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Abstract

Recently, we have witnessed a booming growth in
applications of 3D talking face generation. However,
existing methods can only generate 3D faces with the
static head pose, which is inconsistent with the human
sense. In this paper, we propose a unified audio-inspired
approach to endow 3D talking face with personalized
pose dynamics. To achieve this goal, we establish an
original person-specific dataset, providing correspond-
ing head pose sequence and face shapes for each video.
Our framework is composed of two separate modules,
PoseGAN and PGFace. Given input audio, PoseGAN
first produces head pose sequence for 3D head, then PG-
Face module utilizes the audio and pose information to
generate natural face models. With the combination of
these two parts, a 3D talking head with dynamic head
movements can be constructed. To our best knowledge,
this is the first audio-driven technique to automatically
generate 3D talking faces with pose dynamics. Experi-
mental evidences indicate our method generates prefer-
able results and best matches with human experience.

1. Introduction

Talking face generation is an attractive research topic in
computer vision and graphics. Aside from being interesting,
it has a wide range of applications, e.g., game animation,
3D video calls, and 3D avatars for AR/MR. Most of the
existing works [11, 14, 25, 40, 45, 54, 32, 42, 47] have been
proposed to generate talking faces from static images. Due
to the lack of 3D face model datasets, there are only a few
works [55, 16] being proposed to generate talking faces in
3D shapes.

The synthesized talking face from the state-of-the-art ap-
proaches usually has a static and fixed pose of the head
model throughout the whole speech process. However, in
any realistic talking scenario, the person’s head will rotate
and translate accordingly. If the 3D talking face cannot
move reasonably, it will not seem authentic for the audi-
ence. We name the corresponding movement of the head
as head pose sequence in this work. Convolutional Neu-

Figure 1. Pipeline to synthesize the talking face with pose dynam-
ics. Given an input audio, we generate the corresponding sequence
of 3D head pose and face shapes.

ral Network (CNN) has been adopted as an encoder for
3D face shape generation to achieve state of the art re-
sults [16]. VisemeNet [55] adopted Long Short-Term Mem-
ory (LSTM) network to generate 3D talking face without
any head movement. It should be noted that all these con-
ventional methods do not take head poses into considera-
tion when generating 3D talking faces, which severely com-
promises the reality of the synthesized results. The head
pose sequences vary in different video scenarios, but show
strong correlations with the person’s identities, as illustrated
in Figure 2. Therefore, generating dynamic pose animations
is a crucial step for realistic 3D talking head syntheses.

In this paper, we introduce a fully automatic generation
framework for audio-driven 3D talking face with pose dy-
namics (see Figure 1). To assign different persons with in-
dividual head poses, we build a person-specific head motion
dataset, providing corresponding head pose sequences and
face shapes for each video. During the inference phase, the
input audio is first encoded with deep speech [23] and the
extracted features are then fed into two proposed modules,
the head Pose Generative Adversarial Network (PoseGAN)
module and Pose-Guided Face (PGFace) generation mod-
ule. As shown in Figure 3, the PoseGAN module is used
to extract the cross-modal head pose sequence with rotation
and translation parameters. PGFace module with head pose
parameters is applied to generate face shape parameters cor-
responding to the audio. With the combination of the audio,
head pose sequence, and face shape parameters, the final 3D
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Figure 2. Our person-specific head motion dataset. Below each
person are three heatmaps of face landmarks tracked from differ-
ent videos, which depict the frequency of landmarks in different
spatial locations. This visualization reveals the speaker’s resting
pose and their unique head movement style.

talking face with pose dynamics can be synthesized.
To the best of our knowledge, this work is the first audio-

driven technique to automatically generate 3D talking faces
with pose dynamics. Based on this person-specific head
motion dataset, we propose an end-to-end unified approach
to synthesize a natural 3D talking head. The main contribu-
tions of our work are three-fold:

• We introduce a new method to construct a person-
specific head motion dataset, which includes over
535,400 frames from 450 video clips. Based on this
dataset, a unified audio-driven framework is proposed
to generate 3D talking faces with pose dynamics.

• Taking audio flows as input, a new cross-modal
PoseGAN module is proposed to generate the dynamic
head poses. A new loss function and initial poses
are introduced to ensure the consistency of long-term
generations. A PGFace module is designed for pose-
dependent facial shape correction, which makes the
face shape rendering results more realistic.

• Extensive ablation studies and comparisons with con-
ventional methods indicate that our method is able to
generate person-specific head pose sequence that is in
sync with the input audio and best matches with the
human expectation of talking heads.

2. Related Work

There has been a branch of researches in facial animation
that focuses on synthesizing the facial motion from audios,
and generating either 2D videos or 3D models as the results.

Audio-based 2D facial animation Chung et al. [14] pro-
posed an encoder-decoder CNN model to generate synthe-
sized talking face video frames. Deep bidirectional LSTM
(BLSTM) was applied by Fan et al. [19] in their talking

head system. Vougioukas et al. [45] used a temporal GAN
with two discriminators to generate lip movements and fa-
cial expressions. Suwajanakorn et al. [40] proposed to learn
the mapping from raw audio features to mouth shapes by a
recurrent neural network. Chen et al. [11] devised a network
to synthesize lip movements and proposed a correlation loss
to synchronize lip changes and speech changes. Xie and
Liu [48] used a dynamic Bayesian network to model the
movements of articulators. Jalalifar et al. [25] produced
realistic faces conditioned on landmarks using a recurrent
neural network and a conditional GAN [31, 22]. The arbi-
trary subject talking face generation method is realized by
Zhou et al. [54] using disentangled audio-visual representa-
tion with GANs.

It should be noted that none of these 2D facial video syn-
thesis methods consider the personalized head motion. Our
synthesized 3D talking head with personalized pose dynam-
ics can serve as an important intermediate step for these 2D
video synthesis methods, which we would like to explore in
our future work.

Audio-based 3D facial animation A deep learning ap-
proach proposed by Taylor et al. [41] uses a sliding window
predictor that learns mappings from phoneme label input se-
quences to mouth movements. Zhou et al. [55] proposed an
automatic real-time lip-synchronization from audio solution
based on LSTM network architecture. Karras et al. [26] pre-
sented real-time, low latency 3D facial animations based on
speech audio input with emotional state. Liu et al. [30] em-
ployed a data-driven regressor for modeling the correlation
between speech data and mouth shapes with a DNN acous-
tic model. The dynamic facial expressions of the source
subject were transferred to the target subject in [52]. Face
Transfer is based on a multilinear model [44] of 3D face
meshes that separable parameterizes the space of geomet-
ric variations. Most recently, Cudeiro et al. [16] proposed
Voice Operated Character Animation (VOCA), which takes
a random speech signal as input and generates a wide range
of adult faces realistically. VOCA first converts the input
audio into DeepSpeech [23] features, then one-hot encod-
ing with different subjects is used to train offsets of 3D face
mesh. The FLAME [29] model is applied to generate their
final face shape.

However, none of these works take the personalized head
motions into consideration and the results from these works
highly depend on the quality of 3D face dataset which is
hard to collect in real life.

Text-based facial animation Relatively small amount
of works have been proposed to generate face model di-
rectly from text input. Sako et al. [34] described a text-
based technique to generate realistic auditory speech and lip
image sequences using Hidden Markov Models (HMMs).
The system for expressive Visual Text-To-Speech (VTTS)
was presented by Anderson et al. [4] in which the face is

2



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

CVM PAPER ID: 150.

Figure 3. An overview of our unified framework. Gpose denotes the generator of 3D head pose sequence and Dpose is the discriminator.
Face shape parameters are generated by PGFace.

modeled using an Active Appearance Model (AAM). Ku-
mar et al. [28] presented a text-based lip-sync generation
method that takes a time-delayed LSTM to generate mouth
keypoints synced to the audio. Hong et al. [24] described
a visual speech synthesizer that provides a form of virtual
face-to-face communication using text streams.

While in this work we focus on the generation of 3D
faces from audio, it is possible to convert our framework
into a text-driven model by using a Text-to-Speech engine
(e.g.,Tacotron 2 [37]), which we leave to our future work
for further in-depth exploration.

3D face datasets On the one hand, Several datasets [8,
35, 50] are concerned with the static 3D face model analy-
sis.On the other hand, some datasets [2, 9, 51, 15, 53] focus
on dynamic 3D face models and expressions. In addition,
there are several datasets containing scanned face models.
Cheng et al. [13] published the 4DFAB dataset containing
4D captures of 180 subjects and Fanelli et al. [20] proposed
a 3D audio-visual corpus, which contains a large set of
audio-4D scan pairs using a real-time 3D scanner. The VO-
CASET presented by Cudeiro et al. [16] contains 3D scans
of 255 sentences with the entire head and neck. Our ap-
proach in this paper is a novel dataset construction method.
We generate a large number of face models and head pose
sequences corresponding to speech.

3. Dataset

The motivation in this work is to learn and extract pose
characteristics of human talking face from any data avail-
able in the wild. However, real-world 3D face data is labor-
intensive to capture using high-speed facial scanners. An-
other disadvantage of such 3D capture is that this kind of
data is typically captured by a well-designed environment
with tens of cameras and projectors. Hence the participants

may unintentionally suppress their natural head movements
and facial expressions under such conditions. In contrast, in
most videos of real-world scenarios available online, people
usually perform more natural behaviors, which can serve
our research purpose much better. To this end, we advocate
collecting dynamic 3D talking data by analyzing the videos
in the wild instead of the labor-intensive 3D facial capture.

The videos used in this paper has a total length of ap-
proximately 5 hours, collected from the videos used by
Agarwal et al. [1] for their deepfake detection. Our dataset
contains over 535,400 frames from 450 video clips along
with the audios, 3D head pose parameters, and 3D face
shape parameters.

Head pose parameters We adopt the OpenFace [3] to
generate 3D head pose parameters. Head pose p ∈ R6

is represented by Euler angles (pitch θx, yaw θy , roll θz)
and a 3D translation vector t. If we naively apply head
pose sequences detected in the original video by OpenFace,
it will cause unstable effects in some high-frequency re-
gions and the head motion will look unsatisfying. There-
fore, we propose a Gaussian filtering method that filters the
head pose parameters throughout the time dimension and
generates convincing results. Specifically, our Gaussian fil-
tering method removes the abnormal head jitter effectively.
As shown in Figure 4, the pitch parameter of head pose is
measured in the time dimension over the video clip. In the
high-frequency region (e.g., the area in the red rectangle),
the curve of the pitch parameter is smoothed as shown by
the orange curve. The Gaussian density and head pose fil-
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Figure 4. Gaussian Filtering. Blue curve denotes the original pitch
parameter. Orange curve is for the smoothed pitch parameter.

tering functions are given as follows:

F (x) =
1√
2πδ

e−
1

2δ2
x2

,

p(i) =

i+m∑
k=i−m

p(k)F (k − i),
(1)

where i is the frame index, 2m is the window size of the
filter, and p(i) indicates the head pose of the ith frame.

The original videos are divided into small sets of video
clips based on the camera parameters, the detection of the
frame continuity, and the length of frames. The head pose
is centralized and unified under the same coordinate system
in every small video set.

3D face shape parameters The deep 3D face recon-
struction method [17] achieves state-of-the-art performance
on multiple datasets. Therefore, we apply this method to
generate face shape parameters [αid, αexp]. The 3DMM [5,
8] face shape model is defined as:

S = S +Bidαid +Bexpαexp, (2)

where S is the averaged face shapes; Bid and Bexp are the
PCA bases of identity and expression respectively; αid ∈
R80 and αexp ∈ R64 are the corresponding coefficients.

It is generally a non-trivial task to capture the 3D face
models. We provide a unified framework to get precise 3D
face models corresponding to video frames along with the
head pose sequence. Such person-specific dataset supports
our fully automatic framework for generating 3D talking
face. The proposed method for data collection and prepa-
ration can be also easily extended to the videos of other per-
son identities available online.

4. Methodology

4.1. Head Pose Sequence Generation Network

Generate a corresponding 3D head pose sequence from
input audio is non-trivial. Depending on the speaking sce-
narios and individual speaking habits, people do not always

exhibit the same head pose sequence when speaking the
same words. Ginosar et al. [21] proposed an audio-based
generation method for 2D body gestures. Specifically, they
acquired the 2D landmarks of the character’s arm and ges-
ture from audio inputs, and demonstrated the effectiveness
of GAN for cross-modal pose generation.

The generation of head pose sequence is also a cross-
modal prediction task. Inspired by Ginosar et al. [21], we
propose the PoseGAN to generate the corresponding head
pose sequence. To ensure the correlation between the gener-
ated head pose sequence and the input audio, we introduce
the conditional GAN to determine the output of the head
pose sequence that belongs to the specific character and a
discriminator to determine the authenticity of the head pose
sequence. Here, we set 256 frames as a unit sequence.

We notice that the conventional pose loss cannot guaran-
tee the consistency between neighboring sequences and the
continuity of head poses in each sequence. To address these
problems, an embedding method and a motion loss function
are proposed. Experimental results show that with the ini-
tial pose loss constraint and the motion loss function, the
two discontinuity problems are solved successfully.

4.1.1 Generator

As shown in Figure 5, we develop an enhanced CNN en-
coder before the U-net [33] structure to build the generator
G and embed the initial head pose p into the input layer
and the U-net output layer to constrain the initial position
and orientation of the generated head pose sequence.

The initial head pose p and audio x are simultaneously
input into the generatorG, as shown in Figure 5. During the
training stage, the pose of the first frame is adopted as the
initial pose p in the head pose sequence. During the infer-
ence stage, the rest pose of the same identity is adopted as p
for the generation of the first head pose sequence. The last
pose of previous sequence is adopted as p for subsequent
head pose sequence generation. The initial pose guarantees
the consistency between neighboring sequences.

The output head pose sequence presents abnormal insta-
bility when directly using the L2 norm of pose loss (defined
in Equation 3), since there are no constraints for continu-
ous motion between frames. We introduce the motion loss
to ensure the motion continuity of the output head pose se-
quence.

The L2 norm loss functions for pose and motion are de-
fined as follows:

Lpose(G) = Ex,y,p[‖y −G(x,p)‖2 + ‖p−G0(x,p)‖2],

Lmotion(G) = Ex,y,p[‖(yt+1 − yt)

− (Gt+1(x,p)−Gt(x,p))‖2],

(3)
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Figure 5. The architecture of our PoseGAN for head pose estimation from input audios.

where x is the input audio feature, y represents the corre-
sponding head pose sequence with 256 frames, 0 ≤ t < 256
and p indicates the initial head pose. The generator takes x
and p as inputs and predicts the head pose sequence. G0 is
the first frame in the generated head pose sequence.

The Generator’s loss function is defined as:

LL2(G) = αLpose(G) + βLmotion(G), (4)

where α and β are weights to control the balance between
the pose and motion losses.

4.1.2 Discriminator

A CNN structure is applied to discriminate the true and false
head pose sequences, by taking the generated head pose se-
quence G(x,p) combined with audio x as input.

The loss function of discriminator D is defined as:

LGAN = arg min
G

max
D

Ex,y[logD(x,y)]+

Ex,p[log(1−D(x, G(x,p))],
(5)

where the generatorG tries to minimize this objective func-
tion, while the discriminator D tries to maximize it.

The final PoseGAN’s loss function is then defined as:

LPoseGAN(G) = λLGAN + LL2 , (6)

where λ is a weight parameter, controlling the balance be-
tween the GAN loss and L2 loss.

4.2. Pose-Guided Face Generation Network

The face shape parameters are generated by the deep 3D
face reconstruction method [17]. The generated identity pa-
rameters αid could be different for each frame. These dif-
ferences are introduced by camera parameters, speaker po-
sition and inaccurate expression shape. The conventional
methods, e.g., [16], only generated expression parameters
αexp, which are not suitable for our case. Inspired by the
VOCA network [16], we propose a pose-guided face shape
generation method (PGFace), which includes the head pose
parameters as input for estimating the change of face shape
to make up the difference. We concatenate audio fea-
tures x ∈ R29×16 and head pose parameters p ∈ R6 for
each frame as input for the network. The network out-
put is the corresponding face shape parameters [αid, αexp].

Figure 6. The lower part of the
face, shown in red, is used to
calculate higher weights for the
vertex-level loss.

Please refer to the sup-
plementary material for
the details of our PGFace
network.

Based on our exper-
iments, audio shows a
higher correlation with
the lower part of the face
as shown in Figure 6. We
employ a vertex-based
loss function, which at-
taches a 10-times weight
m on the lower part of
the face model. The
loss functions can be for-
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mally represented as:

Lshape = Ev,f [‖(v − f)�m‖2],

Ls-motion = Ev,f [‖((vnext − v)− (fnext − f))�m‖2],
(7)

where v denotes the ground-truth face vertices, and f repre-
sents the generated face vertices; vnext and fnext indicate the
values of v and f in the next frame; the mask m[i] = 10
if the vertex i is in the lower part of the face, otherwise
m[i] = 1. The � operation means element-wise product.
The motion loss Ls-motion represents the vertex displacement
between neighboring frames in sequence.

The PGFace’s loss function is then defined as:

LPGFace = µ1Lshape + µ2Ls-motion, (8)

where µ1 and µ2 balance the shape and motion losses.

4.3. Implementation Details

The networks for head pose and face shapes are trained
on an Nvidia GTX 1080 Ti using Adam [27] with a batch
size of 64 and a learning rate of 10−4. We divide our dataset
using a train-val-test split of 7-1-2. In PoseGAN training
section, we first centralize and normalize the head poses as
described in our dataset section. The frame rate of our video
is 30fps. We use a 256-frame sliding window as a training
sample and the output is 256-frame head pose sequence.
The sliding distance between neighbors is 5 frames. During
training, α and β are set to 1 and 10. The value of λ is
0.01. A total of 150 epochs are trained. The best performing
model on the validation set is selected. In PGFace training
section, the network is learned from audio features and head
pose parameters with 100 epochs. The window size used
for PGFace is 16 and the output is the face shape in the 8th
frame. The values of µ1 and µ2 are 1 and 10, respectively.

5. Experimental Results

5.1. Evaluation of Feasibility: Correlation Verification

Since our goal is to generate the head pose sequence
from speech, we first verify that there is a correlation be-
tween a person’s speech and his/her head pose. DeepSpeech
is used to extract the speech feature for each frame and
OpenFace is used to extract the corresponding head pose.
Each frame corresponds to 29 speech features and 6 val-
ues of head pose. We calculate the correlation between the
speech and head pose sequence on 256 frames by Pearson’s
correlation function, to obtain the 29 × 6 features for each
256-frames clip:

F (i, j) =

∑255
k=0(Sik − S̄i)(Hjk − H̄j)√∑255

k=0(Sik − S̄i)2
√∑255

k=0(Hjk − H̄j)2
,

(9)

where i ∈ [0, 5], j ∈ [0, 28]. Sik and Hjk are ith speech
feature and jth head pose value in the kth frame. S̄i and H̄j

are their average values across 256 frames, respectively.

We then train a one-class Support Vector Machine
(SVM) [36] with 29 × 6 features on real data samples. As
shown in Table 1, we replace the head pose sequence in
the test dataset of each person with a random head pose se-
quence. The results of one-class SVM are reduced when
replacing the original head pose sequence, which indicates
the existence of correlation between the head pose sequence
and the speech of a particular person. Furthermore, other
works [7, 49] have also verified the direct correlation be-
tween audio and pose.

5.2. Quantitative Evaluation

We compare our PoseGAN to the following four head
pose generation methods.

The mean head pose: Most of 2D talking face videos [6,
12, 14, 18, 38, 39, 45, 46, 54] and 3D talking faces [41, 55,
26, 30, 52, 52, 44, 16] can only generate fixed head pose
now. In most of the time, the head is in a resting position
and orientation during speech (see Figure 2). Thus we use
mean pose to compare with these 2D and 3D methods.

Randomly chosen head pose sequence: Another sim-
ple way to quickly generate the head pose sequence is to
randomly select a head pose sequence from the dataset.
Such choice is somehow reasonable since they are true head
poses. This random method is widely used in 2d talk-
ing face methods [40, 32, 42, 47]. Although the re-timing
technique is used in [40] to increase the authenticity, this
method is still a random pose sequence and cannot generate
new head poses based on speech. Therefore, such a ran-
domly selected head pose sequence does not correspond to
the input audio.

Nearest neighboring (NN) pose: The head pose chosen
by this method is close to the real head pose in the audio
feature space. For each test audio, the head pose sequence
with the closest audio feature in the training set is selected
as the final output.

Convolutional neural network (CNN): Conventional
CNN [16] achieved state-of-the-art results with 3D face
shape generation. Few 2D talking face methods [49, 10]
also use CNNs to generate head pose in videos. For ex-
ample, Yi et al. [49] used LSTM to generate head pose se-
quences in their talking face video. However, the head pose
estimation is a cross-modal prediction task. We find that
the head pose sequence generated without GAN tends to be
close to a static head pose. It is hard to consider the results
of CNN as realistic head pose sequences.
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Table 1. One-class SVM results for verifying the correlation between the speech and head pose sequence.

Audio Feature
Corresponding

Head Pose Random Head Pose

Clinton Obama Sanders Trump Warren
Clinton 0.90 0.75 0.74 0.72 0.73 0.72
Obama 0.88 0.47 0.52 0.44 0.46 0.46
Sanders 0.83 0.72 0.72 0.71 0.71 0.73
Trump 0.85 0.74 0.76 0.74 0.73 0.72
Warren 0.80 0.60 0.59 0.57 0.55 0.59

Table 2. L2 distance with head pose and motion on the test set.

Method Lpose Lmotion

Mean 0.90 0.12
Random 1.21 0.15
NN 1.18 0.14
CNN 0.82 0.11
Our PoseGAN 0.89 0.12

5.2.1 L2 Distance Comparison

To compare our PoseGAN architecture to all these four
baselines, we select 10 videos in the test dataset and cal-
culate the L2 pose distance and motion distance of each
method. In Table 2, the random method and nearest neigh-
bor are performing significantly worse in accuracy. This is
because those two methods have no constraints on the head
pose. The distance of the mean head pose method is low
because the speaker is mostly in a static head pose while
speaking. The distance with CNN is lowest because only
the pose loss and motion loss are used for training. As dis-
cussed before, the generated head pose sequence with CNN
tends to be static. The L2 distance results of our PoseGAN
outperforms most of the baseline methods except for CNN.
This is expected, as we add GAN loss to our generator to
produce more realistic and reasonable head pose sequences.

5.2.2 Head Pose Classifier

A head pose classifier is optimized on our training set with 5
identities in order to evaluate the head pose results obtained
by different methods. Classic CNN and dense layer struc-
ture were used to implement the head pose classifier, where
the output of the last fully connected layer was set to 5. The
input is the head pose motion on 256 frames. We choose the
best performance on the validation set, which has an accu-
racy rate of 92% in test set. As shown in Table 3, the result
of our method is closest to the true head pose distribution.
If the confidence value is greater than 0.5, most of the data
in this category are correctly classified. The results of Mean
and CNN methods are close to a random distribution (0.2),

Figure 7. The rendering results of face shape under different head
poses with the same audio.

Figure 8. Comparison to state-of-the-art 3D face generation meth-
ods including VOCA [16] and Karras et al. [26].

which deviate from the true head pose distribution.

5.3. User Study

5.3.1 Head Pose

One user study is designed to compare our method to the
ground truth and all baselines. We prepared 100 pairs of
videos. Each of them includes two videos: one is the talk-
ing face with ground truth head pose sequence; another is
generated by one of the four baselines or our method. Three
ground truth videos are given to participants to learn before
the task. Participants are required to select the better one
from each pair. Among the 100 pairs, 60 sets of videos are
4 seconds in length, 25 sets of videos are 8 seconds, and
15 sets of videos are 12 seconds. 50 persons participate in
the study to evaluate the rationality and authenticity of the
synthesized 3D talking faces.

We present the results in Table 4. For each video pair
(synthesized and ground truth) of different lengths, we mea-
sure the probability of selecting the face model generated
by the method as the better one. Intuitively, a higher prob-
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Table 3. The result of the head pose classifier. Each value represents the confidence of correct classification.
Method Clinton Obama Sanders Trump Warren Avg
Mean 0.51 0.01 0.21 0.27 0.00 0.20
CNN 0.13 0.06 0.61 0.30 0.01 0.22
Our PoseGAN 0.86 0.87 0.70 0.52 0.65 0.72

Figure 9. Results of our framework. From the input audio, we generate the 3D talking head with personalized pose dynamics by comparison
methods and our method. The head pose and face result are sampled in every 60 frames (2 seconds).
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Table 4. User study results. Each value (%) represents the proba-
bility that the user selected the generated pose (the true pose is not
selected). A larger value indicates that the result is more realistic.

Method 4 seconds 8 seconds 12 seconds
Mean 14.2 14.8 12.0
Random 27.3 20.4 21.3
NN 20.3 16.0 16.7
CNN 16.5 18.8 12.7
Our PoseGAN 34.3 28.4 30.0

ability means the better performance for that method. We
found that CNN performs poorly in the user study, while the
random method performs relatively better on the 4-second
videos but poorly on videos of longer times. It is shown that
our method works well on all videos of different lengths.

5.3.2 Face Shape

Our second user study is to show the comparison between
our pose-corrected face shape with fixed identity shape.
Participants select more realistic videos among three groups
of 50-second video pairs. Most of them think our results are
more realistic (73%) than the fixed identity method (27%).
Detailed results are provided in the supplementary material.

5.4. Qualitative Evaluation

5.4.1 Pose-Dependent Facial Shape Correction

We propose a face shape generation method to complement
the face shape rendering result with head pose information.
To show the influence of head poses on face shapes, we
conduct three experiments using different head pose param-
eters: i) use the normal head pose sequence (Pitch+ 0); ii)
increase the pitch angle by 18 degrees (Pitch+18); iii) con-
trol the pitch angle downward by 18 degrees (Pitch− 18).
Results are shown in Figure 7. To visualize the results in a
clear way, we also align the face shapes. Observing that in
both cases, the head pose has a noticeable effect on produc-
ing more reasonable face shape with the same input audio.

5.4.2 Ablation Studies

Different variants are compared for head pose generation
including no-motion loss and our methods. No-motion loss
results in jitter problems and no-initial pose leads to dis-
continuities. In contrast, our proposed PoseGAN generates
realistic head pose sequences. More results can be found
in the supplementary video. In the supplementary video,
we show that our method is still applicable under different
noises. Although our training language is based on English,
we also show that the method applies to multiple language
environments.

5.4.3 Comparison with Other Methods

In the supplementary video, we compare our results
with state-of-the-art 3D face generation methods including
VOCA [16] and Karras et al. [26]. In figure 8, we show
a representative frame of results for generating the corre-
sponding 3D faces based on input audio.

5.4.4 More Visualization Results

Figure 9 shows the visualization results of our framework.
Given input audio, we generate the 3D talking face with
personalized pose dynamics. From top to bottom, they are
input audio, head pose sequence, and face shape with head
pose. We can see that the head pose sequence of the mean
method remains the same. The head pose sequence of the
CNN method tends to be close with the mean pose and
changes slightly. The head poses generated by Random and
NN methods change sharply. However, the head pose se-
quence generated by our method changes stably and rea-
sonably. Please refer to the supplementary video for the
detailed results.

6. Conclusion and Future Work

To the best of our knowledge, this is the first work to
generate 3D talking face with personalized pose dynamics
based on audio. Our 3D face database includes audio, head
pose sequence, and face shape parameters. The PoseGAN is
trained to generate the head pose sequence, with the initial
head pose loss constraint and motion loss function, which
guarantees the continuity of head pose sequence in long
term. The PGFace network is designed for pose-dependent
facial shape correction, which makes the face shape render-
ing results more realistic. Our experiments verify the ef-
fectiveness of our approach, and our synthesized 3D talking
head looks more realistic than other baselines.

As mentioned in Section 2, we would like to integrate
our pose-dynamics-empowered 3D talking head as a basic
building block for synthesizing audio-driven 2D videos of
facial reenactment [43], to further improve the realism of
head motion in the synthesized videos, as well as extending
it for text-based facial animation in our future work.
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