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Abstract Image interpolation techniques have a

wide range of applications such as frame rate-up

conversion and free viewpoint TV. Despite significant

progresses, it remains an open challenge especially for

image pairs with large displacements. In this paper,

we first propose a novel optimization algorithm for

motion estimation, which combines the advantages

of both global optimization and local parametric

transformation model. We perform the optimization

over dynamic label sets, which are modified after each

iteration using the prior of piecewise consistency to

avoid the local minima. Then we apply it to an image

interpolation framework including occlusion handling

and intermediate image interpolation. We validate

the performance of our algorithm experimentally, and

we show that our approach achieves state-of-the-art

performance.

Keywords image interpolation; view synthesis;

homography propagation; belief

propagation.

1 Introduction

Image interpolation is a process that generates a

new image using available images, which is useful for

frame rate-up conversion [1] and view synthesis [2] etc.
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In some applications, the available images are wide-

baseline spaced. Here, baseline means the translation

and rotation that a camera undergoes to capture

image pairs. For example, in virtual street roaming

applications, users can teleport themselves from one

street spot to another street spot by clicking the

directional arrow. In order to make the transition

between discrete views smooth, it is important to

interpolate the intermediate views between wide-

baseline image pairs realistically since the set of the

sampled street views are usually far from each other.

Nie et al. [2] discussed the definition of various

kinds of baselines, and divided them into three

categories based on the median distance between the

KITTI images [3]: small-baseline, medium-baseline,

and wide-baseline. The basic idea of most image

interpolation algorithms is estimating the motion field

of the input views and map them to the desired

position. Traditional interpolation methods were

usually designed for small baseline images [4], and

recent large displacement optical flow methods [5] can

be regarded as medium-baseline algorithms. Due to the

large translations and rotations between wide-baseline

image pairs, it is still a challenging problem to estimate

the motion field for wide-baseline image pairs.

One classical approach to motion estimation is to

consider it as a labeling problem, which can be

formulated to a global optimization problem in Markov

Random Field. In other words, we need to select the

best motion vector from the set of potential motion

vectors for each pixel in the source image to minimize

the energy defined using some prior assumptions such as

brightness constancy and spatial smoothness. However,

since the space of all possible motion vectors is usually

too large, employing global optimization over full image

grid in this space always needs dramatically high

computational complexity. To reduce the amount of

computation, some approaches use a search window as
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the candidate label set [6]. However, for wide-baseline

image pairs, the window size should be very large

to avoid falling into the local minima, which makes

the optimization prohibitively slow. Other approaches

use approximate nearest neighbors in feature space to

prune the set of potential motions [5]. But the proposed

set is still superfluous, because it needs to maintain

a high recall of the target motions. So they have to

perform the optimization on the sampled image grid,

and use the interpolation method [7] to get the motion

field of the full image grid.

An alternative strategy to estimate the motion is

to compute parametric transformation models locally,

which can transform each pixel to its target position in

the target image [2]. It is an efficient strategy to deal

with wide-baseline image pairs. However, this strategy

can not guarantee the estimated motion field to be

piecewise smooth, which may lead to some artifacts

of stretching, overlapping and holes, etc. Therefore,

methods using this strategy usually need an extra

global optimization to further eliminate the artifacts.

In this paper, we propose a novel method of

motion estimation, which combines the advantages

of both global optimization and local parametric

transformation model based algorithms. We formulate

the problem to a global optimization in Markov

Random Field. Different from using a constant set

of candidate motions as previous methods did [5, 6],

we adjust the candidate set iteratively guided by

homography fitting and propagation. More specifically,

we first initialize the set of candidate motions for each

pixel by approximate nearest neighbor search in feature

space. Different from DiscreteFlow [5], where the

candidate set is superfluous, the size of our candidate

set can be very small. Then, we perform global

optimization over full image grid with the proposed

candidate sets. Considering that the small candidate

set may not include the target motion, we propose a

novel strategy to update the candidate set iteratively

through local refinement under a piecewise parametric

model. Our approach requires neither a large candidate

set to guarantee that the target motion is included,

nor a coarse-to-fine scheme to gradually refine the

estimated motions.

In summary, the main contributions of this paper

are as follows. First, we propose a novel optimization

framework for motion estimation based on homography

guided belief propagation. Second, we apply the

proposed motion estimation method to an image

interpolation framework, and we show experimentally

that our approach is able to deal well with the wide-

baseline image interpolation problem. We demonstrate

that our approach also performs well for traditional

small-baseline image pairs too, through experiments on

typical optical flow dataset.

The rest of this paper is organized as follows: we

first review the related work in Sec. 2. Then

we introduce in Sec. 3 our approach including the

candidate set initialization, the inference algorithm,

and the modification strategy of candidate set. In

Sec. 4, our algorithm is validated and compared to other

approaches experimentally. Finally, we conclude and

discuss the limitation of this paper in Sec. 5.

2 Related Work

As we mentioned above, The basic idea of image

interpolation algorithms is motion estimation. In other

words, image interpolation is a high-level application

of motion estimation techniques. So we first review the

relevant low-level motion estimation algorithms in this

section. Then we mainly review the related work about

image interpolation including frame rate-up conversion

and view synthesis.

Motion estimation. Optical flow methods are

typical motion estimation algorithms, most of which

are designed for small-baseline image pairs. Since the

original work of Horn and Schunck [8], there have

been a huge body of literature on optical flow [9–12].

One typical approach is to consider it as a labeling

problem like we mentioned in Sec. 1. The motion field

can be estimated by solving an energy minimization

problem based on brightness constancy and spatial

smoothness [13–15]. Since the space of all possible

labels is usually too large or even infinite [16, 17], some

strategies were proposed to reduce the label set. The

simplest way is using a searching window centered at

the initial label [6]. But it is easily prone to local

minima, especially when there are large displacements

between image pairs. Discrete Flow [5] pruned the

label set by proposing a diverse set of candidate labels

using approximate K nearest neighbors search and

random sampling around the reference pixel. Veksler et

al. [18] decreased the computational cost of the graph

cuts stereo correspondence technique efficiently using

the results of a simple local stereo algorithm to

limit the disparity search range. The particle belief

propagation technique [19] applied the Markov chain

Monte Carlo sampling to the current belief estimation

using a Gaussian proposal distribution. Besse et

al. [20] defined a new family of algorithms, called

PMBP, which combines the best features of both

PatchMatch and particle belief propagation. They
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leveraged PatchMatch to produce particle proposals

effectively. There have been some methods proposed

based on PMBP [21, 22]. Li et al. [21] proposed a

method called SPM-BP to tackle the computational

bottleneck of PMBP. Hornáček et al. [22] showed that

optimization over high-dimensional, continuous state

space can be carried out using an adaptation of PMBP.

We use belief propagation as the base algorithm to

optimize the objective function too. But different from

using PatchMatch, we utilize homography estimation to

propose new labels, which performs better than PMBP

based methods.

There are also many other types of optical flow

estimation algorithms. For example, the recent

advances in deep learning have significantly influenced

the literature on optical flow estimation. However, it

is beyond the scope of this paper to review the entire

literature. For a more detailed survey of optical flow

estimation, please refer to [23, 24].

Frame rate-up conversion. Frame rate-

up conversion is a typical application of image

interpolation, where one can interpolate intermediate

frames between adjacent video frames to increase the

frame rate of a video. In this situation, objects undergo

very small displacements, since sequential video frames

are very similar. Owing to their simplicity, block

matching algorithms are commonly used in frame

rate-up conversion [25]. These methods divide a

frame into non-overlapping blocks and search the most

similar block in the following frame for each block.

On pixel level, Mahajan et al. [26] move the image

gradients to a given time step and solve a Poisson

equation to reconstruct the interpolated frame. Stich et

al. [27] find edges and homogeneous regions in images

for matching, yielding a dense motion field between

images. Meyer et al. [28] propose propagating phase

information across oriented multi-scale pyramid levels

for video interpolation. Moreover, CNN-based methods

also showed good performance in this application.

Long et al.train a deep CNN to directly predict the

interpolated frames [29], but the results are usually

blurry. Then some methods take advantage of the

accurate estimated pixel-wise optical flow to improve

the performance [1, 4]. Besides, some methods

formulate frame interpolation as convolution operations

over local patches and estimate the convolutional

kernels for each output pixel [30, 31]. However, these

methods are designed for small-baseline image pairs,

and they are not effective for wide-baseline image

interpolation.

View synthesis. View synthesis is the process of

generating a new view using existing views taken by

multiple cameras. In this situation, there may be large

displacement because of large transition or rotation of

a camera. Recently, large-displacement optical flow

methods have been proposed. Some methods initialize

the variational model by sparse feature correspondences

or approximate nearest neighbor field [32], which help

to escape from the local minima. These methods

are improved by proposing more sophisticated feature

matching algorithms [7]. From a different angle,

Bao et al. [33] obtain large displacement optical flow

by increasing the smoothness of PatchMatch [34]. But

still, these methods do not perform very well for wide-

baseline image interpolation. Image-based rendering

techniques [35–38] are proposed to get better result

of wide-baseline view synthesis. Chaurasia et al. [37]

reconstruct 3D model for a scene, and compensated

for the errors of the reconstruction by depth synthesis.

However, sometimes we may fail to reconstruct the

3D scene for some reasons like insufficient number of

images. Some researchers try to apply deep learning

methods to view synthesis problem [39–42]. For

example, Zhou et al. [39] train a convolutional neural

network to generate an appearance flow vector that

specifies which pixels in the input image could be used

to reconstruct the output. However,Learning based

methods require a large amount of training data and

much training time. Nie et al. [2] proposed a method

that only needs two images as input. They oversegment

the sourse image into superpixels, and estimate for

each superpixel a homography, which transforms each

superpixel to the target position. However, without

enforcing spatial smoothness constraint explicitly, there

may be some artifacts because of the discontinuity

between different superpixels. Although there is a

mesh warping framework to further eliminate the

artifacts, there are still some artifacts like stretching

and holes. Our method is similar to [2], since we both

use the assumption that each superpixel represents

a small plane, and our method also includes the

homography fitting and propagation. But unlike them,

we formulate the whole process of motion estimation

as an energy minimization problem, which explicitly

enforcing spatial smoothness constraint and achieve

better performance than that of [2].

3 Proposed Approach

Our aim is to generate intermediate images between

two given images I1 and I2. To that end, we compute

a forward displacement vector from I1 to I2 for each

pixel in I1 and a backward displacement vector from
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Fig. 1 The pipeline of our approach. The label set initialization phase composes label set using N nearest neighbor in feature

space. And in addition to iterative optimizing the objective function, the optimization phase marks the worst candidate in label set

by their cost and replaces it by new label proposal in each iteration.

I2 to I1 for each pixel in I2. Our approach considers

it as a labeling problem, where the label here means

the displacement vector for each pixel, and we solve

this problem by minimizing an energy function in the

Markov Random Field(MRF) over dynamic candidate

label sets. Inspired by belief propagation(BP) [43],

we propose a novel optimization scheme guided by

homography fitting and propagation to avoid the local

minima. The pipeline is shown in Fig. 1. First of

all, we propose an initial candidate label set whose size

is very small for each pixel. We introduce this part

in Sec. 3.2. Then, to tackle the problem of insufficient

candidates caused by limited size of the label set, we

propose new labels using homography estimation, and

modify the candidate label sets after each iteration of

the optimization. The details of these processes will be

introduced in Sec. 3.3.

Before presenting the details of the algorithm, we

first introduce the formulation of our motion estimation

approach and some essential knowledge of BP in

Sec. 3.1.

3.1 Formulation of motion estimation

Without loss of generality, we only introduce the

estimation of forward displacement vectors from I1 to

I2, since the backward displacement from I2 to I1

can be obtained using exactly the same way. Our

goal is to estimate the motion field w for I1, where

w(p) = (u(p), v(p)) is the displacement vector at pixel

p and p = (x, y) represents the grid coordinate of

image I1. Since we formulate this problem as a global

optimization in MRF, we can also see w(p) as a label

of pixel p. The energy function to be minimized is

formulated as Eq. (1), including a data term Ed and

a smoothness term Es. The data term represents the

similarity between the matched pixels corresponding to

the motion field, and the smoothness term constrains

the labels of adjacent pixels to be similar. Here, ε

is a set contains all the neighborhoods on a four-

connected image grid, and λ is a weight coefficient of

the smoothness term.

E(w) =
∑
p

Ed(w(p)) + λ
∑

(p,q)∈ε

Es(w(p),w(q)) (1)

Let C(p) = {wp
1 ,w

p
2 , · · · ,w

p
L} be the candidate label

set of each pixel p in image I1, containing L candidate

labels. For clarity, we set the size of every pixel’s label

set to the same L, although they can be different in our

algorithm.

Belief propagation is an inference algorithm working

by passing message around the 4-connected image grid

iteratively [43]. It updates a L-dimensional message

mt
p→q(w

q
i ), 1 6 i 6 L, sent from each pixel p to

its neighbor q at each iteration t from[0, T ]. The

messages are computed in the following way, where

N (p)\q denotes the neighbors of p other than q.

mt
p→q(w

q
i ) = min

16j6L
(Es(w

p
j ,w

q
i , ) + Ed(w

p
j )

+
∑

s∈N (p)\q

mt−1
s→p(w

p
j )).

(2)

Then, with the obtained mt
p→q, we can compute a belief

vector btp(w
p
i ) for each pixel p at each iteration t using

btp(w
p
i ) = Ed(w

p
i ) +

∑
(p,q)∈ε

mt
q→p(w

p
i ). (3)

The value of btp(w
p
i ) represents an approximation to the

probability that the correct label for p is wp
i . After

T iterations, the final belief vector bTp (wp
i ) can be

calculated for each pixel, and we can select the best

label w∗(p) for every pixel p from its label set C(p) by

minimizing bTp (wp
i ) pixel-wisely.

How we choose the label set C(p) is very important.

The set can’t be too large because the optimization

will be prohibitively slow. But a fixed small candidate

label set may lead to local minima easily. Therefore,

our approach uses a compact dynamic candidate label
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Downsampling Downsampling

Level 1 Level 2 Level 3

Fig. 2 Illustration of label set initialization.

set. We initialize a very small label set for each pixel,

and we modify the label sets iteratively during BP to

avoid the local minima.

3.2 Initialization

We use a multi-scale K nearest neighbor search

strategy to initialize the candidate label sets, which is

shown in Fig. 2. First, we construct image pyramids

with NL levels, where NL = 4 in our experiments,

for both I1 and I2 by downsampling from the original

images using bilinear interpolation . Let I`i (i = 1, 2)

be the downsampled image of Ii at each pyramid level

`. We compute a feature descriptor for each pixel in

I`1 and I`2 to help finding correspondences. Because for

wide-baseline image pair, the brightness of an object

may change during the transition between views, and

a feature descriptor is more robust to find nearest

matches. To overcome local scale and rotation changes

in wide baseline scenario, we use per-pixel Scale-

Invariant Feature Transform (SIFT) descriptor [6] as

the dense feature descriptor. After we get the feature

maps D`
1 for I`1 and D`

2 for I`2, we search K` nearest

neighbors in D`
2 for every descriptor in D`

1 under L1

distance. Then we get K` labels corresponding to the

K` nearest neighbors for each pixel in I`1 at level `,

and we upsample it to the original scale of image I1

to propose K` initial labels for each pixel in I1. We

collect the initial labels proposed from each level ` to

get the initial candidate label set of each pixel in I1

with size N =
∑
`K`. In our experiment, we search

K` = 2 labels for each level ` to get 8 candidates

for each pixel. Note that the multi-scale scheme is

only used in the initialization step. The following

optimization does not require a coarse-to-fine scheme

to prevent local minima, since we use the homography

guided modification strategy, which is introduced in the

next section.

3.3 Optimization

We first introduce the specific data term and

smoothness term we use in our experiment. We use the

truncated L1 distance between the SIFT descriptors,

which are computed in the initialization phase, to

be matched along with the displacement as the data

term to account for matching outliers, and we use the

truncated L1 distance between labels of neighboring

pixels as the smoothness term account for motion

discontinuities. They are shown in Eq. (4) and Eq.

(5), where D1 and D2 are the feature maps of the

original input images I1 and I2, and τd and τs are

the truncation threshold of the data term and the

smoothness respectively.

Ed(w(p)) = min (‖D1(p)−D2(p + w(p))‖1, τd) (4)

Es(w(p),w(q)) = min (‖w(p)−w(q)‖1, τs) (5)

With the specific energy function, the optimization

can be performed now. As we mentioned in Sec. 3.1,

a small candidate label set may lead to local minima

easily. So we propose a novel optimization scheme to

tackle the problem. Inspired by BP [43], we also solve

the minimization problem by passing messages. But

after message passing at each iteration, we perform

a homography check and a label set modification

to prevent local minima. In order to conduct the

homography check and the label set modification, we

first over-segment image I1 into superpixels S =

{S1, S2, · · · , SK} employing the method of [44], and

we regard each superpixel as a small plane, which

corresponds to somewhere in I2 by a homography, as

they did in [2] since it is small and it usually has

homogeneous color.

Homography check. As introduced in Sec. 3.1,

we compute a belief vector btp(w) for every pixel p

after each iteration t, and select the current best label

w∗t (p) from C(p) for p. With the prior knowledge

of the plane approximation in each superpixel, we

can fit a homography Hi for each superpixel Si
from the best labels of all the pixels in Si using

RANSAC [45]. The homographies will help to generate

new labels while modifying the label sets, which we

will introduce later. To ensure the validity of labels

guessed by homographies, we need to identify whether

a homography is reliable or not first.

After Hi is obtained, we can project each pixel p in

Si to a new location p′ in I2 using Hi.

p′ = Hip (6)

5
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Fig. 3 Illustration of inlier/outlier pixel discrimination. p1

represents an inlier pixel while p2 represents an outlier pixel.

Let q = p + w∗t (p) be the location corresponding

to the current best label. Then we can define a

delta function using the Euclidean distance Dis(p′, q)

between p′ and q

δ(p) =

{
1, if Dis(p′, q) < r

0, otherwise,
(7)

to determine whether a pixel is an inlier pixel(δ(p) = 1)

or an outlier pixel(δ(p) = 0), where r is a threshold. We

show the process in Fig. 3.

Then we can compute the reliability Re(Si) of

the fitted homography Hi of a superpixel Si, which

calculates the percentage of inlier pixels in a superpixel:

Re(Si) =

∑
p∈Si

δ(p)

|Si|
, (8)

where |Si| is the number of pixels of Si. Therefore,

we can identify whether the fitted homography Hi of

a superpixel Si is reliable using a threshold ζ, and

find the set R which contains superpixels whose fitted

homographies are reliable.

R = {Si|Re(Si) > ζ} (9)

And the remaining superpixels constitute the set U =

S \ R of superpixels whose fitted homographies are

unreliable.

Label set modification. After we divide all the

superpixels into reliable ones R and unreliable ones U ,

we modify the candidate label set by substituting new

labels. Substituting a label w here means replacing the

current worst label in the current candidate label set of

each pixel with the new proposed label w. Here, similar

to the definition of the current best label, we select the

current worst label by maximizing btp(w
p
i ).

We use different ways to propose new labels for pixels

in reliable superpixels or in unreliable superpixels.

Fig. 4 Illustration of the superpixel graph. We use red lines

to represent the boundaries of superpixels, and we use yellow

points(graph nodes) and black lines(graph edges) to illustrate

the graph structure.

As the first case, if a pixel p belongs to a reliable

superpixel Si, we directly use the homography Hi

fitted in homography check to generate a new label by

Eq. (10) since we consider the reliable homography as

a good estimation of the transformation of p from I1

to I2.

wnew = Hip− p (10)

If p is a pixel of superpixel Si whose fitted

homography Hi is unreliable, we can not use Hi directly

to generate a new label. Instead, we utilize other

superpixels whose homographies are reliable to help

generating new labels. To that end, we construct

an undirected graph whose nodes are all superpixels

and edges connecting the superpixels with shared

boundaries, which is shown in Fig. 4. In this paper,

the weight of each edge is defined as the color similarity

between the connected superpixels. As [2] did, we

create normalized color histogram for each superpixel,

and we compute the χ2 distance between two histogram

of two adjacent superpixels as the color similarity. With

the graph structure, we define the similarity between

any two superpixels as the shortest path connecting

them on the graph, which can be easily computed using

Dijkstra’s shortest path algorithm.

Then we propose the M new labels based on the

similarity between any two superpixels. We search the

M most similar superpixels from R for Si ∈ U , and

we project p using the M corresponding homographies

Hj
i , j = 1, 2, · · · ,M , to generate the M new labels wj

using Eq. (11). We show this process in Fig. 5. For the

unreliable superpixel Si, which is marked as yellow in

image (a) of Fig. 5, we search M superpixels(shown as

6
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(a) (b)

Fig. 5 Illustration of generating new labels for unreliable

superpixels. Image (a) shows The original input image I1, while

image (b) shows the process of searching similar superpixels in R.

The dark region in (b) shows the unreliable superpixels, and the

yellow one represents the unreliable superpixel to be processed.

The blue ones are the most similar superpixels of the yellow one

we searched from R.

blue) inR which are most similar to Si. Note that we do

not use the neighboring superpixels directly to propose

new labels for Si, because some neighboring superpixels

may not belong to the same object as Si when Si is near

the boundary of an object. Moreover, unlike reliable

superpixels where we propose one new candidates for

each pixel, we propose M new candidates for each

pixel in unreliable superpixels to ensure as much as

possible that we propagate the correct homography to

the unreliable superpixel.

wj = Hj
i p− p (11)

Since we use the same homography to generate new

labels for pixels in the same superpixel in both two

cases, these labels will share good consistency between

neighboring pixels so that the smoothness term may be

reduced dramatically even these labels are not correct.

Therefore, to avoid such case, during each iteration,

we uniformly sample 30% pixels from the outlier pixels

of reliable superpixels and 30% pixels from unreliable

superpixels to be modified in practice.

3.4 Occlusion handling

Since we do not consider occlusions explicitly, the

computed displacement vectors on occlusion pixels

may be incorrect. Therefore, we remove the outliers

from our result using the forward-backward consistency

checking, i.e., we compute the forward displacement

vectors from I1 to I2 and the backward vector from I2

to I1 and discard inconsistent ones. Then we use the

state-of-the-art interpolation scheme [46] to interpolate

the discarded regions.

3.5 Interpolation

With the computed displacement vectors w1 for

I1 and w2 for I2, we can smoothly interpolate any

intermediate image It at time t ∈ (0, 1) between I1 and

I2 using the patch-based reconstruction scheme [47].

For any pixel p in I1, its motion vector to It is t·w1(p).

So we can map each pixel p in I1 to its new location

p + t · w1(p) in It to render the intermediate image.

Likewise, we can render the intermediate image using

I2 too.

After obtaining the intermediate image I1
t warped

from I1 and I2
t from I2, we blend them together using

the multiband blending method [48] to get the final

result of interpolation It.

4 Experiments

In this section, we first analyze the performance of

our approach experimentally, and validate the claims

we made before in Sec. 4.1. Then we evaluate our

method by comparing to prior work in Sec. 4.2.

4.1 Performance analysis

4.1.1 Validation for label set modification

Since we use a very small candidate label set for each

pixel, the initial label set may not include the correct

label at all. Therefore, if we perform the optimization

over the constant label sets, it is easily prone to local

minima. However, our strategy of label set modification

can help avoiding the local minima without enlarging

the label sets. To validate this claim, we first perform

experiments on image pairs with ground truth optical

flow. We show two cases in the MPI Sintel dataset [49]

with and without large displacements respectively.

To evaluate a pixel’s candidate label set, we select the

label nearest to the ground truth label from the label

set. If the endpoint error(EPE) between the selected

label and the ground truth label is less than γ pixels,

where γ is an threshold, the pixel’s candidate label set

is considered to be a ”fine label set”. Pixels without fine

label sets tend to stuck in local minima more likely than

pixels with fine label sets. Therefore, we expect more

pixels having fine label sets after label set modification.

To demonstrate the quality of all pixels’ label set

clearly, we mark a pixel as black if its label set is ”fine”,

otherwise we mark it as white as shown in Fig. 6 and

Fig. 7. We compare the ratio of pixels with ”fine label

sets” in all pixels before the optimization process with

the ratio after 10 iterations of the optimization, to see

the effectiveness of our label set modification strategy,

and we set the threshold γ to be 5 here. It is shown that

7
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(a) (b)

(c) (d)

Fig. 6 Effects of our label set modification strategy with small

displacements. The pixels with ”fine label set” is in black and

otherwise they are in white. (c) and (d) show the visualization of

label set quality before and after our optimization respectively.

The percentage of the black pixels increases from 93.051% to

99.107%.

(a) (b)

(c) (d)

Fig. 7 Effects of our label set modification strategy in image

pairs with large displacements. The pixels with ”fine label

set” is in black and otherwise they are in white. (c) and (d)

show the visualization of label set quality before and after our

optimization respectively. The percentage of the black pixels

increases from 53.640% to 78.529%.

our modification strategy improves the ratio of pixels

with ”fine label set” effectively. For image pair without

large displacements shown in Fig. 6, 93.051% pixels’

initial label sets are ”fine label sets”, while 99.107%

pixels’ modified label sets are ”fine label sets”. For

more challenging image pair with large displacement

shown in Fig. 7, the label set modification process

increases the ratio from 53.640% to 78.529%.

Moreover, we further validate the effectiveness of our

strategy by comparing the energy convergence using

and not using the label set modification process. We

perform experiments on image pairs with large pixel

displacement(∼ 200px) and image pairs whose pixel

displacements are small(<10px) respectively. Fig. 8

shows the change of energy during iterations. We can

0 5 10 15 20 25
3.8

4

4.2

4.4

4.6

4.8

5

5.2

5.4 109

w/o modification
w/o check
complete method

(a)

0 5 10 15 20 25
1.18

1.19

1.2

1.21

1.22

1.23

1.24 109

w/o modification
w/o check
complete method

(b)

Fig. 8 The energy changing during optimization. (a) shows the

energy changing of image pair with large displacement. (b) shows

the energy changing of image pair with small displacement.

(a) (b)

Fig. 9 Comparison between interpolated image generated

from the baseline method using a constant label set(a) and

that generated from our method with label set modification

process(b).

see that in both case, the energy decreases dramatically

after employing our dynamic label set framework.

We also compare the results visually and

quantitatively. Fig. 9 shows the visual comparison

between the interpolated images from wide-baseline

image pair with and without using the modification

process. We can see that there are more artifacts in

the result without using our label set modification

strategy. The quantitative comparison on the

Middlebury dataset [23] is shown in Tab. 2 and

Tab. 1. All these results demonstrate the effectiveness

of our label set modification strategy for introduce

more correct labels to the candidate label set.

4.1.2 Validation for homography check

In Sec. 3.3, we use a homography check to divide

superpixels into reliable and unreliable ones in order

to guide the process of label set modification. Now we

validate the effect of homography check experimentally.

We perform an extra set of experiments, where

we do not conduct the homography check process.

That means we consider all the fitted homographies

as reliable ones. As we did in Sec. 4.1.1, we first

compare the energy changing during iterations. The

energy curves are shown in Fig. 8. As shown in

Fig. 8 (b), for cases whose pixel displacements are small,

8
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(a) result of Maskflownet [9] (b) result of Nie et al. [2] (c) result of ours

Fig. 10 Comparison between [2], [9] and our method. There are less distortions in our results.

there is not much difference of the performance between

the methods using and not using the homography

check process. The reason is that for these relatively

easier cases, there are sufficient inlier pixels in each

superpixel to fit a reliable homography, because there

are sufficient pixels whose initial candidate label sets

are good enough(as shown in Fig. 6). However,

the homography check process is effective for wide-

baseline image pairs. As we can see in Fig. 8 (a),

for more challenging cases whose pixel displacements

are much larger, the energy decreases after we conduct

the homography check process. Moreover, we show

the comparison of interpolated images too in Fig. 11.

We can easily see that with the homography check

process, our method generates much less artifacts such

as distortions and holes.

We also compare the performance quantitatively on

the Middlebury dataset [23], shown in Tab. 2 and

Tab. 1. We can see that conducting the homography

check process improves the accuracy of both the

eitimated motion fields and the interpolated images.

4.2 Comparison to prior work

In this section, we first compare our method

with prior work by evaluating the interpolated

images of wide-baseline image pairs from [50] and

[37], to show the effectiveness of our method for

handling large displacement qualitatively. In addition,

we quantitatively compare our method with other

algorithms by evaluate the estimated motion fields and

(a) (b)

Fig. 11 Comparison between interpolated image generated

from the baseline method without the homography check

process(a) and that generated from our method with the

homography check process(b).

the interpolated images on the Middlebury benchmark

database [23]. We show that our method also achieves

good performance on the image pairs containing small

motions, which validates the robustness of our method.

4.2.1 Qualitative evaluation

Nie et al.proposed a wide-baseline image

interpolation algorithm, which is the state of the

art of the problem that we focus on. The second

column of Fig. 10 shows the results of [2], and

the last column shows our results. We can see that

the method of [2] generates more artifacts such as

distortion and blur than ours. Our method handle

these cases much better, and we owe it to the spatial

smoothness constraint which we enforcing explicitly in

the optimization.

Since optical flow methods can also be used to

generate interpolated images between image pairs, we

9
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(a) result of SPM-BP [21] (b) result of discrete flow [5] (c) result of ours

Fig. 12 Comparison with [5] and [21]. There are less artifacts in our results.

also compare our method with Maskflownet [9], the

state-of-the-art optical flow method based on deep

learning, and some variational model based methods

which are similar to ours. In our experiments, we

computed optical flow between image pairs using these

optical flow methods and interpolated the intermediate

images using the same interpolation method introduced

in Sec. 3.5. The first column of Fig. 10 shows the

results of Maskflownet. We use the pretrained model

trained on Flying Chairs [51], Flying Things3D [52],

and MPI Sintel dataset [49], which is provided by the

authors of [9], to infer the optical flow. As shown

in Fig. 10, Maskflownet generates more artifacts than

our method when interpolating between wide-baseline

images. And the performance of Maskflownet is

dramatically reduced when the displacements between

image pair are too large, as shown in the third row

in Fig. 10, while our method can handle these wide-

baseline cases very well. One possible reason is the

lack of training data for many amateur datasets, which

exist more widely. Our method takes only two images

as input, which makes our method more flexible.

We also compared our method with two variational

model based optical flow methods, DiscreteFlow [5] and

SPM-BP [21], which are similar to our optimization

scheme. DiscreteFlow is a representative large

displacement optical flow method, which looks at large-

displacement optical flow from a discrete point of view.

It proposes a diverse candidate label set which is quite

large for each pixel, and performs an optimization on

this constant label set. Since their candidate label set

is much larger than us, the optimization has to been

performed on the sampled image grid and they need

to get the final flow field by interpolation, while our

method perform optimization directly on the full image

grid. Moreover, our method outperforms DiscreteFlow

visually too. Fig. 12 shows the comparison. The

second column shows the results of DiscreteFlow while

the third column shows ours. We can see that

our approach produces less artifacts like distortion.

PMBP [20] uses the idea of dynamic label set update

similar to ours, but they utilizes PatchMatch to propose

new labels. SPM-BP takes advantages of efficient edge-

aware cost filtering to speed up PMBP and improves

the performance. The first column of Fig. 12 shows

the results of SPM-BP. We can see that our method

perform much better than theirs, and we owe it to our

strategy of homography guided label proposal. Our

strategy of label proposal is more effective than that of

SPM-BP which is based on the idea of patchmatch [34].

10
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Tab. 1 comparison by interpolation error(PSNR) on Middlebury

Method Beanbags Dimetrodon DogDance Grove2 Grove3 Hydrangea MiniCooper RubberWhale Urban2 Urban3 Venus Walking Average

PMBP [20] 25.0140 30.5751 25.6710 26.0227 23.1232 29.1122 22.1404 29.0011 30.7986 27.3659 26.7408 28.9333 27.0415

Nie et al. [2] 26.2718 30.3983 28.3529 31.4746 27.4603 31.7164 17.2192 27.7642 34.8911 30.7479 29.2531 26.0918 28.4701

Maskflownet [9] 29.6818 36.5061 29.8506 28.6162 26.8164 33.9030 27.9355 34.0114 34.4048 33.2649 31.4976 32.1876 31.5563

spm-bp [21] 27.2857 38.1278 30.2325 32.1130 28.7542 34.6010 26.0951 27.1484 37.1867 34.3967 33.4212 30.8079 31.6808

discrete flow [5] 28.2706 38.5731 30.7737 32.2749 28.7675 35.3917 30.1913 40.8717 37.4425 34.4117 33.7835 31.6599 33.5344

ours w/o modification 29.0207 38.5744 30.9202 32.5339 28.4101 35.4251 30.2115 41.9006 37.4949 35.6278 34.2800 31.0051 33.7837

ours w/o check 29.2890 38.5881 31.0511 32.5321 28.2469 35.4255 30.2533 41.9011 37.7202 36.0365 34.3069 31.9986 33.9458

ours 29.5231 38.5883 31.0511 32.5368 29.0217 35.4257 30.2533 41.9011 37.7757 36.0365 34.3070 31.9986 34.0349

Tab. 2 comparison by motion error(EPE) on Middlebury

Method Dimetrodon Grove2 Grove3 Hydrangea RubberWhale Urban2 Urban3 Venus Average

PMBP [20] 0.5868 1.3295 2.6422 0.5478 0.2535 2.0244 3.8433 2.2079 1.8020

Nie et al. [2] 0.1759 0.2810 1.1288 0.2595 0.2487 0.5111 1.8042 1.6309 0.7617

Maskflownet [9] 0.2236 0.3309 0.9592 0.2591 0.2630 0.4474 0.9361 0.3279 0.5078

spm-bp [21] 0.1744 0.2750 0.5872 0.2733 0.2195 0.4727 0.5638 0.2338 0.3752

discrete flow [5] 0.1399 0.2421 0.7246 0.2231 0.1828 0.3405 0.4260 0.3078 0.3432

Ours w/o modification 0.0829 0.1791 0.8264 0.2114 0.1250 0.5780 0.7761 0.4465 0.4349

Ours w/o check 0.0815 0.1830 0.8834 0.2154 0.1217 0.5371 0.8271 0.4273 0.4440

Ours 0.0807 0.1500 0.6274 0.1601 0.1029 0.2934 0.7623 0.3760 0.3420

Tab. 3 comparison by motion error(EPE) on MVS-Synth

dataset

Method Average EPE

PMBP [20] 109.0240

Maskflownet [9] 44.7966

spm-bp [21] 44.5387

discrete flow [5] 30.4418

Nie et al. [2] 27.4805

Ours 26.6020

4.2.2 Quantitative evaluation

We compare our method with other works

quantitatively by evaluating the results on two kinds

of different datasets. Since our method is designed

for wide-baseline image interpolation while the baseline

between pairs of images in commonly used optical flow

datasets, such as KITTI [3] and MPI Sintel [49], is not

wide enough as discussed in [2], we use wide-baseline

synthetic image pairs photo-realistically rendered from

virtual scenes to evaluate our method quantitatively.

MVS-Synth [53] is a photo-realistic synthetic dataset

that provides the ground truth depth map and the

camera parameters for each rendered RGB image.

Therefore, we can generate the ground truth motion

fields between image pairs using the provided ground

truth geometry. We compare our method with previous

works using wide-baseline image pairs rendered from

20 different scenes, where the average ground truth

pixel displacement is about 300 pixels. We list the

average end-point error(EPE) of the motion fields

estimated by different methods in Tab. 3, which shows

that our method outperform these previous methods

quantitatively.

The Middlebury dataset [23] is a widely used dataset

for traditional optical flow methods evaluation. Since

it provides the ground truth of the intermediate image,

we also make comparisons on it although the average

ground truth pixel displacement is only about 10

pixels. In Tab. 1, we list the Peak Signal to Noise

Ratio(PSNR) between the interpolated images and the

ground truth for different methods. We also compute

the average EPE of estimated motion fields on image

pairs with ground truth motion fields for different

algorithms, which is shown in Tab. 2. As shown

in Tab. 2 and Tab. 1, our method outperform these

previous algorithms quantitatively as well.

5 Conclusion

We have proposed a novel method of image

interpolation, based on a motion estimation algorithm

using homography guided optimization. We combine
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the advantage of both global optimization and local

parametric transformation model. The optimization

is performed over very small candidate label sets, and

the label sets are iteratively modified to avoid the

local minima using piecewise consistency prior with

superpixel as the bridge. We show experimentally that

the proposed method improves the accuracy of both

estimated motion fields and interpolated images.

We also have limitations. First, our strategy

for new label proposal based on homography fitting

and propagation uses superpixel as a fundamental

structure. Therefore, our method’s performance

relies on the quality of superpixel segmentation.

In addition, corresponding areas in image pair

representing difference scenes may not be associated

with homography. So our approach does not handle

matching across different scenes very well, which is also

our interesting future work.
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