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Abstract Smoothing images, especially with rich

texture, is an important problem in computer vision.

To obtain an ideal result is difficult due to complex,

irregular, and anisotropic of the texture. Besides,

some common properties are possessed by the texture

and the structure in an image. It is hard to

compromise in remaining structure and removal of

texture simultaneously. To create an ideal algorithm

of smoothing image, we face three problems: For

images with rich textures, the smoothing effect is

expected to be enhanced, improve the inconsistency of

the smoothing results in different parts in an image,

and it is necessary to create a method of evaluating

the smoothing effect. We apply texture pre-removal

based on global sparse decomposition with variable

smoothing parameter to solve the first two problems.

A parameter surface constructed by an improved

Bessel method is used to determine the smoothing

parameter. Three evaluation rates: edge integrity rate,

texture removal rate, and gradient value distribution

are proposed to cope with the third problem. We use

Alternating Direction Method of Multipliers (ADMM)

to complete the whole algorithm and obtain the results.

Experiments show that our algorithm is better than

the existing algorithm in visual effect and quantitative

index. We also demonstrate our method’s ability in

other applications such as clip-art compression artifact

removal and content-aware image manipulat.
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1 Introduction

Nature images usually contain texture and structure.

The human visual system can easily understand

the structure without being affected by texture.

However, for the computer, because the texture can

be complex, irregular, and anisotropic [24], it is a

challenging task to remove the texture from the image.

The purpose of image smoothing is to remove the

texture without destroying the structure as much

as possible. Image smoothing is an important and

widely used image processing technology, such as image

segmentation, edge extraction, image enhancement,

image decomposition, and artifact removal, to simplify

the problem immensely. The existing image smoothing

algorithms can be roughly divided into three categories:

filter based on local information, global optimization

framework, and data-driven method.

Filter based on local information: Bilateral

filtering (BLF) [25] is a representative smoothing filter,

which achieves smoothing by estimating the value of

local patches by weighted average (Gaussian kernel

estimation). After BLF was proposed, many improved

versions [4, 27] appeared, mostly modified Gaussian

kernels. Among them, bilateral texture filtering (BTF)

[6] can ensure that the high sharpness of edges, but

the flat regions are not regular enough, and the

visual effect is poor. Tree filtering [1] successfully

mitigates the ringing phenomenon by constructing a

tree structure, but if a misclassified pixel occurs, it

causes the main edge to break down, resulting in a

false boundary. Filters based on local information

also include: anisotropic filter [20], guided filter [11],

extremum smoothing algorithm [22], etc. Most of these
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filters are intuitive and simple, but are too dependent

on local information and cause ringing phenomenon.

Global optimization framework: Weighted least

squares (WLS) [8] is a relatively robust image

smoothing algorithm based on global optimization,

particularly suitable for image gradual coarsening

and edge preserving multi-scale details extraction.

Inspired by the feature extraction algorithm Difference-

of-Gaussian (DoG) [14, 17], Relativity-of-Gaussian

(RoG) [3] smoothes the image by describing the

relationship between Gaussian filters with different

sizes. However, RoG has a series of problems, such as

difficult parameter control and easy local information

loss. A well-known algorithm, total variation (TV)

[21] performing regular optimization based on the

L1 norm, is often used in image denoising and

restoration, but cannot effectively achieve smoothing.

By approximately highlighting the image structure

to control the number of non-zero gradients, L0

gradient minimization (L0) [28] algorithm has adequate

protection for the main edge, but easy to lose more

original color, lacking aesthetic. L0 gradient projection

(L0p) [19] solves hard to control the parameters of

L0, without limiting the obvious pseudo-boundaries.

To overcome the shortcoming of L0p, algorithm [18]

restricts the smoothed image’s gradient, only matching

a few images. Compared with the filter method, the

optimization framework is more flexible but lacks local

information protection, especially easy to lose the local

weak edge. The relative total variation (RTV) [30]

algorithm applies the relative norm to combine the local

filter and global optimization framework. Although the

effect is sound, it may cause edge expansion and fail to

protect the local weak edge.

Data-driven method: With the development of

deep learning, data-driven image smoothing algorithms

are presenting gradually. However, as there is

no ground truth in image smoothing, conventional

supervised and semi-supervised learning methods

cannot be well used. The algorithms [5, 29] attempt to

use a unified CNN framework to simulate the previous

smoothing methods [9, 30], without getting rid of the

limitations of the original algorithms. Although the

algorithm (DVP) [13] optimizes the image smoothing

process to improve the effect to a certain extent

by training parameters, generalization is always the

barrier.

Most filters based on local information are relatively

intuitive and simple. Nonetheless, they tend to

depend on the image’s local information, resulting in

ringing, edge expansion and other phenomena; The

optimization framework methods are flexible, but the

regular terms’ global selection can hardly protect local

information; Generalization is still a limitation of the

data-driven methods. Combining the local filter and

the global optimization framework can mitigate the

problem to some extent, there are still incomplete, such

as insufficient weak-edge protection.

(a) (b) (c)

(d) (e) (f)

Fig. 1 Examples of image smoothing: (a),(d) original images;

(b),(e) L0 [28] smoothing results; (c),(f) ours results

After research, we summarize three main problems

faced by image smoothing at the present stage, and

propose improvement schemes:

(1) The smoothing effect of rich texture image

is expected to be enhanced: In general, with the

increase of image texture, the algorithm’s smoothing

effect becomes worse, as shown in Fig.1. So we set

the global sparse regular term to decompose the image

into tow parts and remove texture part to improve the

performance.

(2) The inconsistency of the smoothing results

in different parts needs to improve: Due to

uneven illumination, contrast, and other factors in the

image, the smoothing parameters should change in

different parts of it. Therefore, for the local adaptive

parameters the patch-shift is used. More importantly,

to solve the pseudo-boundary, we propose to construct

the parametric fitting surface so that allow continuous

parameter variation throughout the region and improve

efficiency.

(3) An evaluating method of the smoothing

effect is necessary: Without ground truth, image

smoothness cannot be directly evaluated by PSNR,

SSIM, and other conventional indexes. Comparing

different algorithms based on visuals alone is too

subjective, so there is an urgent need for quantitative
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indexes as evaluation criteria. The difficulty with

image smoothing lies in the algorithm’s ability to

distinguish between texture and edge, but the human

eye can readily achieve this. Therefore, we can compare

the edges extracted from the smoothing results with

the manually selected edges from the original image

to evaluate the smoothing effect. Besides, image

smoothing changes the gradient distribution, and the

gradient is positively correlated with image smoothness,

so we can compare the gradient distribution of the

results to evaluate the effect of algorithms. Based on

the above two points, we propose three indexes such as

edge integrity rate, texture removal rate and gradient

value distribution to evaluate the results from edge and

gradient quantitatively.

In summary, we combine local filters with the

global optimization framework and propose an

image smoothing algorithm based on global sparsity

decomposition and variable parameter. Firstly, the

global sparse decomposition is used to pre-remove part

of the texture to improve the smoothing performance.

The variable parameter is then obtained as the

parametric surface by patch-shift selection with the

improved Bessel method to ensure localization and

continuity. Finally, to limit the image gradient

variation through the L1 norm, we achieve image

smoothing. The flow chart is shown in Fig.2.

The main structure of this paper is as follows:

Section II introduces the model framework of our

algorithm, as well as the global sparse decomposition,

patch-shift parameter selection and improved Bessel

fitting; Section III describes in detail the solution of

our algorithm based on Alternating Direction Method

of Multipliers (ADMM); Section IV shows the effect

of selecting different parameters and compares the

differences in visual effects and quantitative index

between other algorithms and ours. Section V

introduces the application of our algorithm in clip-art

compression artifact removal and content-aware image

manipulation. Finally, Section VI summarizes the

paper.

2 Problem Formulation

This section introduces how to solve the first two

problems. Nature image can generally be described as:

y = x+ n

Here y , x, and n represent the original image,

structure, and texture respectively. The goal of

image smoothing is to obtain x from y. The global

Fig. 2 Flowchart of proposed algorithm

optimization framework can be described as:

x̂ = argmin
x

1

2
‖y − x‖22 + λR(x) (1)

x̂ is the result, the first term in this formula is the

fidelity term, and λ is the smoothing parameter. R(x)

is the regular term, which is prior information and non-

negative. It is worth noting that there is a need to

satisfy λ > 0, otherwise R(x) may not give the right

guidance. For example, when λ = −1, the latter term

in Eq.1 is ‖ − 5x‖22 allows us expect a larger gradient

of x when solving the minimum, which runs counter to

our intention of removing texture information.

2.1 Global Sparse Decomposition

For the first problem, we decompose the image into

two parts: low frequency representing the structure

and the high frequency containing the texture.

In image super-resolution and image reconstruction,

high frequency is usually considered as the missing

information in the scaling process to refine the result

[15, 31, 34].

In contrast, high frequency needs to be removed

during image smoothing. What needs to be made clear

here is that we need to remove the texture beforehand

and ensure that the edges are not damaged as much as

possible. Therefore, global sparse decomposition has

been chosen to assure that the high frequency is sparse

and to reduce the loss of structural information. The

algorithm can be described as:

Rstr(y) = ‖yH‖1 +
κ

2

4∑
d=1

‖5d ⊗ yL‖22

s.t. y = fL ⊗ yL + yH

yL and yH represent low and high frequency

respectively. fL is a low-pass filter, and ⊗ is the

convolution operator. fL ⊗ yL is used to ensure the

smooth component contains low-frequency information,

so as to ensure yH approximately represents the

texture. κ controls the smoothness level. The larger

value of κ, the more information yH contains. 5d
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(a) original image (b) | 5y | (c) | yH | (κ = 1)

Fig. 3 Comparison between image gradient and the proposed residual component yH for κ = 1 in absolute value

means calculating the gradient in d direction, and

d ∈ {1 = horizontal, 2 = vertical, 3 = 45 degrees, 4 =

135 degrees}. It is well known that Lp norm can

promote sparsity when p ≤ 1. Here we use ‖yH‖1 to

force yH to be the sparse component under L1 norm

(L1 norm is used to ensure the convexity), making yH
contain only texture without destroying the structure.

We compare high frequency yH with the gradient, as

shown in Fig.3, and label different colors according to

the pixel values. Obviously, yH is more sparse than the

gradient. We further analyze this property in Fig.4,

and present the numerical distribution of gradient and

yH with different κ. It can be seen that the peak

value of yH is near 0, and the numerical distribution

is closer to the Laplace distribution. This is since yH
is treated sparsely under the L1 norm. Comparatively,

the gradient’s numerical distribution is fluctuant, and

the peak is non-zero, which contains much missing

structural information from image. Furthermore, it can

be presumed that κ can affect the sparsity of yH . The

larger κ is, the more sparse yH is. After removing yH ,

we use yL for smoothing.

Fig. 4 Image gradient distribution and yH distribution with

different κ values

2.2 Patch-shift Parameter Selection and

Parametric Surface Fitting Based on

Improved Bessel

The second problem is mainly because λ is a

constant parameter. Even if we get the global

optimal solution, it may not satisfy the local optimal.

Separate parameter calculations for all points can

validly solve this problem but are incredibly time-

consuming, so we propose a two-step parameter

calculation algorithm, including patch-shift parameter

selection and parametric surface fitting.

2.2.1 Patch-shift parameter selection

Patch-shift is an intuitive way, where we set the

values of patches by comparing them with global

variations. To simply adjust the smoothness, λG
replacing the original λ is set as an adjustable

parameter for users. We define the local parameter as

λi,j .

λi,j = χi,jλG, χi,j = se−σ(yL)/(ε+σ(Ωi,j)) (2)

Ωi,j refers to the patch and (i, j) is the coordinate of the

patch. σ(·) is the standard deviation operation. χi,j is

the fluctuation rate. s is a simply adjustment factor. ε

is a small value to prevent the denominator from being

zero. As shown in Fig.5, the smoother the Ωi,j , the

smaller and more rapidly decreasing χi,j . Conversely,

χi,j is larger and slowly increasing. However, due

to the patch-shift parameter selection discontinuity,

the results show an obvious pseudo boundary at the

junction of patches, as shown in Fig.6(d).

2.2.2 Parametric surface fitting

To solve this problem, we propose a novel algorithm:

Assign the patches’ parameters to their center point

to get a set of sample values. This set of

values corresponding horizontally and vertically can

be considered a low-resolution surface, and we fit the

parametric surface based on it, where each pixel can get

a unique parameter. After comparing various fitting

methods, the Bessel method was finally chosen. There
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Fig. 5 Image gradient distribution and yH distribution with

different κ values

are two reasons: (1) The sample values calculated by

Eq.2 tend to fluctuate and cannot well-tuned by s alone.

Bessel typically smoothes the midpoint by passing only

the starting and ending points of the sample values,

which allows for easy parameter adjustment; (2) Since

the Bessel method guarantees convexity of the curve,

parameter λ can satisfy λ > 0 to ensure correctness.

(a)

(b) (c)

(d) (e)

Fig. 6 Comparisons of parametric surface with or without

Bessel: (a) original image; (b) smoothed result with improved

Bessel; (c) parametric surface with Bessel; (d) smoothed result

without improved Bessel; (e) parametric surface without Bessel

Usually, the highest similarity is found between

adjacent points, so we propose a fitting method

based on neighboring patches (n-patches). To allow

more sample values to act on point p which needs

to be solved. While considering the computational

complexity, the 16 sample values closest to p are chosen

Fig. 7 Bessel method

to construct parametric surface. Each 3 × 3 patch is

called an n-patch, and 16 sample values constitute 4

n-patches, as shown in Fig.7 (All red points construct

one n-patch). We assume the window sliding step as 1

for ease of illustration. Here we set Fi,j(p) refers to the

parametric surface of point p. (i, j) is the coordinate of

the nearest sample value at lower left of p and (pi, pj)

is the coordinate of p. Moreover, we set fi,j(p) as the

surface for each n-patch, and use the following function

to fit the nine sample values.

fi,j(p) =
1∑

h=−1

1∑
v=−1

ϕh(m)ϕv(n)χi+h,j+v, 0 ≤ m,n ≤ 1

χi,j refers to the sample values. m = (pi−i+1)/2, n =

(pj−j+1)/2. Here ϕc(t), c ∈ {−1, 0, 1} are Bezier basis

functions defined by:

ϕ−1(t) = (1− t)2, ϕ0(t) = 2t(1− t), ϕ1(t) = t2

t is the distance from p to the reference point of fi,j(p)

in the space (m,n). All of fi,j(p),fi+1,j(p),fi,j+1(p)

and fi+1,j+1(p) can compute different parameters.

However, we hope points with the same pixel values to

have the same parameters in order to make the image

more smoother except the edges. So a pixel-sensitive

Gaussian weight considering pixel values is presented

to sum up the four parameters. Fi,j(p) can be defined

as:

Fi,j(p) =

∑1
h=0

∑1
v=0 ωi+h,j+v(p)fi+h,j+v(p)∑1
h=0

∑1
v=0 ωi+h,j+v(p)

(3)

The weight function in Eq.3 is:

ωi,j(p) = βi,j(p)(1−m)(1− n)

ωi+1,j(p) = βi+1,j(p)m(1− n)

ωi,j+1(p) = βi,j+1(p)(1−m)n

ωi+1,j+1(p) = βi+1,j+1(p)mn
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βi,j(p) is defined as:

βi,j(p) = e−(P−Pi,j)2/(sδ), δ =
1∑
i=0

1∑
j=0

(P − Pi,j)2

P and Pi,j are the pixel value of point p and the

center point of fi,j(p), respectively. s is a adjustment

factor. As shown in Fig.8, ω makes the result more

smoother. After obtaining the parameters of all points,

Fig. 8 Comparison of the results with or without ω:(a) original

image;(b) smoothing result without ω;(c) smoothing result with

ω

we combine them as χyL . Under the control of λG, the

final parameter can be expressed as:

λyL = χyLλG (4)

3 Efficient ADMM Method for Image

Smoothing

In order to improve the efficiency, we combine the

global sparse decomposition, parametric surface, and

L1 norm to get our model [10, 26].

arg min
x,yL,yH

1

2
‖y − x‖22 + λyL

∑
d

‖ 5d x‖1 + α‖yH‖1

+
κ

2

∑
d

‖ 5d ⊗yL‖22 s.t. y = fL ⊗ yL + yH (5)

Here α and κ weigh the sparsity of yH . λyL controls

the sparsity of gradient. Eq.5 is non-differentiable and

non-linear and is difficult to solve directly. So, we adapt

ADMM to optimize this function iteratively. Two

Lagrange constraints are added based on this strategy:

arg min
x,yL,yH ,T

1

2
‖y − x‖22 + λyL‖T‖1 + α‖yH‖1

+
κ

2
‖ 5 ⊗yL‖22 +

γ1

2
‖y − (fL ⊗ yL + yH)− µ1‖22

+
γ2

2
‖T −5x− µ2‖22 (6)

For ease of writing, we omit d and replace the four-

directions operator with 5. γ1 and γ2 are the

parameters of the two Lagrange constraints. In

practical, γ1 and γ2 are initialized to small positive

values and are increased in each iteration to ensure

convergence. µ1 and µ2 are Lagrange multipliers. T

is the auxiliary parameter. Eq.6 is convex, so we can

update each parameter iteratively until convergence.

3.1 Solver

3.1.1 Computing yL

Assuming all other parameters are fixed, we can get:

argmin
yL

κ

2
‖ 5 ⊗yL‖22 +

γ1

2
‖y − (fL ⊗ yL + yH)− µ1‖22

The above formula can be solved directly by gradient

descent and optimized by two-dimensional fast Fourier

transform:

yL = F−1(
γ · F(fL)F(y − yH − µ1)

κ · F(5)F(5) + γ1 · F(fL)F(fL)
) (7)

F(·) and F−1(·) represent Fast Fourier Transform

(FFT) and Inverse Fast Fourier Transform (IFFT). F(·)
is complex conjugation operator. We invert the matrix

in the space domain into element multiplication in the

frequency domain, making the operation more efficient.

3.1.2 Computing yH

Consistent with the idea of Subproblem1 and let Λ =

y − fL ⊗ yL + µ1, we can get the formula of yH :

argmin
yH

α‖yH‖1 +
γ1

2
‖yH − Λ‖22

This problem can be solved independently for each pixel

i via a simple soft-thresholding:

[yH ]i = sign([yH ]i) ·max(0, [Λ]i −
α

γ1
) (8)

3.1.3 Computing T

Similarly, the variables other than T in Eq.6 are fixed.

The solution of T can be expressed as follows:

argmin
T

λyL‖T‖1 +
γ2

2
‖T −5x− µ2‖22

By using the same way as Eq.8, it can be obtained that:

[T ]i = sign([T ]i) ·max(0, [5x+ µ2]i − [
λyL
γ2

]i) (9)

3.1.4 Computing x

After solving T , yL and yH , the optimization of x

can be described as:

argmin
x

1

2
‖y − x‖22 +

γ2

2
‖T −5x− µ2‖22

The above function also meets the requirements of

gradient descent, and can be solved as:

x = F−1(
F(y) + γ2 · F(5)F(T − µ2)

1 + γ2 · F (5)F(5)
) (10)

3.1.5 Update µ1 and µ2

At the end of each iteration, the Lagrange multipliers

need updated:

µ1 = µ1 + (fL ⊗ yL + yH − y)

µ2 = µ2 + (5x− T )
(11)
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Algorithm 1 Image Smoothing Based on Global Sparsity

Decomposition and Variable Parameter

Input:

Original image: y

ADMM parameters: µ1, µ2, γ1, γ2
Output:

Smoothed image: x

1: Initialization: x = y, µ1 = 0, µ2 = 0

2: while not converged do

3: Solve Subproblem yL by computing Eq.7;

4: Solve Subproblem yH by computing Eq.8;

5: Obtain adaptive parameter λyL from yL by

computing Eq.4;

6: Solve Subproblem T by computing Eq.9;

7: Updata x by solving Eq.10;

8: Updata µ1 and µ2 using Eq.11;

9: end while

3.2 Algorithm Summary and Complexity

The entire reconstruction process is outlined in

Algorithm 1. In terms of time complexity, the most

time-consuming part is the solution of λyL , depending

on the number of pixels N , the number of patches K

and the patch size k. In general, we do not reduce

N during the smoothing beacuse of loss of details.

However, K and k can directly affect the fitting effect,

so we conduct a series of experiments to balance time

and performance. We propose NGrad to describe the

smoothing effect.

NGrad(x) =
N∑
n=1

C(| 5 xn|), C(i) =

{
0, i = 0

1, i > 0

Assuming that image x1 and x2 are equally large

images, NGrad(x1) = NGrad(x2) implies that the two

images have the same smoothness. Our algorithm

can reduce the gradient at each iteration, so the

performance of different K or k can be evaluated by

by comparing how much time it takes to smooth the

same image to the same NGrad. The experimental

images of this part are all taken from BSD500. As

can be seen from Fig.9(a) that the time consumption is

almost the same with the increase of k when NGrad
is large enough. However, as NGrad decreases, the

time spent is gradually positively correlated with k.

Therefore, k can be adjusted according to specific

needs. In this paper, k = 3. As image patches are

selected in various ways, comparing K is confusing.

Assuming that k is fixed, we replace K with the image

patch move steps, which is interpreted as different

percentages k. As shown in Fig.9(b), the operation time

decreases first and then increases as steps increases.

The optimal value is about 0.3. Moreover, a decreasing

difference between the λyL of two adjacent iterations

is witnessed during the experiment. So we set a

strategy to reduce the number of λyL calculations:

After the 10th iteration, we calculate λyL every five

iterations. Experiments show that this strategy can

not only ensure the correctness of our algorithm, but

also effectively reduce the calculation time. In terms

of convergence, Eq.6 is convex. When the values of γ1

and γ2 are large enough, ADMM can ensure that the

variables converge [2, 7, 23, 33].

(a)

(b)

Fig. 9 Impact of image patch: (a) patch size k; (b) patch steps;

4 Experiments and Discussion

In this chapter, the value of parameters in our

algorithm is firstly discussed. Then we compare

other algorithms with ours in terms of visual effect,

and we create some images to evaluate the results

quantitatively. Finally, the solution to the third

problem is given.

4.1 Analysis of parameters

The size of fL can directly affect the time spent on

decomposition, so we conduct statistical experiments

based on BSD500 to select the most efficient value. As

shown in Fig.10, the time consumption is relatively

stable and has the lowest average when the size of

fL is 6 × 6. α affects the smoothness of yL and the

7
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information contained in yH . As can be seen from

Fig.11, image decomposition can effectively separate

the high frequency yL becomes smoother as α increases.

Here we set α = 5. Fig.12 exposes a set of smoothed

results for different λG, and it can be seen that the

larger λG, the smoother the result. We set γ1 = γ2 and

each iteration increases by 5% [32].

Fig. 10 Impact of fL in texture pre-removal

(a) (b) (c)

(d) (e) (f)

Fig. 11 decomposition results yL of difference α: (a) original

image; (2) α = 20; (3) α = 40; (4)α = 60; (5)α = 80; (6)α = 100

4.2 Comparison of Visual Effects

In order to prove the effectiveness of our algorithm,

we choose WLS [8], TV [21], Tree filter [1], RoG [3], L0

[28], RTV [30] and DSHFG [16]. All the algorithms are

based on the code provided by authors and manually

adjust the parameters.

As shown in Fig.13, WLS doesn’t distinguish texture

and edge well, nor does TV, and the whole image is

very blurry. Tree Filtering averages bilateral weights

and Tree weights, but it doesn’t protect all edges well.

RoG uses several sets of Gaussian kernels with different

weights to achieve texture removal, which can fully

smooth the image globally, but some edges cannot be

well protected. L0 can better sharpen and protect

the strong edges, but the effect of processing high-

(a) (b) (c)

(d) (e) (f)

Fig. 12 Smoothing results of different λG: (a) original image;

(b) λG = 0.001; (c) λG = 0.005; (d) λG = 0.01; (e) λG = 0.02;

(f) λG = 0.025

contrast texture images is poor, because it is difficult

to distinguish such textures based solely on gradients.

RTV’s regular term based on local can help it to

achieve texture removal, but it cannot protect local

weak edge well. DSHFG is an L0 norm minimization

smoothing algorithm based on image decomposition,

which removes texture well, but it also loses local

weak edge. In contrast, our algorithm can not only

distinguish texture and structure well and remove

texture, but also effectively protect weak edge.

4.3 Quantitative comparison based on

created images

To quantitatively evaluate the results of different

algorithms using PSNR, we manually constructed

several texture images, as shown in Fig.14. In order to

show the poor generalization of data-driven methods,

VDCNN[35] and ResNet[35] are added to the control

group. The smoothing results are shown in Fig.15

and Table.1. It can be seen that most algorithms

except TV can do texture removal well, and there are

also some artificial textures have not been removed in

Fig.15(d) and Fig.15(e). The PNSR also shows that

our algorithm is better.

4.4 Quantitative comparison with the

proposed evaluation method

We propose three evaluation indexes in terms of edge

and gradient distribution to break away the dependence

on ground truth.

8
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(a) (b) (c) (d) (e) (f) (g) (h) (i)

Fig. 13 Comparison of visual effects: (a) original image; (b) WLS [8] (λ = 2, α = 2); (c) TV [21] (λ = 0.08); (d) Tree [1] (σ = 0.015);

(e) ROG [3] (λ = 0.015, σ1 = 1, σ2 = 3); (f) L0 [28] (λ = 0.035, κ = 2); (g) RTV [30] (λ = 0.02, σ = 3); (h) DSHFG [16] (λ = 0.02);

(i) Ours (λG = 0.02)

(a) (b) (c) (d)

Fig. 14 The created images: (a) is simple created images, the others are the images with different artificial textures.

Tab. 1 Quantitative comparison based on the created image (PSNR)

TV [21] RTV [30] DSHFG [16] VDCNN [35] ResNet [35] Ours

Fig.14(b) 21.2890 30.7315 27.2117 29.7807 29.6161 31.4621

Fig.14(c) 21.4065 31.0806 27.6249 30.1331 29.9596 31.8956

Fig.14(d) 20.6971 27.9442 25.9466 26.9227 26.6810 28.2501

Avg. 21.1309 29.9188 26.9277 28.9455 28.7522 30.5359

4.4.1 Edge integrity rate and texture

removal rate

Conventional edge extraction algorithm cannot

reasonably distinguish texture and edge, as shown in

Fig.16(b). So we manually draw the real edges and

present the edge integrity rate and the texture removal

rate to evaluate the smoothing effect. Edge integrity

rate can evaluate the protection of edge. Texture

removal rate can evaluate the level of texture removal.

Their formula is as follows:

EI =
EE(x)�GT (y)

GT (y)
, TR =

EE(x)⊕GT (y)

EE(y)
(12)

Here EI and TR represent edge integrity rate and

texture removal rate. EE(x) and GT (y) are the

extracted edges from smoothing results and hand-

drawn ground truth. The operators � and ⊕ mean

XNOR and XOR, respectively. In fact, the author of

9
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(a) (b) (c) (d) (e) (f)

Fig. 15 Comparison of the created images: (a) TV [21] (λ = 0.1); (b) RTV [30] (λ = 0.015, σ = 3); (c) DSHFG [16] (λ = 0.01);

(d) ResNet [35]; (e)VDCNN [35]; (f)Ours (λG = 0.02). Rows 1 to 3 correspond to Fig.14(b)-Fig.14(d).

RTV provides the texture image we experimented with,

but the manual edges are too rough, and we redrew

them.

Let us first observe the difference between the several

algorithms from the visual effect in Fig.17. As can be

seen visually, smoothing can work to simplify edges.

WLS and RTV do a good job of removing textures,

but they also cause some missing edges. DSHFG can

preserve relatively intact edges. However, DSHFG loses

some weak edges, such as the flower-like edge at the

bottom left of image.

Table.2 and Table.3 show edge integrity rate and

texture removal rate of all algorithms and demonstrate

that our algorithm outperforms the others. The average

edge Integrity rate of all algorithms is lower than 50%.

This is because while human eye can determine texture

and edge, it can not easy to distinguish the exact

location of pixel-level edge. The boundaries obtained

by smoothing algorithm are typically 1-3 pixels wide,

while the labeled data are generally larger than 3

pixels, which is the problem we will address in our

next study. As shown in Table.3, the texture removal

rate of RTV, DSHFG and ours are relatively good, and

some can even more than 99%. The effects evaluated

by the two indexes are consistent with our visual

conclusions on the whole, indicating that these two

indexes can perform a good quantitative comparison

of image smoothing.

Tab. 2 Comparison of edge integrity rate

TV [21] RTV [30] DSHFG [16] Ours

01 06.jpg 0.0730 0.6116 0.5758 0.6018

01 15.jpg 0.0860 0.4422 0.3854 0.5034

01 22.jpg 0.1685 0.3945 0.3650 0.4205

02 01.jpg 0.1192 0.4094 0.3760 0.4807

04 08.jpg 0.1400 0.5093 0.4957 0.5050

07 15.jpg 0.0690 0.4153 0.4593 0.5315

07 30.jpg 0.1666 0.5575 0.5197 0.5915

07 34.jpg 0.2391 0.4631 0.5472 0.4951

12 15.jpg 0.1675 0.3350 0.3309 0.3510

12 53.jpg 0.2175 0.2800 0.2772 0.3254

Avg. 0.1997 0.4385 0.4174 0.4905

4.4.2 Gradient value distribution

Image smoothing is about eliminating as much

redundant texture as possible, which leads to gradients

in the sparse direction. Thus, gradient value

distribution can also be used to describe smoothness.

On the premise of ensuring that structure is not

destroyed, the more the distribution tends to 0, more

sparse the gradient is and the smooth effect is better.

As shown in Fig.18, the peak values of the gradient

for all algorithms are around 0, indicating that the

gradients of smoothed images tend to be sparse. Except

TV, our algorithm has a higher sparsity. From the

visual effect, it can be seen that TV destroys the

10



Image smoothing based on global sparsity decomposition and variable parameter 11

(a)

(b)

(c)

(d)

Fig. 16 Comparison of edges before and after smoothing: (a)

original images; (b) original edges; (c) ground truth; (d) edges

after smoothing

Tab. 3 Comparison of texture removal rate

TV [21] RTV [30] DSHFG [16] Ours

01 03.jpg 0.1897 0.8450 0.7684 0.9012

01 07.jpg 0.3450 0.9979 0.9466 0.9968

01 09.jpg 0.3927 0.9339 0.9558 0.9950

01 25.jpg 0.4533 0.9417 0.9268 0.9608

02 16.jpg 0.3338 0.7933 0.7982 0.8348

11 12.jpg 0.4882 0.8957 0.8052 0.9350

12 26.jpg 0.4480 0.9511 0.9040 0.9745

13 02.jpg 0.4465 0.8712 0.8711 0.9247

13 05.jpg 0.6277 0.9879 0.9500 0.9907

13 17.jpg 0.4800 0.9868 0.9657 0.9932

Avg. 0.4126 0.8622 0.8287 0.8978

structural information, which leads to extreme sparsity.

(a) (b) (c)

(d) (e) (f)

Fig. 17 Comparison of edge extraction: (a) original image; (b)

ground truth; (c) WLS [8] (λ = 2, α = 2); (d) RTV [30] (λ =

0.015, σ = 3); (e) DSHFG [16] (λ = 0.01); (f) Ours (λG = 0.02)

(a) (b)

Fig. 18 Gradient value distribution: (a) average of all images;

(b) distribution of 01 03.jpg

In summary, our algorithm outperforms the others

in visual performance and is supported by the three

suggested indexes: edge integrity rate, texture removal

rate and gradient value distribution.

5 Application

5.1 Clip-Art Compression Artifact Removal

Image processing operations such as compression or

super-resolution can distort images such as cartoons

and clip-arts, and generate pseudo boundary that

traditional denoising algorithms cannot remove. As can

be seen in Fig.19 that image smoothing can effectively

solve this problem and our method bings better results

compared with others.

11
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(a) (b) (c)

(d) (e) (f)

Fig. 19 Image abstraction. (a) original image; (b) L0; (c)

ROG; (d) RTV; (e) DSHFG; (f) Ours

5.2 Content-Aware Image Manipulation

Our proposed method can be combined with

image significance detection [12] to realize content-

aware image manipulation by dividing the image

into foreground and background and processing them

separately to achieve foreground enhancement or

background blurring.

(a) (b)

(c) (d)

Fig. 20 Content-Aware Image Manipulation. (a) and (c):

original images; (b): background blurring; (d): foreground

enhancement

6 Conclusion and limitations

In summary, we make targeted improvements to

three current problems in image smoothing: We

enhance the smoothing performance in rich-textured

images by pre-removal textures based on global sparse

decomposition; By parameter adaptation based on

patch-shift and parametric surface fitting through

the improved Bessel, we solve the inconsistency of

different parts of the image; Three evaluation indexes

are proposed to evaluate smoothing performance

quantitatively to get rid of the dependence on ground

truth. The comparisons with the existing algorithms

prove our algorithm works better. Besides, our

algorithm also has limitations. We do not solve

the problem of training pairs, so it cannot to train

convolutional network intuitively. If this problem is

solved, the smoothing quality can be further improved,

which is what we will do next.
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