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Abstract Object detection is widely used in object
tracking; anchor-free object tracking provides an
end-to-end single-object-tracking approach. In this
study, we propose a new anchor-free network, the
Siamese center-prediction network (SiamCPN). Given
the presence of referenced object features in the
initial frame, we directly predict the center point
and size of the object in subsequent frames in a
Siamese-structure network without the need for per-
frame post-processing operations. Unlike other anchor-
free tracking approaches that are based on semantic
segmentation and achieve anchor-free tracking by
pixel-level prediction, SiamCPN directly obtains all
information required for tracking, greatly simplifying
the model. A center-prediction sub-network is applied
to multiple stages of the backbone to adaptively learn
from the experience of different branches of the Siamese
net. The model can accurately predict object location,
implement appropriate corrections, and regress the
size of the target bounding box. Compared to other
leading Siamese networks, SiamCPN is simpler, faster,
and more efficient as it uses fewer hyperparameters.
Experiments demonstrate that our method outperforms
other leading Siamese networks on GOT-10K and
UAV123 benchmarks, and is comparable to other
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excellent trackers on LaSOT, VOT2016, and OTB-100
while improving inference speed 1.5 to 2 times.
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1 Introduction
Single-object tracking is a fundamental problem
in visual media processing. It is widely used in
applications requiring location and appearance
characteristics (shape, color, etc.) of targets, such
as interactive visual media editing, intelligent
monitoring, human–computer interaction, augmented
reality, etc. In general, single-object tracking aims to
find a target, marked in the first frame, in subsequent
frames of a video or image sequence. By modeling
the appearance and movement of the target, the
tracker can predict its motion to estimate the position
of the target. In particular, such a tracker can
track any object without specifying the object’s
category by learning essential information related
to the target, such as its appearance and spatial
extent. However, widespread interfering factors, such
as strong illumination changes, severe deformation of
non-rigid objects, similar backgrounds, and occlusion,
bring considerable challenges to this task.

Despite these difficulties, many excellent visual
object tracking algorithms [1–4] have emerged.
Among them, tracking by Siamese networks has
attracted much attention in recent years [5–8]. A
Siamese network of shared parameters receives two
inputs for feature extraction: one branch marks
out the template target region, while the other
branch is used for search. After performing feature
extraction through the deep backbone network, the
task of finding the target object becomes one of
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calculating the similarity of the two output feature
maps. Usually, cross correlation is used to do
so. The features after cross-correlation generate
a fixed-size response map whose peak is regarded
the position of the target object. SINT [8] and
SiamFC [5] first used this approach to solve the single-
object tracking problem. SiamRPN [7] improved the
performance of SiamFC [5] by introducing a region
proposal network [9]. Using the Siamese network
structure, foreground–background classification and
bounding box regression can also be performed on the
proposed region, which can effectively improve the
accuracy of the predicted bounding box, avoid the
multiscale test in SiamFC [5], and achieve state-of-
the-art performance on multiple benchmarks. In later
research, SiamRPN++[6], DaSiamRPN [10], and
SiamDW [11] improved tracking performance via the
backbone network structure, residual block structure,
sampling strategy, and in other ways. However,
all of these approaches had relied on a predefined
configuration of anchors. RPN-based models use
multi-channel response maps to detect and regress
region proposals, in which the number of channels
in the output response map depends on the pre-
configured anchors.

Furthermore, the existence of an anchor generates
a large number of redundant prediction boxes and
thus requires additional post-processing procedures
such as non-maximum suppression to eliminate
candidate boxes to obtain the final result, which also
increases the calculation. On the basis of semantic
segmentation theory, some researchers have recently
improved these defects via pixel-level prediction, and
perform object tracking in an anchor-free manner
[12–14]. FCAF [14] suggested using an anchor-
free proposal network (AFPN) to replace the region
proposal network. The AFPN network consisted
of a correlation section and a supervised section
with two branches, one for classification and the
other for regression. To suppress prediction of low-
quality bounding boxes, a centricity branch was
added, similar to that in SiamCAR [12]. However,
as SiamCAR performs classification at the pixel
level, mapping the predicted position back to the
original image may cause deviations that can result
in jitter during tracking. Therefore, after obtaining
the prediction results of multiple adjacent pixels in

the target area and upsampling the response map,
the prediction results of multiple adjacent points are
weighted and averaged to give the final target box.
However, this post-processing procedure increases the
computational burden during tracking. Moreover,
although anchor-free approaches can simplify the
region proposal module used in anchor-based trackers,
post-processing is still needed because the outputs
of the networks are based on semantic segmentation
form.

As an alternative to the above methods, we propose
a Siamese center prediction network (SiamCPN)
based on keypoint detection by predicting the position
and size of the target region in a “real” end-to-end
manner. It uses a multi-channel heatmap in which
one channel is used to predict the target position while
the other two channels are used to adjust the center
offset and regress the object size. In this manner,
all of the information required for tracking can be
directly obtained without any post-processing, thus
greatly simplifying the model. A center-prediction
sub-network (CPN) is applied to multiple stages of
the backbone as a means of adaptively correlating the
feature maps from the Siamese network. The outputs
of SiamCPN are the directly predicted objects; no
post-processing procedure is needed. Our main
contributions are as follows:
• SiamCPN, a network for single-object tracking

that can be implemented in a simple, true end-to-
end manner. A few channels of the response maps
are learned to directly predict the center and size
of the target region, thus achieving anchor-free
tracking.

• A CPN to adaptively correlate multistage outputs
from the backbone.

• A demonstration that SiamCPN has superior
performance on multiple datasets and is
competitive in terms of inferencing speed to other
methods selected in this work.

2 Related work
This section mainly focuses on tracking approaches
based on Siamese networks.

Tao et al. [8] proposed SINT and pointed out that
the object-tracking problem could be converted into a
matching process between a template frame and other
frames. By using a Siamese network that could accept
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two inputs at the same time, SINT learnt a matching
function between different regions in the two input
frames. After obtaining target information from the
first frame, all following frames could be fed into the
network to calculate their similarity with the target
in the first frame. However, this method required
inputs to generate several region proposals in the
image before passing data through the network, which
was time-consuming. Bertinetto et al. [5] proposed
SiamFC, further defining the tracking problem as
a similarity learning problem, thereby obtaining
a single-channel score map for object detection.
SiamFC [5] quickly gained researchers’ attention
owing to its simple architecture, high accuracy, and
high speed; it only requires offline training without
online fine tuning.

Following these initial approaches, functional
modules from related research have been applied to
visual tracking by Siamese networks [6, 7, 10–12, 15–
17]. Li et al. [7], who proposed SiamRPN, combined
the RPN network from Faster R-CNN [9] with the
Siamese network. SiamRPN replaced multiscale
detection in SiamFC by means of bounding box
regression, improving inference speed and accuracy.
SiamRPN also adopted the idea of one-shot learning.
During tracking, the template patch in the first
frame could be fed into the template branch as the
detection kernel and then used to perform a cross-
correlation operation with the features of the search
region in subsequent frames for tracking. Wang
et al. [15] proposed the SiamMask network that
could simultaneously perform object tracking and
segmentation based on a Siamese network by adding
a mask branch for heatmap prediction to achiev
object segmentation. Zhu et al. [10] argued that
methods based on a Siamese network could only
distinguish the target and the background when no
semantic relationship exists. When similar-looking
backgrounds and objects occur, the setup usually
does not work well. Furthermore, a tracker based
on a Siamese network cannot update a model online
during the tracking stage, which can lead to accuracy
loss. In addition, certain trackers cannot deal with
the challenges of occlusion and target drawing in
scenes during long-term tracking. In response to
the above three problems, Zhu et al. [10] introduced
DASiamRPN with high-quality training data for
training. Existing datasets were used for object

detection to enrich positive samples and difficult
negative samples to improve the generalization and
discrimination abilities of the tracker, respectively. A
perception module was also introduced to improve
the choice criterion for the optimal boundary.

When researchers replaced AlexNet [18] with a
deeper convolution network for feature extraction
based on the Siamese network structure, they
discovered the problem of location bias [6, 11],
suggesting that the earlier works like SiamFC and
SiamRPN could only use shallow networks for feature
extraction. Zhang and Peng [11] analyzed the three
factors of stride size, padding, and receptive field in
convolutional networks. After several experiments,
they found that the existence of padding in a deep
network would cause tracking position deviation,
and thus, that stride should be made as small as
possible (8 is recommended). Furthermore, the
size of the receptive field and the output stride
should be considered at the same time. On
the basis of such observations, Zhang and Peng
proposed SiamDW and adopted a new residual
module to reduce the impact of padding. Li et
al. [6] also explored the abovementioned problems
and argued that a Siamese network could not use
a deep network structure because of its lack of
strict translational invariance; moreover, padding
could destroy translation invariance. The sampling
strategy was improved by transforming the original
fixed position sampling to uniform sampling near the
center. They trained a Siamese network tracker using
ResNet [19] as the backbone network. Compared with
previous work, the performance of the tracker was
notably improved. Apart from maintaining real-time
performance (35 frames per second), SiamRPN++ [6]
achieved excellent scores in terms of expected average
overlap rate, robustness, and accuracy.

However, anchor-based methods not only
require several experiments to determine suitable
hyperparameters but also need tedious post-
processing operations. Recently, some works
based on semantic segmentation have achieved
pixel-by-pixel object tracking in an anchor-free
and proposal-free manner [12–14]. On the basis of
keypoint detection theory [20–24], only the center
point of the bounding box and other information
are used to predict and correct the position and size
of the target. This approach allows our SiamCPN
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to operate faster and perform better while using
the same feature extraction strategy as Refs. [6, 12].
Furthermore, our proposed method is more concise
and effective in exploring an advanced and convenient
object-tracking solution than other methods.

3 Method
3.1 Overview

The overall structure of our SiamCPN is shown in
Fig. 1. Features are extracted by the Siamese fully
convolutional backbone. Multiple CPNs are used to
measure the similarity of the outputs from different
stages of the Siamese feature extraction backbone.
The final result is obtained by enhancing the average
weighted outputs of these multi-CPN modules. In
this section, we discuss the overall structure of the
proposed SiamCPN (Section 3.2) and then explore the
CPN (Section 3.3) and the loss functions for training
the SiamCPN (Section 3.4).
3.2 Siamese center prediction network

In SiamCPN, a modified ResNet-50 is used as the
backbone to build a fully convolutional network

for feature extraction. The stride of the network
is reduced and its receptive field is increased
simultaneously via dilated convolution to ensure the
spatial consistency of conv4 and conv5.

Tracking algorithms based on a Siamese network
usually obtain input from two branches called the
template branch and the search branch. As shown
in Fig. 1, the network branch input by template
Z is a template branch, and the network branch
corresponding to another input X is a search branch.
The template branch takes a specified template patch
Z in the first frame as the input, whereas the search
branch takes the search region X as the input. These
two inputs are fed into a shared-parameter CNN to
generate output feature maps ϕ(Z) and ϕ(X). Then,
the similarity response of the two different output
feature maps ϕ(Z) and ϕ(X) is calculated by cross-
correlation. Finally, the output response map passes
through the CPN head to generate multiple response
maps, given by

H = CPN(F∗
b (X), F∗

b (Z)) (1)
where CPN denotes the center-prediction sub-
network. The CPN calculates the cross correlation

Fig. 1 SiamCPN. Above: the entire framework. Blue boxes: conv-blocks in ResNet-50. The output of Conv3, Conv4, and Conv5 are fed into
CPN. Gray block: CPN module. � denotes depth-wise cross-correlation. Our network produces three 25 × 25 outputs. Below: architecture of
the CPN module. Before input to the CPN, channels are reduced to the same size. The self-adapted block forms the first part of the CPN
module. Only the structure of a single output branch is shown.
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between the channel-aligned feature F ∗
b (X) and

F ∗
b (Z), which come from block b of the backbone

network. The CPN adaptively generates a single-
channel or multichannel heatmap H.

Low-level features better representing visual
attributes (such as edges, corners, colors, and
shapes) are essential in predicting object positions,
whereas high-level features can better represent
semantic attributes that are essential for making
a distinction. Therefore, we also consider the use
of multistage features for tracking. Here, we use
features extracted from the last three residual blocks
of the backbone, denoted F3(∗), F4(∗), F5(∗), where
* represents the template patch Z or search region
X. Before cross-correlation, the channel sizes of
F3(∗), F4(∗), F5(∗) should be unified (to 256 in our
experiments). Thus, a convolutional layer, with
kernel size 1 × 1 for adjustment, is appended to these
three blocks. As shown in Fig. 1, the unified features
F∗

3 (∗), F4(∗), F∗
5 (∗), generated by block3, block4, and

block5, respectively, are adopted as the inputs to the
multiple CPN module.

The main output of our approach is a heatmap
Ŷ ∈ [0, 1]w/r×h/r×1, where w and h are the width
and height of X, and r is the output stride. We set
w = h = 255. When Ŷx,y = 1, the corresponding
position (x, y) is regarded as the detected center point
position; otherwise, it is the background. In addition,
to correct positional deviation due to the span of the
network during the learning process, we predict the
center offset to more accurately regress the position.
3.3 Center prediction sub-network

Given the unified feature maps F∗
b (X) and F∗

b (Z)
from the two branches, the CPN adaptively calculates
the cross correlation and outputs a heatmap of the
center, corresponding offset, and size of the object. A
self-adapted block, depth-wise cross correlation, and
a prediction head are used in the proposed CPN.
3.3.1 Self-adapted block
To effectively fuse features from two branches for
the final prediction, we propose a self-adapted block
whose parameters are not shared to solve the varying
problem in each prediction branch. In particular,
features from the template and search branches are
first passed through different convolutional layers.
Then, the center region is cropped from the feature of
the template branch to reduce the computational
burden on the cross-correlation operation. The

cropped center size is set to 7 to preserve accurate
information about the object. Then, the template
branch is passed through a group convolutional layer,
for computational reasons. Unlike the template
branch, the search branch only needs to append
another group convolutional layer. In general, the self-
adapted block allows the modules in each branch to
acquire enough meaningful knowledge during training
to improve prediction. Figure 1(below) shows details
of the sampled block. We only show part of a
prediction branch (location, offset, or size) for a given
CPN module. Three similar parts are used to obtain
the different CPN outputs.
3.3.2 Depth-wise correlation
Cross-correlation is the core operation during
tracking, and the goal is to determine the most
similar patches from the search region in the semantic
embedding space.

R = F∗
b (X) � F∗

b (Z) (2)
where ∗ denotes depth-wise correlation, which is used
to generate the multichannel response map R. To
efficiently achieve information association, we use
depth-wise cross correlation to embed the information
from the two branches. Then, the calculation is
performed in a channel-by-channel manner. Each
channel of R represents different meaningful semantic
information, which can then be used to predict the
target-related attributes. The CPN head takes R

into a convolutional layer with normalization and
outputs three 25 × 25 heatmaps with one, two, and
two channels, respectively.

3.4 Objective

As the desired output is in the form of a heatmap,
the ground truth is built in the same format. First,
we generate the corresponding center coordinates
p = ((x1 + x2)/2, (y1 + y2)/2) in the original image.
Then, we obtain the corresponding center coordinates
p̃ = �p/R� in the downsampled feature map. Finally,
the keypoints in the feature map are distributed in
the form of Gaussian kernels for the labeled bounding
box:

Yxy = exp
(

−(x − p̃x)2 + (y − p̃y)2

2σ2
p

)
(3)

where σp is a standard deviation related to target size,
a scheme similar to that in Ref. [24]. By overlaying
the Gaussian distribution on the heatmap, Gaussian
keypoints can be continuously added based on the
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heatmap. The training objective is a penalty-reduced
pixel-wise logistic regression with focal loss [25]:

Lc =
−1
N

∑
xy

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
1 − Ŷxy

)α
log

(
Ŷxy

)
, if Yxy = 1

(1 − Yxy)β
(

Ŷxy

)α
log

(
1 − Ŷxy

)
,

otherwise
(4)

where N is the number of keypoints in the search
region. Following the scheme in Ref. [24], we set α =
2 and β = 4 in the experiments.

To reduce the impact of position shift caused by
downsampling, an offset branch is added to predict
the deviation of the center point; we use L1 loss for
training:

Loff =
1
N

∑
p

∣∣∣Ôp̃ −
(p

r
− p̃

)∣∣∣ (5)

which only works at the location of the center point
predicted by the heatmap, whereas all other places
are ignored. The output Ôp̃ ∈ Rw/r×h/r×2 contains
two channels for offsets in the w and h directions,
respectively.

A prediction of the relevant attributes of the target
center is insufficient during tracking, and target
size information also needs to be obtained. After
estimating the location of the center using a heatmap,
we directly regress the width and height of the object
by using the L1 loss at the center as follows:

Lwh =
1
N

N∑
k=1

∣∣∣Ŝpk
− sk

∣∣∣ (6)

where Ŝ ∈ Rw/r×h/r×2 contains two channels for
width and height of the object.

The overall training objective is expressed as

L = Lc + λoffLoff + λwhLwh (7)
where the constants λoff and λwh weight the offset
loss and size loss, respectively. During training, we
set λoff = 1 and λwh = 0.1 for the experiments.

Finally, the average of the outputs of the
three CPN modules is calculated from multiple
stages as the overall prediction. Thus, SiamCPN
decomposes the tracking problem into three sub-
problems: determining the location of the object
center, predicting the center offset, and regression
of object size. Combining these multilevel features
enhances the capabilities of the CPN module and
allows it to obtain good predictions.

4 Experiments
4.1 Implementation

SiamCPN was implemented in Python with PyTorch
and trained on 4 TITAN X GPUs. To enable a fair
comparison, the input sizes of the template patch
and search regions were set in the same manner as in
Refs. [6] and [7], i.e., 127 × 127 and 255 × 255 pixels.
The backbone was pretrained on ImageNet [26].

4.2 Training

We conducted training using six large datasets: GOT-
10K [27], LaSOT [28], COCO [29], DET [26], VID [26],
and YouTube-BB [30]. During training process, we
set the batch size to 32 and used stochastic gradient
descent for optimization. In general, SiamCPN was
trained for 20 epochs. The first 10 epochs are only
used for preliminary training and excluded the last
three blocks for the backbone network. The last
three blocks of ResNet-50 were added for training in
the remaining epochs. To ensure a fair comparison,
training and evaluation on GOT-10K [27] and LaSOT
[28] were conducted separately in accordance with
SiamCAR [12], whereas training on the other four
datasets was conducted for the evaluations on OTB
[31, 32], VOT2016 [33], and UAV123 [34].

4.3 Testing

We implemented an offline tracking strategy for
testing. The template branch is only computed once
in the first frame and then fixed over the whole
tracking period. As a result, the object in the first
frame is adopted as the template patch for tracking,
and the current frame is adopted as the search region
that is fed into the backbone network. In general,
the purpose of the inference process is to extract the
required bounding box from the generated heatmap.
Therefore, after the input of the two branches is
passed through the SiamCPN, the position of the
peak in the heatmap is considered to be the location
of the object. Then, we adjust the position of
the center point by using the predicted offset and
determine the final box by referring to the center
point and predicted object size. For evaluations on
different datasets, a comparison with authors’ own
measurements was conducted. As availability of data
for different methods varies, comparison with different
state-of-the-art methods is conducted using different
benchmarks.
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4.4 Comparison with state-of-the-art

In our experiments, we found the proposed method to
be faster than other methods and easier to train, test,
and deploy. It can be adapted without introducing
additional hyperparameters. After training the
model, it was tested directly on different benchmarks.
SiamCPN outperforms existing methods on relevant
benchmarks while maintaining its speed advantage
and only needs simple test conditions.
4.4.1 Assessment using GOT-10K
The GOT-10K [27] dataset contains more than 10,000
video segments of real-world moving objects and over
1.5 million manually labeled bounding boxes. The
dataset has the WordNet [45] backbone and covers
a majority of the 560+ classes of real-world moving
objects and 80+ classes of motion patterns. The
test set embodies 84 object classes and 32 motion
classes with 180 video segments, allowing for efficient
evaluation. For a fair comparison, the protocol for
deep trackers was used so that all approaches could
use the same training data provided by the dataset.
The primary evaluation indicators for GOT-10K were
the average overlap (AO) and success rate (SR).
AO represents the average overlap of all estimated
boxes and ground-truth boxes. SR includes SR0.5
and SR0.75, which represents the rate of successfully
tracked frames whose overlap exceeds 0.5 and 0.75,
respectively.

A comparison was conducted to the baselines
provided by the GOT-10K website, including to
Siamese-based approaches, such as SiamRPN++ [6]
and SiamFC [5]. To show the effectiveness of the
proposed CPN based on the anchor-free strategy, a
comparison was also made to other three tracking
methods [12, 13, 16], selected on the basis of their
anchor-free tracking strategies. using released models
and code. As Fig. 2 shows, SiamCPN outperforms
the other trackers. Table 1 gives detailed results using
different metrics. AP and SR for OCEAN [13] are
much lower than those listed in Ref. [13], perhaps
due to choice of unpublished hyper-parameters (e.g.,
window penalty) that need careful selection for each
test set. By contrast, when testing our model with
a specific test set, fine tuning of parameters is not
required: our method uses fewer hyperparameters and
is more convenient to use than the other methods
investigated in this study.

Fig. 2 Comparisons using GOT-10K [27]. SiamCPN outperforms
Siamese-based and other baseline methods.

Table 1 Evaluation on GOT-10K. Top-2 results are shown in bold;
* means the method adopts an anchor-free tracking strategy

Tracker AO SR0.5 SR0.75

KCF [35] 0.203 0.177 0.065

fDSST [36] 0.206 0.187 0.075

SRDCF [37] 0.236 0.227 0.094

Staple [38] 0.246 0.239 0.089

CFnet [39] 0.293 0.265 0.087

MDnet [40] 0.299 0.303 0.099

ECO [41] 0.316 0.309 0.111

CCOT [42] 0.325 0.328 0.107

SiamFC [5] 0.374 0.404 0.144

SPM [43] 0.513 0.593 0.359

SiamRPN++ [6] 0.517 0.616 0.325

*OCEAN [13] 0.520 0.614 0.329

*SiamFC++ [16] 0.529 0.617 0.381

ATOM [44] 0.556 0.634 0.402

*SiamCAR [12] 0.569 0.670 0.415

Ours 0.571 0.678 0.414

Inferencing speed is an important factor in
assessing model performance. Table 2 shows tracking
frame rates in fps, for different approaches: the
following four approaches were tested under the
same conditions (using a Titan X GPU): SiamFC
[5], SiamRPN++ [6], SiamCAR [12], and our
method. SiamRPN++ and SiamCAR were selected
as they adopt the same feature extraction strategy as
SiamCPN; SiamFC uses a shallow backbone network
[18] for feature extraction and is commonly considered
a fast single-object tracker. The inferencing speeds
of SiamRPN++ and SiamCAR are 19.05 and 17.7
fps, respectively, whereas the proposed SiamCPN
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Table 2 Inferencing speeds in fps of different Siamese-based trackers
under the same test conditions. Using the same strategy for feature
extraction, our SiamCPN is faster than SiamRPN++ and SiamCAR

Tracker SiamFC [5] SiamRPN++ [6] SiamCAR [12] Ours
fps 25.81 19.05 17.7 33.79

reaches 33.79 fps. Using the same strategy for
feature extraction with the same hardware, our
method is faster than SiamCAR and SiamRPN++.
Furthermore, SiamCPN is faster than SiamFC. These
findings indicate that the proposed CPN has excellent
performance with regard to inferencing speed.
4.4.2 Assessment using LaSOT
The LaSOT [28] dataset contains more than 3.52
million frames of hand-labeled pictures and 1400
videos, and is by far the largest single-target tracking
dataset with dense labeling. On average each
LaSOT sequence has 2512 frames, all carefully
checked and manually marked. Thus, approximately
3.52 million high-quality bounding box annotations
can be generated. LaSOT contains 70 categories,
each having 20 sequences. To assess existing
trackers and provide a broad benchmark for future
comparisons using LaSOT, 35 representative trackers
were evaluated under different protocols, and their
performances are analyzed using different metrics.

Figure 3 shows the success and precision plots
using LaSOT. A comparison was conducted with the
top 15 trackers, including SiamRPN++ [6], MDNet
[40], DSiam [46], and others. The results obtained
are comparable with those from SiamRPN++ but
performs better than those for the other baseline
methods. The ability of our model to outperform
most selected methods using a large-scale dataset
shows that our method is feasible and effective.

4.4.3 Assessment using VOT2016
The VOT2016 [33] dataset includes 60 video
sequences with different challenging factors for
evaluating tracking performance. It also includes
two basic evaluation indicators (accuracy rate and
robustness) and combines them into EAO (expected
average overlap) as the overall performance evaluation
metric. The accuracy rate corresponds to the AO
rate under successful tracking, while robustness is
measured on the basis of the total number of tracking
failures. To test the effectiveness and stability of our
proposed anchor-free strategy, we set up comparative
experiments integrating different trackers, including
FCAF [14] based on an anchor-free strategy and use
of semantic segmentation for object tracking. As
shown in Table 3, our model outperforms the other
methods for all metrics selected in this study.
4.4.4 Assessment using OTB-100
The OTB-100 [32] dataset was developed from OTB-
50 [31] dataset, which consists of 50 fully annotated
video sequences, containing a total of 51 objects of
different sizes, and more than 29,000 frames. Each
target is affected by various interfering factors during

Table 3 Tracker comparison using VOT2016. Top-2 results are
shown in bold. Our method outperforms the other trackers. EAO
and accuracy outperform FCAF by 0.7% and 0.8% respectively. The
robustness result indicates that our model has good stability during
tracking

Tracker EAO Accuracy Robustness
Ours 0.363 0.589 0.56

FCAF [14] 0.356 0.581 1.02
SiamRPN [7] 0.344 0.560 1.08
CCOT [42] 0.331 0.539 0.85
MLDF [33] 0.311 0.490 0.83
Staple [38] 0.295 0.544 1.35

Fig. 3 Comparisons with the top-15 trackers on LaSOT [28]. Our model is comparable to SiamRPN++ [6] and outperforms the other
baselines.
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the tracking process. To fully evaluate the robustness
of tracking algorithms with respect to various factors
that may affect tracking, OTB50 was used to provide
11 common video attribute annotations: illumination
changes, scale changes, occlusion, deformation, motion
blur, fast motion, in-plane rotation, out-of-plane
rotation, out of view, background interference, and
low resolution. Each video frame contains at least
two attribute annotations. In addition, the OTB-50
dataset integrates 29 popular tracking algorithms and
unifies input and output formats to facilitate algorithm
performance evaluation. In 2015, the OTB-50 dataset
was further expanded to the OTB-100 dataset with 100
labeled video sequences. We compare our method with
the top 9 baselines, including MUSTer [47], MEEM
[48], STRUCK [49], and other methods whose tracking
results are provided by the OTB website. As Figs. 4
and 5 show, our SiamCPN outperforms all other
methods in terms of both metrics.

Fig. 4 Precision evaluation on OTB-100 [32]. Our approach is
superior to the comparators.

Fig. 5 Success evaluation on OTB-100 [32]. Our approach is superior
to the comparators.

4.4.5 Assessment using UAV123
The UAV123 [34] dataset contains a total of 123 video
sequences and more than 110k frames. All sequences
are fully annotated with upright bounding boxes. We
compared our method to 14 baselines provided by
the UAV123 website, including MUSTer [47], SRDCF
[37], MEEM [48], and other approaches. Success and
precision of OPE were used to evaluate the overall
performance in this study. As shown in Figs. 6 and 7,
our SiamCPN outperforms all other trackers on both
metrics. In addition, as shown in Table 4, SiamCPN
provides the best results while using a much simpler
network than state-of-the-art RPN-based trackers,
and it does not require heuristic parameter tuning.
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Fig. 6 Precision evaluation on UAV123 [34]. SiamCPN significantly
outperforms the baseline and state-of-the-art approaches.
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Fig. 7 Success evaluation on UAV123 [34]. Our method is more
accurate than the baseline and state-of-the-art approaches.
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Table 4 Comparison to Siamese-based trackers on UAV123. Top-2 results are shown in bold

Tracker SiamFC [5] SiamRPN [7] DaSiamRPN [10] SiamRPN++ [6] SiamCAR [12] Ours
Success 0.485 0.557 0.569 0.610 0.614 0.623

5 Conclusions
In this study, we decomposed the object-tracking
problem into three sub-problems to predict center
position, center point offset, and object-size. Our
proposed SiamCPN can be treated as an encoding–
decoding framework. By ensuring feature extraction
and correlation calculation in CPN, the differences
of the two input frames can be encoded into the
response maps. The CPN head can also decode the
response maps into heatmaps for visual tracking. The
proposed method is simpler and faster than many
other Siamese-based methods and achieves excellent
performance on various large-scale datasets such as
GOT-10K and LaSOT. Our research provides a new
approach for Siamese networks when combined with
the anchor-free detection method. In future, we will
continue to explore the potential of Siamese networks
in tracking. Specifically, we will focus on enriching the
expressive ability of template branches by extracting
more powerful features, and finding target-related
information from high-level semantics. However, it
is difficult to solve various challenges in real scenes
by relying only on visual features. Incorporating
temporal information into the model will make it
more robust.
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[37] Danelljan, M.; Häger, G.; Khan, F. S.; Felsberg,
M. Learning spatially regularized correlation filters
for visual tracking. In: Proceedings of the IEEE
International Conference on Computer Vision, 4310–
4318, 2015.

[38] Bertinetto, L.; Valmadre, J.; Golodetz, S.; Miksik, O.;
Torr, P. H. S. Staple: Complementary learners for real-
time tracking. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 1401–
1409, 2016.

[39] Valmadre, J.; Bertinetto, L.; Henriques, J.; Vedaldi,
A.; Torr, P. H. S. End-to-end representation learning
for correlation filter based tracking. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, 5000–5008, 2017.

[40] Nam, H.; Han, B. Learning multi-domain convolutional
neural networks for visual tracking. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, 4293–4302, 2016.

[41] Danelljan, M.; Bhat, G.; Khan, F. S.; Felsberg, M.
ECO: Efficient convolution operators for tracking. In:
Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 6931–6939, 2017.

[42] Danelljan, M.; Robinson, A.; Shahbaz Khan, F.;
Felsberg, M. Beyond correlation filters: Learning
continuous convolution operators for visual tracking.
In: Computer Vision – ECCV 2016. Lecture Notes
in Computer Science, Vol. 9909, Leibe, B.; Matas, J.;
Sebe, N.; Welling, M. Eds. Springer Cham, 472–488, 2016.

[43] Wang, G. T.; Luo, C.; Xiong, Z. W.; Zeng, W.
J. SPM-tracker: Series-parallel matching for real-
time visual object tracking. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 3638–3647, 2019.

[44] Danelljan, M.; Bhat, G.; Khan, F. S.; Felsberg, M.
ATOM: Accurate tracking by overlap maximization.
In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 4655–4664,
2019.

[45] Miller, G. A. WordNet. Communications of the ACM
Vol. 38, No. 11, 39–41, 1995.

[46] Guo, Q.; Feng, W.; Zhou, C.; Huang, R.; Wan,
L.; Wang, S. Learning dynamic Siamese network for
visual object tracking. In: Proceedings of the IEEE
International Conference on Computer Vision, 1781–
1789, 2017.

[47] Hong, Z. B.; Zhe, C.; Wang, C. H.; Mei, X.; Prokhorov,
D.; Tao, D. C. MUlti-Store Tracker (MUSTer): A
cognitive psychology inspired approach to object
tracking. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 749–758,
2015.

[48] Zhang, J. M.; Ma, S. G.; Sclaroff, S. MEEM:
Robust tracking via multiple experts using entropy
minimization. In: Computer Vision – ECCV 2014.
Lecture Notes in Computer Science, Vol. 8694. Fleet,
D.; Pajdla, T.; Schiele, B.; Tuytelaars, T. Eds. Springer
Cham, 188–203, 2014.

[49] Hare, S.; Golodetz, S.; Saffari, A.; Vineet, V.; Cheng,
M. M.; Hicks, S. L.; Torr, P. H. S. Struck: Structured
output tracking with kernels. IEEE Transactions on
Pattern Analysis and Machine Intelligence Vol. 38, No.
10, 2096–2109, 2016.

Dong Chen is a student in the School
of Artificial Intelligence, University of
the Chinese Academy of Sciences. He
received his B.E. degree in computer
science and technology from Shihezi
University in 2017. He is currently
working towards an M.Eng. degree at
the National Laboratory of Pattern

Recognition, Institute of Automation, Chinese Academy
of Sciences. His research interests include computer vision
and machine learning.

Fan Tang is an assistant professor in
the School of Artificial Intelligence, Jilin
University. He received his B.Sc. degree
in computer science from North China
Electric Power University in 2013 and
his Ph.D. degree from the National
Laboratory of Pattern Recognition,
Institute of Automation, Chinese Academy

of Sciences, in 2019. His research interests include computer
graphics, computer vision, and machine learning.

Weiming Dong is a professor in the
Sino-European Lab in Computer Science,
Automation and Applied Mathematics
(LIAMA) and National Laboratory
of Pattern Recognition (NLPR) at
the Institute of Automation, Chinese
Academy of Sciences. He received his
B.Sc. and M.Sc. degrees in computer

science in 2001 and 2004, both from Tsinghua University,
China. He received his Ph.D. degree in computer science
from the University of Lorraine, France, in 2007. His
research interests include computational visual media and
computational creativity.



SiamCPN: Visual tracking with the Siamese center-prediction network 13

Hanxing Yao received his B.Sc. degree
in architectural engineering in 1999 and
his M.Sc. degree in computer science in
2002, both from Chongqing University,
China. He is the director of the AI Depart-
ment of Beijing LLVISION Technology
Co., Ltd. His research interests include
computer vision and video retrieval.

Changsheng Xu is a professor in the
National Lab of Pattern Recognition,
Institute of Automation, Chinese Academy
of Sciences and Executive Director of the
China–Singapore Institute of Digital Media.
His research interests include multimedia
content analysis, indexing and retrieval,
pattern recognition, and computer vision.

He holda 30 granted or pending patents and has published
over 200 refereed research papers in these areas. He is an
Associate Editor of IEEE Trans. on Multimedia, ACM Trans.
on Multimedia Computing, Communications and Applications,
and ACM/Springer Multimedia Systems Journal.

Open Access This article is licensed under a Creative
Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduc-
tion in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link
to the Creative Commons licence, and indicate if changes
were made.

The images or other third party material in this article are
included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and
your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission
directly from the copyright holder.

To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/.
Other papers from this open access journal are available
free of charge from http://www.springer.com/journal/41095.
To submit a manuscript, please go to https://www.
editorialmanager.com/cvmj.


