and bumps. To address the above challenges, we pursue
a data-driven framework based on state-of-the-art deep
learning techniques which can be easily integrated into an
existing dynamic reconstruction pipeline to enhance the
fusion quality.

Deep neural networks (DNN) have shown their
applicability in a wide range of graphics applications such as
shape completion [36, 60], geometric registration [13, 50],
flow/correspondence estimation [15, 27], etc. Recently,
3D deep learning has also gained ever more attention in
reconstruction applications [56]. However, there are few
attempts to embed deep models directly into reconstruction
systems, primarily due to efficiency and generalization
considerations. Furthermore, in online systems where
succeeding frames rely directly on previous fusion results,
deep models directly operating over the already fused
geometry [25, 60] cannot utilize intermediate fusion results,
and it is impossible to recover from any catastrophic
tracking failure in the reconstruction system.

In order to maintain the system efficiency while
exploiting the power of deep learning models, we
present HDR-Net-Fusion, a highly-efficient surfel [24]-
based dynamic reconstruction system for simultaneous
reconstructing and refining 3D dynamic scenes using a
hierarchical deep reinforcement network, i.e., HDR-Net.
The core of HDR-Net consists of two parts: a Global-
HDR-Net and a Local-HDR-Net. The global net first
considers the overall geometric structure of the current
model, and determines those local patches which may be of
poor quality, potentially leading to bad registration results
for future frames. Then, the local net fixes such detected
regions, performing patch-based geometry refinement using
a data-driven neural network. We formulate the training of
the global HDR-Net as a reinforcement learning problem:
the optimal region selection strategy is implicitly learned to
minimize the overall reconstruction error, considering both
short-term and long-term loss during the fusion process.
Our system is empirically proved to be accurate, robust
and efficient. As far as we know, this is the first work to
integrate deep neural networks into reconstruction using a
reinforcement learning approach.

Briefly speaking, this paper makes the following
contributions:
• the first efficient hierarchical deep reinforcement

network integrated with a real-time dynamic multi-
view 3D reconstruction.
• a reinforcement learning model for efficient,

incremental to-fixed region selection.
• a deep neural network for high quality local

reconstruction refinement.
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Fig. 2 An overview of our whole reconstruction system. At test time, the deformation nodes Gt of the live geometry St is fed into Global-HDR-Net and the local
patch Ŝm

t with the highest expected reward is selected and fed into Local-HDR-Net for refinement. The refined patch S̃m
t replaces the original geometry and is

fused into the whole model, which will be used for registering the next incoming frame. In order to train the global/local hierarchical networks, we first supervise the
Local-HDR-Net with groundtruth full patches; then we fix its weight and train the Global-HDR-Net represented as a point-set-based DQN [31].

2 Related Works

Dynamic Reconstruction Inferring dynamic scene
geometry remains an open research topic. Some
work [5, 42, 45, 47, 58] adopts strong semantic
scene priors (e.g. a human body or hand template) to
facilitate accurate correspondence and registration. Other
methods [12, 18, 22, 32], instead, choose to aggregate and
denoise geometry in a canonical static space, and only
track the per-frame deformation field over time, without the
knowledge of the reconstructed scene beforehand. To tackle
the inherent ambiguity of the deformation field, and achieve
better reconstruction fidelity, [7, 8, 18] introduce sparse
image feature tracking, silhouette constraints and albedo
inference into the non-linear optimization to make tracking
more robust, while [43, 44] bypass the correspondence
estimation stage by imposing divergence constraints over
the entire deformation vector field, and [16, 17] give
dedicated hardware designs for obtaining cleaner and
more complete depth and texture information. Readers are
referred to [62] for a comprehensive literature review. Our
approach introduce deep neural models to efficiently learn

the geometric priors from dataset for higher fusion quality.

Point Set Deep Networks For our surfel-based
representation of the reconstructed geometry, we apply
deep networks which directly consume point clouds.
PointNet [38] and its variants [39, 51, 55] are a standard
choice for encoding point set features while providing a
good description of multi-scale details. The work in [10]
is the first point set decoder combining fully-connected
and deconvolution layers. In order to enforce a uniform
structure onto the generated point set, FoldingNet [57] and
AtlasNet [14] used one or more uniform grids to condition
the shape descriptor for shape generation. The designs
of various deep point set networks support a variety of
applications in both graphics and vision, such as point
upsampling [25, 52] and shape completion [46, 60].

Deep Reinforcement Learning Traditional reinforcement
learning aims to learn from past experiences and make
better decisions in a principled way. The successful
combination of deep neural networks and reinforcement
learning algorithms has shown the capability of dealing
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with higher-dimensional state and action spaces which were
previously intractable [1]. Deep reinforcement learning
has various applications in video games [31], generating
animation [37] and indoor navigation [61]. A prominent
approach is provided by the Deep Q-Network (DQN) [31]
and its variants [48, 53], which approximate value functions
with off-policy learning. Another line of approaches is
based on policy gradients or actor-critics, where the model
directly learns a stochastic policy [26, 30]. Our work
formulates dynamic reconstruction as a Markov decision
process and applies DQN to learn how to achieve minimum
reconstruction error. We believe this is the first application
of deep reinforcement learning in dynamic reconstruction
pipelines.

3 Overview

Our HDR-Net-Fusion takes sequential depth maps
captured using several commodity RGBD cameras as input
and progressively reconstructs the geometry of the dynamic
scene for every frame. As shown in Fig. 2, during the
test phase of our algorithm, for each incoming frame,
the warping field which best aligns the current depth
observations and the reference geometry is first found, then
a traditional fusion process will be operated by our basic
reconstruction system (Sec. 5). After that, the Global-
HDR-Net is applied to the embedded deformation nodes to
compute an expected reward for each node (Sec. 6.2). The
node with the highest expected reward is then selected and
the local surfel patch surrounding that deformation node
is fed into the Local-HDR-Net, which locally refines the
patch geometry and completes missing areas (Sec. 6.1). The
refined patch is then integrated into the reference geometry
maintained by the reconstruction system to improve the
quality of reconstruction and assist future tracking and
registration.

4 Notations and Scene Representation

The dynamically reconstructed scene is represented by a
set of deformation nodes G = {gm ∈ R3} and a set of
surfels with neighborhoods S = {si, N i}. S is a dense
reconstruction of the entire scene, while the nodes in G
are scattered sparsely over the surface represented by the
surfels. Each surfel si = (pi,ni, ri) is composed of its
center pi ∈ R3, normal ni ∈ R3 and radius ri ∈ R.
A neighbourhood set N i ⊂ G is attached to each surfel,
initialized as the nearest K neighbours of si among all
deformation nodes gm in G. Similarly, a neighbourhood
set Nm ⊂ G can be built for all the deformation nodes to
establish their spatial relationships.

For each frame t we compute a warping field Wt =
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Fig. 3 Pipeline of the basic reconstruction system. For each incoming frame,
we first forward warp the reference geometry into live geometry according to the
current warp field, then a new deformation field is solved to align the reference
geometry and depth observation. After that, the depth observation is fused with
the new live geometry. Finally, we warp the live geometry back to the reference
geometry.

{qmt ∈ SE(3)} defined at each node in G, where qmt is the
transformation applied to gm in frame t; it is represented
using dual quaternions [23]. Let Gt = {gmt ∈ R3} be the
transformed version of G where gmt = qmt · gm. The surfels
skin the deformation nodes and the transformation for each
surfel is found by interpolating nearby node transformations
as q̂it =

∑
m∈Ni

wimq
m
t , where wim = exp(−‖pi −

gm‖22/σ2), σ representing the node sampling distance [12].
We denote the transformed version of the surfels at frame t
after applying q̂it as St = {sit, N i}, sit = (pit,n

i
t, r

i), where
pit = q̂it · pi, and nit is the normal ni transformed by the
rotation part of q̂it only.

5 Basic Reconstruction System

The design of our basic reconstruction system is inspired
by [12] and illustrated in Fig. 3. The initial surfels S are
called the reference geometry and the up-to-date surfels
St are called the live geometry. For each frame, Wt is
determined and the new surfels introduced in the current
frame are appended to the live geometry; matched surfels
are updated according to the running mean integration
protocol [24]. The live geometry is then warped back to
the reference geometry which provides a canonical shape
representation.

Energy Function A key step in the dynamic reconstruction
is to find the per-frame warping fieldWt, which is solved by
minimizing the following energy, consisting of a data term,
a correspondence term and a regularization term:
E(Wt) := Edata(Wt) + λcEcor(Wt) + λrEreg(Wt), (1)

where λc and λr are balancing weights. The data term,

Edata(Wt) :=
V∑
v=1

∑
i∈Vv

t

‖n>
di,vt

(pit − pdi,vt
)‖2, (2)
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is a depth-to-plane ICP error summing across all V input
views per frame, where Vvt is the visible surfel index set
for the current Wt from the v-th view, and di,vt is the
corresponding depth observation of the i-th surfel found by
re-projecting sit into the v-th camera view, transformed by
the camera extrinsic. The correspondence term is:

Ecor(Wt) :=
V∑
v=1

∑
(sit,u

i
t)∈Cvt

‖pvui
t
− pit‖2, (3)

which is a distance between two sparsely related points
found by global patch collider [49] and Cvt is the
correspondence set containing tuples of matched surfels sit
and pixels uit for the v-th view. pv

ui
t

is the 3D point re-
projected from pixel uit at view v. The regularization term,

Ereg(Wt) :=
∑

gm∈G

∑
n∈Nm

‖gmt − qnt · gm‖22, (4)

is an as-rigid-as-possible constraint encouraging nearby
nodes to share the same transformation.

Challenges Generally, our basic reconstruction system
can work well on simple datasets and special cases like
topology changes and tracking failure can be fixed by re-
initialization [12]. However, without any prior knowledge
about the dynamic scene structure, it is still very challenging
to track fast motions and a lot of information will be lost
during re-initialization. The situation will become worse
when there are erroneous depth observations or when parts
of the dynamic structure are occluded from any views.

6 HDR-Net: Hierarchical Deep Reinforce-
ment Network for Dynamic Reconstruction

To address the challenges faced by the traditional
reconstruction system discussed in Sec. 5, a repairing to
the erroneous and occluded parts is necessary, while the
efficiency of the reconstruction system should also be
guaranteed. We thus propose a hierarchical reinforcement
network (HDR-Net) that first find the to-fixed regions
(Global-HDR-Net) efficiently using reinforcement learning
algorithms and then fix these regions by exploiting the
power of deep neural network (Local-HDR-Net).

6.1 Local-HDR-Net

Network Architecture For each frame, given a selected
deformation node gmt from Global-HDR-Net, we gather all
surfels influenced by that node as Ŝmt := {sit|gm ∈ N i}
and feed that local patch into the Local-HDR-Net. Local-
HDR-Net’s job is to generate S̃mt , a completed and de-
noised version of Ŝmt . Two design requirements exist for
our model: (i) as the network is applied to the reconstructed
geometry on a per-frame basis, the model should be
lightweight, requiring minor additional computation, and
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Fig. 4 Local-HDR-Net Model. The network takes the local surfel patch and all
deformation nodes as input. The concatenated latent feature vector is decoded
using fully-connected and deconvolution layers.

(ii) in order to resolve the inherent ambiguity of point set
completion, knowledge of the entire scene geometry should
be taken into consideration.

We therefore propose a hybrid encoder-decoder structure
using the ordering-agnostic PointNet [38] as the backbone,
as shown in Fig. 4. To integrate global geometric
knowledge, we use Gt as a summary of the current
coarse shape: we find that this gives a good global shape
approximation which can effectively summarize the overall
scene structure to the network.

In the encoder part of our model, Gt and Ŝmt are
first encoded separately, extracting features with respective
point-shared MLPs. As the encoded feature of each point
in Gt, we take its globally aggregated feature vector as
well as the point feature vector for gmt . These two feature
vectors are then concatenated with the aggregated per-point
feature of Ŝmt . The overall aggregated latent representation
of the local region now contains information summarizing
the patch geometry in its global context.

In the decoder, we find that using a classic fully
connected and deconvolution combination [10] generates
the best results while still allowing real-time processing.
Deformation-based decoders [57] easily lead to over-
smoothed surfaces lacking detail, while implicit-function-
based decoders [36] involve heavy sampling computations
during inferencing. The direct output of our model is simply
the 3D surfel center position’s offset to the selected node õit,
which is easier to learn compared than the surfel normal,
given its spatial continuity.

Loss Function We use the earth-mover distance (EMD) as
the loss function to train the network:

L :=
1

|S̃mt |
min
φ:p̃→p̄

∑
sit∈S̃m

t

‖p̄it − φ(p̃it)‖22 (5)

where p̃it = õit + gmt is the center position of each output
surfel in the world coordinate. φ is a bijection; the best linear
assignment expressed by the min operator can be computed
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Global-HDR-Net
Local-HDR-Net

Reconstruction System

Fig. 5 Reinforcement learning for training Global-HDR-Net. The
reconstruction system as well as Local-HDR-Net serve as the environment while
Global-HDR-Net is the agent whose task is to select a deformation node in Gt
to be refined by the Local-HDR-Net for each frame.

efficiently using the approach in [10]. p̄ are the ground truth
surfel center.

6.2 Global-HDR-Net

Problem Formulation For each frame t, Global-HDR-Net
aims to select the node gmt for the subsequent local patch
refinement operation described in Sec. 6.1. One can
definitely choose to refine more than one node, or in the
extreme case, all the nodes in one single frame. However,
too many passes of network inference will drastically affect
the system’s real-time performance. In fact, as the output
reward is not supposed to vary largely given subtle changes
in the input node positions, all nodes with high reward will
be eventually picked up in time based on the high capturing
frame rate. By instead performing inference on one node
at a time, we distribute the computation across the entire
session so that the running speed is guaranteed while still
not preventing any nodes from being chosen.

One simple strategy for this module could be to always
select Smt with the worst geometric quality. However, a
greedy algorithm will not necessarily lead to a globally
optimal result as it does not consider possible future
registration error and the empirical performance of Local-
HDR-Net. We instead pursue an algorithm that is aware
of both short-term and long-term reconstruction quality
and takes the properties of both the underlying dynamic
reconstruction system and Local-HDR-Net into account.

We propose to solve this problem using ideas from
reinforcement learning (RL) which implicitly model the
environment using existing experience gained through trial
and error. A natural analogy can be made between Global-
HDR-Net and a reinforcement learning (RL) agent. The
dynamic reconstruction system and the local net serve as
the environment, which receives an action (a deformation
node gmt ) from the network, performs internal fusion and
local patch refinement, and emits the reconstructed result as
the new observation. The rewards for the action performed

can be modeled by the score of reconstruction quality. By
choosing different actions at each timestamp, the Global-
HDR-Net agent influences internal state of the system and
all the succeeding reconstruction steps.

The target of RL is to learn an optimal policy which
can be later executed during inferencing. The optimal
policy maximizes the expected return along the state
transition path, which, in our case, effectively minimizes
reconstruction error over all time steps.

From a theoretical point of view, two key propositions
have to be met for the above formulation to be meaningful.
Firstly, the reconstruction system should obey the Markov
property, where the state of the current step is solely
dependent on the previous step’s state. Secondly, an
appropriate choice of the deformation node can be made
solely from the configuration of Gt. The first proposition
is naturally satisfied because for each frame, the depth
observation is integrated only with the fused geometry from
the previous frame. Also, we have found that regions with
poor reconstruction quality often have highly complicated
or mostly occluded parts, which to a certain degree justifies
us in assuming the second proposition to be true.

Learning Algorithm and Network Architecture We employ
DQN [31], which uses an efficient off-policy value-
function based approach, as our reinforcement learning
algorithm. DQN aims to learn the Q-function (expected
reward given state and action) through past experiences, and
approximates Q(st, ·) using a deep neural network (i.e. the
Q-Network) to model the high-dimensional state and action
space. Here we use st and at to denote the state and action
for frame t. Specifically, st represents the positions of
global nodes Gt up to frame t and at is the integer index
m of the selected deformation node in Gt. By enforcing
Bellman equality and minimizing temporal difference error
δt, the Markov process of the environment can be precisely
modeled by the Q-function and our final policy can be
greedily selected as π∗(st) := argmaxaQ(st, a) so that in
each frame t we maximize

∑T
t′=t γ

t′−trt′ , where γ > 0 is
the discount factor, rt is the reward for frame t and T is the
number of total frames.

Following [31] we define the temporal difference error as
the following:
δt(Θ) := Q(st, at; Θ)− (rt + γmax

a
Q(st+1, a; Φ)), (6)

where Θ is the parameter of the policy deep network and Φ

is the parameter of the target deep network. During training,
we execute the reconstruction system with Local-HDR-Net
several times and gather the (st, at, rt, st+1) tuples. Here,
the actions at are chosen using an ε-greedy policy which
interpolates between the currently found best policy π∗
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and a completely random policy with factor ε. It can be
proved that this strategy can converge to an optimal policy,
balancing exploration and exploitation in state space. We
store multiple state-action-reward tuples across different
episodes in a common replay memory. Mini-batches are
then sampled from the replay memory to train the policy
network parameter Θ using back propagation, so that δ2

t (Θ)

is minimized. Φ is usually fixed and updated to Θ only every
few episodes to guarantee a stable training.

We choose PointNet++ [39] as our Q-network. It takes
in point set Gt at frame t and the numbers of local surfel
patch Smt (m∈ Gt) as input and predicts the Q-value, i.e. the
expected reward for each point (possible action).

The reward rt is taken as the negative chamfer distance
D, defined as:

D :=
1

|Sp|
∑

pi∈Sp

min
pj∈Sg

‖pi − pj‖2

+
1

|Sg|
∑

pj∈Sg

min
pi∈Sp

‖pi − pj‖2,
(7)

where Sp are the surfel positions of the current geometry
using the reconstruction system and Sg is the ground-truth
reference geometry.

7 Results and Discussions

In this section, we introduce the experimental setup
for implementing our system, show the results and
comparisons, and validate the design of our method.

7.1 Experimental Setup

Dataset Our experiments used sequences from the
Human10 dataset [28] to test our algorithm. This dataset
contains 10 long sequences of several human actors
performing various actions, of which 9 are publicly usable.
In Human10, each sequence was recorded with 4 fixed-
position 512 × 512 resolution RGB-D cameras distributed
uniformly around a 360◦ viewing circle. The frustum of
each depth camera covers a partial view of the entire human
body. The limited sensor quality, leading to severe depth
error and loss, many fast large motions as well as topology
changes present very challenging data to the reconstruction
system, resulting in very frequent tracking loss and re-
initialization. To measure reconstruction quality, the dataset
provides a ground truth 3D mesh reconstructed using a free-
viewpoint-video [6] capture system.

To verify the generalization of the network, we split the
9 sequences into training sequences (human1/2/4/6/9) of
HDR-Net and testing sequences (human0/3/7/8). Weights
for both Local-HDR-Net and Global-HDR-Net were learned
and cross-validated solely from the training frames. In order
to train Local-HDR-Net, patch-level surfel and deformation

Fig. 6 The variation of the average reward per epoch during the training process
of global-HDR-Net.

node data are generated. We first generate surfels and
nodes from depth observations every single frame without
warping, to simulate the artifacts caused by re-initialization
and cameras’ quality. On the other side, we use Poisson
disk sampling to sample equally-spaced surfels over the
ground truth mesh. We then gather surfels from both the
reconstruction results and the ground truth surrounding each
node to form a complete patch, using a ball query, forming
a local patch training pair for the supervised learning of
patch completion. Additionally, we balance the distribution
of training pairs by their completeness score, defined as
the portion of ground truth surfels closer than a certain
threshold to its nearest neighbour in the partial surfel patch
(extracted from the input depth map). Empirically we find
better overall system performance can be achieved with
this balanced dataset, most of whose training pairs would
otherwise be almost complete.

Training Protocol We use a common supervised training
strategy to optimize the Local-HDR-Net using the dataset
described above: an AdaGrad optimizer is used with an
learning rate of 10−3. The training of Global-HDR-Net is
based on 200 randomly selected consecutive frames from
each episode. For each frame, we randomly sample a
state-action-reward tuple batch from the replay memory and
optimize Θ with the RMSprop optimizer. The network
weight Φ is updated to Θ every 3 episodes. During
execution of the ε-greedy policy, we start with 90%
probability of selecting random nodes and decreased the
probability exponentially to 5% with a 200 frames decay
rate. The discount factor is set to γ = 0.999. In total,
we train for around 160 episodes to get a fairly convergent
result. The loss curve is shown in Fig. 6.

To evaluate the system performance, all input frames are
never seen by neither networks, allowing fair evaluation of
our pipeline. Specifically, among the only four sequences
(human0/3/8/9) which contain RGB information and can
achieve a good result in multi-view sequences’ tracking,
we choose human9 for the training of Global-HDR-Net.

7
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Fig. 7 Selected frames demonstrating the overall reconstruction quality of HDR-Net-Fusion (Rows from top to down correspond to human0/3/8 in Human10,
respectively). In each pair of meshes in each row, we show the reconstructed result without HDR-Net in blue and the result with HDR-Net in red. Our algorithm
successfully identifies the missing or noisy regions and refines them reasonably.

Considering the dependency of Global-HDR-Net’s training
on Local-HDR-Net’s performance, Global-HDR-Net would
learn non-generalizable policies if Local-HDR-Net is too
familiar with the sequence we train Global-HDR-Net on.
Therefore, we only take human1/2/4/6 for Local-HDR-Net’s
training and evaluating, excluding the human9.

Implementation Details We implemented our multi-view
reconstruction system in C++/CUDA. The training code
for both Local-HDR-Net and Global-HDR-Net is written
using PyTorch. We interface the reconstruction system
and the deep network part so that both training and
inferencing are tightly coupled and trained effectively end-
to-end. The entire algorithm is tested on a workstation
with an Nvidia Titan RTX graphics card, running the
reconstruction pipeline, Local-HDR-Net and Global-HDR-
Net simultaneously.

In practice, we find that Local-HDR-Net does not
guarantee a perfectly smoothed output, which may degrade
the overall system performance. Hence we separately adopt
a post-processing step to directly reject bad local net output

S̃tm. This post-rejection step finds all nearest neighbour
pairs in S̃tm and computes the dot product of normal vectors
of the pair. This generated surfel patch is rejected if the
mean value of all dot products is less than ε, which can
guarantee the smoothness of the surfels we add.

In addition, the number of fixed nodes each frame can
be adjusted in practice to achieve a better quality. Since
the Global-HDR-Net can output the expected reward of all
nodes, we can select several nodes within an acceptable
range instead of the best one and fix them one by one so
that we can refine a necessary number of nodes every frame
while still enabling the real-time performance.

In the presence of fast motion, the tracking module may
fail, we detect this abnormality by checking the residuals
of the registration solver and perform re-initialization
operation [8, 12].

Parameter Selection The parameter chosen for the
reconstruction system is dependent on the applications.
For effectively tracking and recovering human geometry,
we empirically set the reconstruction parameters in Sec. 5

8
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original Ours

Fig. 8 Close-up comparison of the geometry reconstructed by basic method
and our method. HDR-Net can solve both the artifacts caused by erroneous
depth observation and the incompleteness caused by re-initialization.

Tab. 1 Times of re-initialization during the reconstruction of our framework
without (w/o) or with (w/) HDR-Net. Our method can provide a reduction of
re-initialization especially when the re-initialization is frequent.

Sequence w/o HDR-Net w/ HDR-Net

Human0 20 13
Human3 15 11
Human8 7 6

as λr = 2.3 and λc = 1.3 while the node sampling
distance [12] σ = 0.04cm. The post-processing rejection
threshold ε is set to 0.9.

In terms of network structure, our Local-HDR-Net
encodes surfels in Ŝmt using a shared MLP with sequentially
32, 64, and 256 channels, encodes each point in Gt with
32, 64, 256 channels and transforms the concatenated
latent feature into two patches of 256 3D points with
FC and DeConv layers separately. The Global-HDR-Net
downsamples input deformation nodes into 256, 64 and 16
points sequentially with set abstraction layers and the local
feature is interpolated using feature propagation layer. The
input nodes Gt are padded for a minimum size of 400.

7.2 Overall Performance

We present some qualitative results of our entire HDR-
Net-Fusion framework in Fig. 7. Compared to the results
without HDR-Net, the combination of our hierarchical
network can effectively complete and refine missing or
inaccurate regions over the fused model. Leveraging the
geometric prior of the underlying scenes using our carefully-
designed deep network, a plausible completion can be
generated, filling in the holes of occluded regions (e.g. the
body part partially hidden by moving arms) or wrongly-
observed regions (e.g. the region with dark hair whose depth
cannot be accurately measured by the sensor). Meanwhile,
during the re-initialization caused by large registration error,

Expected R
ew

ard

(a) (b) (c)

Fig. 9 Expected reward for the deformation nodes computed by the Global-
HDR-Net (superimposed on the surfels). Since the Q-value’s interval of each
sequence is not uniform, we visualize the relative values by coloring the nodes
where blue means relatively lower value and yellow means the higher.

most part of the fused model is deleted, which can be
quickly fixed by our model and subsequent registration
artifacts can be minimized. Tab. 1 shows the comparison of
the number of re-initialization required between the systems
with and without HDR-Net. When there are frequent
re-initializations caused by large motions, our repair can
prevent more subsequent registration artifacts and make a
significant reduction in the number of re-initialization.

A close-up of the reconstructed geometry is shown in
Fig. 8. The regions of the actor’s head and shoulders contain
holes as a result of the erroneous observation depth, while
the region behind his left arm is empty because of a recent
re-initialization. Both of the artifacts can be effectively fixed
by our method.

The behaviour of our algorithm can be further analyzed
by visualizing the expected reward computed by the global
net, answering the question that what has the Global-HDR-
Net learned and why it is useful in our setting. As shown
in Fig. 9, Global-HDR-Net can find the place with holes
and bumps efficiently and accurately. In addition, it tends to
repair regions of the model’s boundaries such as shoulders
and feet. This is valid in the sense that the parts are more
likely to move fast later and need to be refined to make
the tracking more reliably. Otherwise, it will be harder to
track a broken arm which we can see in Fig. 7 and lead to
frequent re-initialization shown in Tab. 1. Presumably, as
the input to our global net only contains the deformation
nodes at the current frame, the model implicitly learns to
predict the potential node motions given the static pose and
jointly considers both the spatial and temporal cues when
making decisions. Again, the policy is implicitly learned for
lower reconstruction error, which is hard for a hand-crafted
heuristic to imitate as demonstrated in Sec. 7.4.

Timing Our reconstruction system takes ∼25ms per

9
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Fig. 10 Selected frames from the test set demonstrating the single-view
performance of our framework (red) compared with [12] (blue). Our method
provides results with richer features and fewer artifacts.

frame for a single-view sequence of Human10, and
more time for the image pre-processing only as to the
multi-view sequences, which can be paralleled if there
are multiple processors. The average inference time is
∼2ms and ∼4.5ms for Local-HDR-Net and Global-HDR-
Net, respectively, adding little overhead to the underlying
reconstruction. This is benefited from the lightweight design
of our deep models and the scalable surfel representation. In
conclusion, our system can reach∼25Hz with 5 nodes fixed
per frame. Taking the parallel running of Local-HDR-Net
into consideration, the process can be even faster.

7.3 Comparison with the Traditional Method

To demonstrate the advancement of our framework over
traditional reconstruction method, we also reconstruct the
test data with SurfelWarp [12] for each single perspective
to make a comparison with our method. Fig. 10 presents
several selected frames from the sequences reconstructed
by both SurfelWarp and our system. The result shows our
method will refine the holes and bumps effectively, which
is impossible for traditional methods without the correct
input. Therefore, our system can give a reconstruction result
with higher-quality than traditional methods when there are
lots of noise and erroneous depth observations. In addition,
the broken or disconnected legs and arms will be quickly
completed, which confirms our conclusion in Sec. 7.2.

7.4 Global-HDR-Net Comparison

To test the performance of Global-HDR-Net and to show
that our network actually learns effective information from
its training experience, we set up two competing agents
executing different polices.
• Random: nodes are uniformly sampled from Gt.
• Heuristic: we first imperially remove all the candidate

nodes not satisfying the following criteria:
– The number of surfels related to the node should

be greater than 20;
– The mean Euclidean distance from each surfel to

the node should be smaller than 0.08;
– The surfel confidence maintained within the

reconstruction system, representing the point’s
stability and reliability, should be greater than 2.0.

The above criteria ensure Local-HDR-Net is getting
enough information for inference. Then the eligible
node with fewest surfels is selected by this policy since
the patch with fewer surfels should be given a higher
priority for refinement.

The performance of the policies are compared using the
quality of the reconstructed model computed using a two-
way chamfer distance as defined in Equ. 7. Fig. 11 shows
both qualitative and quantitative comparisons over two of
the Human10 sequences. Results show that the manually
designed heuristic policy leads to better reconstruction
quality than the random policy most of the time, but the
effect is not obvious and stable enough. Interestingly,
we find that the random policy can sometimes lead to
worse results than the simple reconstruction system without
Local-HDR-Net. This is because that some randomly
selected nodes may contain too much noise or have a
low completeness score, whose corresponding complete
geometry is too challenging for Local-HDR-Net to recover,
generating many noisy outliers. In the contrast,our policy
provides an effective refinement to the geometry. Clearly,
choosing the correct node is as important as the geometry
refinement process, which needs careful handling.

Compared to our policy, which outperforms all the
baselines and is learned with the direct goal of minimizing
reconstruction error, heuristic policy is the closest
competitor but is unaware of the behaviour of Local-HDR-
Net and the underlying reconstruction system. It is non-
trivial to manually build a spatial-temporal aware criterion
as analyzed in Sec. 7.2.

7.5 Local-HDR-Net Comparison

Local-HDR-Net mainly focuses on completing and
refining local patch geometries. We compare it with three
baselines:
• FoldingNet [57], whose decoder is designed by

concatenating sampled points on a uniform grid with
the global feature vector. The network learns how
to deform such a uniform grid to the desired shape;
surface smoothness is guaranteed.
• The Point Completion Network [60], employing a

coarse-to-fine completion strategy and aggregating
multiple deformable grids to assemble the final

10
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Fig. 11 Comparisons of different policies of node selection on the human0/3 from Human10. The leftmost figures plot sorted errors across the entire test sequence
(i.e. the smaller the better). The error map based on the ground truth model is placed on the front of each geometry reconstructed by different policies.
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Fig. 12 Comparison with different Local-HDR-Net baselines for patches with
different completeness scores. The last two columns show the average EMD
loss of all the patches without and with artificial noise, respectively.

completed shape.
• A variant of Local-HDR-Net, lacking the branch taking

in the scene deformation nodes Gt. This variant is used
to test the utility of the scene structural guidance.

All baseline models and Local-HDR-Net are trained for
200 epochs. Network hyper-parameters including model
architecture and learning strategies are separately tuned for
each model to give best cross-validation performance.

For evaluation we use the earth mover distance (Equ. 5)
between prediction and groundtruth surfel positions as our
metric. Distance error is plotted for different ranges of patch
completeness (from 0.0 to 1.0) in Fig. 12. Considering
that there will be a lot of noise and errors in the actual

FoldingNet Point Completion Network Local-HDR-NetInput Groundtruth

0

1
Erro

r (c
m)

Fig. 13 Qualitative comparison to Local-HDR-Net baselines using randomly
selected patches from our dataset. Error maps on the last two rows are overlaid
on the predicted patch S̃m

t .

reconstruction, we also test the performance of the networks
when a Gaussian noise with a standard deviation of 5mm is
added to the normal direction of each surfel of the input. For
patches with low completeness (< 0.1), most methods find
it most challenging to infer missing fine details due to loss
of information. In addition, patches with too much noise
will also lead to a bad result. This also justifies our strategy
of rejecting patches with too few surfels and returning a
negative reward: this explicitly discourages the global net
from choosing overly challenging patches for the local net.

11
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Fig. 14 Reconstruction results of sequences from DeepDeform dataset [2]
and Human10 dataset [28] (the bottom-left two). Compared with traditional
method [12] (blue), ours (red) can complete objects other than human body and
real scenes including interaction of people and things like bag and ball.

Compared to the baselines, our Local-HDR-Net yields
much smaller distance errors in most cases and exhibits
better stability in the case of noisy inputs. Fig. 13
renders results qualitatively in the form of surfels.
FoldingNet [57] can generate smooth surfaces, but its
uniform grid parametrization leads to bent boundaries and
the deformation in complex areas is unnatural. Point
Completion Network [60] assembles the surface from
many smaller patch grids, resulting in overlaps and
uneven distribution of surfels. It is unsuitable for small-
scale geometry refinement. Our baseline without nodes
completely discards the scene structural guidance, i.e. the
global context, which is proved very important when the
patches’ information is very limited or contains much noise.

7.6 Generalization

To demonstrate the generalization of our system on real
world scenes, we also select some sequences from the
DeepDeform dataset [2] and the sequence human7 from
Human10 dataset [28] to test our method. The results are
shown in Fig. 14. It turns out that our method can also fix
the artifacts and achieve better results than the traditional
method [12]. Furthermore, in addition to the human body,
our system can fix the artifacts of other objects as well.

7.7 Limitations

There are two typical limitations of our method: Firstly,
as shown in Fig. 15(a), although our Local-HDR-Net can
provide a nice refinement for most of the model parts, it
still remains challenging to learn features of complicated
and subtle structures like hands. A possible reason is
the network is hard to present all the features of such
a large batch. Narrowing the range of a single patch
when the structure is complicated may gain a better result.

(a) (b)

Fig. 15 Limitations of our method. In each pair we show the original
reconstructed model in blue and ours in yellow.

Besides, a more powerful deep neural network with self-
attention mechanisms [19] can be adopted to learn more
discriminative features for point cloud completion.

Secondly, as shown in Fig. 15(b), selecting constant
number of nodes per frame can lead to problems since
the model’s completeness is continuously changing during
the reconstruction. For some models already completed
enough, Global-HDR-Net will select some completed
patches to ‘refine’, resulting in computational inefficiency
and even leading to worse results. A more adaptive
node selection strategy can be applied in the future by
rejecting previous already chosen nodes or selecting nodes
by considering a predicted score about the completeness of
the nodes.

8 Conclusion

This paper has presented HDR-Net-Fusion, a novel
dynamic reconstruction system using a hierarchical deep
reinforcement network to improve reconstruction quality.
Its applicability and effectiveness have been experimentally
demonstrated using a large-scale dynamic fusion dataset.
Our approach formulates the global selection of a local
geometric patch for refinement in terms of reinforcement
learning and uses a point-based neural network to complete
and improve the local geometry. We hope this work can
inspire future work pursuing better dynamic reconstruction
quality using powerful deep learning and reinforcement
learning algorithms.
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