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Abstract The key challenge of processing point clouds

lies in the inherent unorderness and irregularity of 3D

points. By relying on per-point multi-layer perceptions

(MLPs), most existing point-based approaches only

address the first issue yet ignore the second one.

Directly convolving kernels against irregular points

will result in loss of shape information. This paper

introduces a novel point-based Bidirectional Learning

Network (BLNet) to analyze irregular 3D points.

BLNet optimizes the learning of 3D points through

two directions iteratively: feature-guided point shifting

and feature learning from shifted points. On the

one hand, towards minimum intra-class variances, the

points adaptively adjust their positions and converge

to a more regular distribution. On the other hand,

explicitly modeling point positions leads to a new

feature encoding with increased structure-awareness.

Then, an attention pooling unit is further designed

to selectively combine important features. This

bidirectional learning alternately regularizes the point

cloud and learns its geometric features, and these two

procedures iteratively promote each other towards more

effective feature learning. Experiments show that our

BLNet is able to learn deep point features robustly and

efficiently, and it outperforms prior state-of-the-arts on

multiple challenging tasks.

Keywords point clouds, irregularity, shape
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1 Introduction

3D point cloud understanding is critical in many real-

world vision applications such as autonomous driving,

robotics, and augmented reality. A key challenge for

effectively learning point cloud features is that point

clouds captured by depth cameras or LiDAR sensors

are often unordered and irregular; thus, many effective

deep learning architectures [4, 30, 33] are not directly

applicable.

To tackle this, many approaches convert irregular

point clouds into regular data formats such as multi-

view images [9, 25, 32] and 3D voxels [2, 11, 21, 27, 39].

But these conversions result in loss of geometric detail

and large memory expense. Alternatively, some recent

studies focus on directly processing point clouds. A

seminal work, PointNet [24], individually learns per-

point features using shared MLPs and gathers a global

representation with max-pooling. Although effective,

this design ignores local structures that constitute

the semantics of the whole object. To solve this

problem, many subsequent approaches [15, 20, 26,

37, 42, 45] partition point cloud into nested subsets,

then build a hierarchical framework to learn contextual

representation from local to global. Nevertheless, these

methods perform directly on raw point clouds. The

spatial irregularity of point clouds significantly limits

their inductive learning performance.

Raw 3D acquisitions typically produce irregular and

non-uniformly distributed point clouds. Fig. 1(b)

illustrates an example of irregular points sampled

from a “square”. Suppose we have shared MLPs G
together with their learnable weights W. We apply

these convolutions on the points in Fig. 1, then the

convolutional output is fx = G([p1, p2, p3, p4]x,W),

where x = (a, b). The shared point-wise MLPs utilized

for encoding points can ensure permutation-invariance

and address the unorderness issue. However, due to

the irregular sampling in (b), we usually get fa 6=
fb. Therefore, local features extracted on noisy or
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Fig. 1 (a) is ideally regularly sampled points and (b) is

irregularly sampled points. Each point in (a, b) is associated

with coordinates p.

irregularly sampled points are often unstable, causing

loss of shape information. Our observation is that: (1)

If the sampling of (b) becomes more regular, its learned

feature will converge to fa and become more stable.

(2) On the other hand, if a more accurate feature

description (e.g., fa) is available, to deform the shape

(e.g., shape (b)) according to this feature will allow

the point cloud to adjust their points towards a more

regular distribution. Thus, making sampled points

more regular and obtaining more accurate features arise

as important issues to address.

To this end, we formulate BLNet, the first work to

apply bidirectional learning to point clouds and analyze

irregular 3D points through bidirectional interaction

between points and features. The key to BLNet is

to capitalize on two directions iteratively: feature-

guided point shifting and feature learning from shifted

points. On the one hand, taking the task loss as

feedback, the Position Feedback module associated with

adaptive 3D displacements is proposed to automatically

adjust the positions of points. Via minimizing intra-

class variances, 3D points are regularized towards a

certain distribution that fits the network well. On

the other hand, we present a new Feature Modeling

module, which explicitly encodes point positions

with increased structure-awareness; and, we further

design an attention pooling to selectively focalize and

combine important features. This bidirectional learning

alternately regularizes the point cloud and learns its

geometric features, and these two procedures iteratively

promote each other towards more effective feature

learning. Extensive experiments verified the superiority

of our BLNet on multiple challenging datasets including

ModelNet40 [39], ShapeNet Parts [44], S3DIS [1] and

ScanNet [2]. Moreover, we show ablation experiments

and visualization for a better understanding of BLNet.

2 Related work

Deep Learning on Regular Domain. To leverage

the impressive success of traditional convolution in the

regular formats (i.e., images), extensive approaches

usually transform irregular point clouds into regular

data formats such as multi-view images and 3D voxels.

For the former, view-based methods [9, 25, 32] render

multiple images from point clouds based on different

views and apply standard CNNs on rendered images.

For the latter, voxel-based methods [2, 11, 21, 27,

39] structure point cloud using 3D regular voxels.

Afterwards, 3D CNNs can be directly applied similarly

to images. However, both regular formats need

projective or voxelized transformations, which yield a

quantifiable loss of geometric information. By contrast,

our BLNet focuses on directly processing point clouds

and does not rely on additional transformations.

Deep Learning on Irregular Domain. Inspired

by the pioneering work PointNets [24, 26], many

recent methods directly process point clouds and

design sophisticated networks to capture features.

These approaches can be generally classified as 1)

neighbouring feature pooling [8, 26, 42, 45, 46], 2)

graph message passing [10, 36, 37], 3) kernel-based

convolution [15, 19, 29, 35, 38]. These methods directly

run on raw point clouds. The spatial irregularity of

point clouds limits their inductive learning and further

promotion.

Bidirectional Learning. It has been shown

effective for enhancing the performance of uni-

directional learning in multiple tasks such as language

translation [22, 40], image generation [23], and image

translation [28]. It utilizes additional top-to-down

(target-to-source) training to reduce the uni-directional

dependency between source and target. However, they

typically train the two directions separately and fuse

them at the end. In contrast, our BLNet is the

first work to achieve bidirectional interaction between

points and features on point clouds. And it alternately

combines two learning directions, consequently forming

a complete network for training.

3 Our approach/method

Locality. Most recent point cloud learning

frameworks [15, 26, 42] are trained to extract

representations based on local features, which has been

shown more effective than earlier work [24] that learns

global description. Similarly, we aim to design our

network and modules locally.

Bidirectional Learning. The position feedback

module performs feature-guided point shifting towards

a more regular distribution, and the feature modeling

module explores discriminative features from shifted

points. To realize our bidirectional learning pipeline,

we integrate a position feedback module and a feature
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Fig. 2 BLNet architecture. For classification, we use four BidConv before the fully connected classifier. For segmentation, we follow

a U-net architecture. Points downsampling (using FPS in [26]) and upsampling are also included in our convolution, depending on its

use. N1 > N2 > N3 > N4 denotes points downsampling in each convolution, and C1 < C2 < C3 < C4 denotes dimension-increasing

feature channels at each point. Note that the first BidConv does not include position feedback module, as there are no features

extracted from points at the beginning of the network.

modeling module into one bidirectional convolution

operator, namely, BidConv. Stacking multiple BidConv

enables the two modules to execute alternately and

promote each other, as illustrated in Fig. 2.

BLNet Architecture. As shown in Fig. 2, we build

a hierarchical framework, BLNet, which can be applied

to multiple tasks including point cloud classification

and segmentation. In both tasks, we use four BidConv

to learn dimension-increasing features with progressive

downsampling. The final global representation followed

by fully connected layers is configured for classification

tasks. For segmentation tasks, high-resolution point-

wise predictions are required, and this can be realized

by designing deconvolution; we still utilize BidConv

to recover resolution, and progressively upsample

the compact features obtained from encoder until

the original resolution. Higher-resolution points

are forwarded from earlier corresponding convolution

layers, following the coarse-to-fine design of U-Net [47].

Inspired by [17], features at the same resolution are

skip-connected to preserve previous information. Both

classification and segmentation models can be trained

in an end-to-end manner.

3.1 Feature Modeling

In order to learn more accurate features, and use

them to guide the shifting of points, we develop a

new feature modeling module. This module includes

a position encoding unit and an attention pooling unit,

which can more discriminatively capture and combine

features.

Position Encoding. Given a point cloud P together

with corresponding point features (e.g., raw RGB,

or intermediate learned features), this unit aims to

explicitly encode the spatial layout of 3D points,

which plays a crucial role in shape analysis. Existing

approaches [26, 37, 45] typically concatenate position

information with point features, then transform the

concatenated results for feature learning. But these

approaches are suboptimal on capturing meaningful

geometry patches. In contrast, we perform an explicit

encoding of point positions first and then combine the

output with point features for further enhancement.

This enables each 3D point to observe its local

geometry, thus eventually enriching the entire network

with increased structure-awareness. Particularly, this

unit consists of the following steps:

Locality. For the i-th point, to increase its receptive

fields, we index its neighboring points with dilated K-

Nearest Neighbours (KNN) algorithm. Specifically, we

sample K points at equal intervals from the top K × r
neighboring points, where r denotes the dilation rate.

Position Encoding. For each of the K neighboring

points {p1
i · · · pki · · · pKi } of the center point pi, we

explicitly encode the relative position as follows:

rki = Gr(pki − pi,Wr), (1)

where pi and pki are global x-y-z coordinates of points,

and pki − pi denotes relative coordinates, which can

retain translation invariance. Gr(), together with its

learnable weights Wr, denotes a shared function. This

3
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Fig. 3 BidConv with downsampling (N2 < N1).

function can be implemented with any differentiable

architecture, and we use point-wise shared MLPs in

this work to address the unorderness issue of 3D

points. Note that all the functions in our paper

are complemented by per-point MLPs, and we omit

explaining this in the remaining of this paper.

Feature Enhancement. The prior semantic

information contained in per-point features can further

enhance the distinctiveness of learned position features.

For each neighboring point pki , we concatenate its

position features rki with corresponding point features

fki , then use a shared function Gf () to combine them.

Thus, we obtain the enhanced feature vector f̂ki with

the following formulation:

f̂ki = Gf ([rki , f
k
i ],Wf ), (2)

where [, ] is the concatenation operation.

Attention Pooling. This unit is used to aggregate

the set of neighboring point features. Different features

in the local region impose varied impacts on the

local representation. The leading strategy in existing

literatures [26, 37] for integrating the neighboring

features is by employing max/mean pooling. Yet

this frequently results in a loss of useful information.

In contrast, we design a new attention pooling to

selectively focus on the most relevant features. In

particular, this unit includes the following steps:

Attention Scores. Given the set of local features

F̂i = {f̂1
i · · · f̂ki · · · f̂Ki }, we design a shared function Gs()

to learn a unique attention score for each channel of

point features. Differently, to make weight coefficients

comparable among different channels, this function

consists of shared MLPs followed by a channel-level

softmax. It is formulated as:

ski = Gs(R1(f̂i, f̂
k
i ),Ws), (3)

where a pairwise function R1 indicates a high-level

relationship between the centroid point and its certain

neighbor. Here we define R1 as: R1(f̂i, f̂
k
i ) = |f̂i − f̂ki |,

which measures the feature difference between point

pairs and guides to assign more attention scores to

similar neighbors.

Weighted Summation. We consider the learned

attention scores as a soft mask that selectively focalizes

important features. Then, the local representation f̃i is

obtained by summing weighted features as:

f̃i =
K∑

k=1

{f̂ki · ski }. (4)

3.2 Position Feedback

Given extracted features, this module aims to

perform a feature-guided point shifting. To achieve

this, we regress an adaptive 3D displacement for

each point by considering its feature, as well as

position. Taking the task loss (i.e., cross-entropy loss)

as feedback, these displacement can learn to adjust

the positions of points. Via minimizing intra-class

variances (i.e., minimizing feature difference of intra-

class points), local points are shifted towards a certain

distribution that fits the network well. With respect

to original irregular points, this distribution is more

regular and leads to more effective feature learning.

Concretely, this module comprises the following steps:

3D Displacements. Using dilated KNN, we index

K neighboring points of the center point pi as

{p1
i · · · pki · · · pKi }, together with corresponding point

features {f̃1
i · · · f̃ki · · · f̃Ki }. For each of them, we define a

dual relation of spatial and semantic levels to generate

point-wise 3D displacement. It is formulated as:

dki = Go([Rspa(pi, p
k
i ),Rsem(f̃i, f̃

k
i )],Wo), (5)

where Rspa(pi, p
k
i ) = (pi − pki ) indicates a spatial

relation between point pki and its center, and

Rsem(f̃i, f̃
k
i ) = |f̃i − f̃ki | is defined in a formulation

similar to R1. The first term Rspa enables the

corresponding point features are always aware of

their relative spatial locations, and the second term

Rsem helps to learn shift distance according to

feature difference. For each 3D displacement, the

former provides direction and the latter obtains

magnitude, which jointly guide the irregular neighbors

to meaningful patches under the feedback of the task

loss.

Position Updating. The learned adaptive
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displacements can be viewed as semantics-driven

factors. With them, the points are automatically

shifted, generally towards a more regular distribution.

Formally, each neighboring point can be updated as

follows:

p̃ki = pki + α · N (dki ), (6)

where α is a scale coefficient, N (·) is a normalization

function mapping the value to range [−1, 1], and p̃ki
is shifted global coordinates. Considering that the

network is very fragile at the beginning of training, α is

initialized as 0 and gradually assigned an appropriate

weight to adapt to local structures.

As shown in Fig. 2, a position feedback module

utilizes features extracted from the previous feature

modeling module to perform feature-guided point

shifting. With iterative downsampling and upsampling,

these two modules need to run on different resolutions.

We integrate the two consecutive modules operated

on the same resolution together as one operation,

BidConv, as shown in Fig. 3. And we utilize KNN only

once after each sampling. Stacking multiple BidConv

enables the two modules to execute alternately and

promote each other, thereby forming an effective

learning network.

4 Results and discussion

Datasets. We evaluated on four datasets for

multiple tasks ranging from shape classification

(ModelNet40 [39]), part segmentation (ShapeNet Parts

[44]), to semantic segmentation (S3DIS [1] and ScanNet

[2]). The experiment setting for each dataset is listed

below:

• ModelNet40: 12,311 3D mesh models of 40 object

categories. We followed an official split with

9,843/2,468 models for training and testing.

• ShapeNet Parts: 16,881 CAD models from 16

object categories. Each point is annotated with a

certain one of 50 part classes and each point cloud

consists of 2 to 5 parts. Officially, we split this

dataset with 14,006 objects for training and 2,874

for testing.

• ScanNet: 1,512 reconstructed indoor scenes with

21 semantic categories. We split this dataset with

1,201/312 scenes for training and testing.

• S3DIS: 271 real rooms from three different

buildings with 13 semantic categories. Following

the experiment setttings in [24, 34], we used two

dominant settings for training and testing, i.e., 6-

fold and Area-5 cross validation.

Tab. 1 Quantitative results (%) of different approaches on

ModelNet40.

Methods Input #Points OA

PointNet [24] xyz 1k 89.2

PointNet++ [26] xyz 1k 90.7

KCNet [29] xyz 1k 91.0

RSCNN [19] xyz 1k 91.7

DGCNN [37] xyz 1k 92.2

PointCNN [15] xyz 1k 92.2

Point2Sequence [18] xyz 1k 92.6

A-CNN [12] xyz 1k 92.6

PointASNL [43] xyz 1k 92.9

Grid-GCN [41] xyz 1k 93.1

ShellNet [46] xyz 1k 93.1

InterpCNN [7] xyz 1k 93.0

Point2Node [3] xyz 1k 93.0

BLNet (Ours) xyz 1k 93.5

KPConv [35] xyz 6k 92.9

PointWeb [45] xyz, normal 1k 92.3

PointConv [38] xyz, normal 1k 92.5

BLNet (Ours) xyz,normal 1k 93.7

PointNet++ [26] xyz, normal 5k 91.9

SO-Net [14] xyz, normal 5k 93.4

4.1 Shape Classification

We evaluated our network on classifying point clouds

sampled from ModelNet40 [39]. Using a widely-used

sampling density in existing literatures, we uniformly

sampled 1,024 points from each 3D mesh model and

normalized them to a unit sphere. We used Overall

Accuracy (OA) as the evaluation metric. Also, to

reduce over-fitting, we employed the dropout technique

[31] with 80% ratio in the penultimate FC layers.

Results. For fair comparisons, we presented overall

shape accuracy as well as input settings in Table 1.

BLNet clearly surpasses all previous approaches in

terms of different input settings. Specifically, when

only using xyz information, BLNet achieves an OA of

93.5% and outperforms a set of representative methods

such as PointNet++ [26] (90.7%), PointCNN [15]

(92.2%), RSCNN1 [19] (91.7%), and Point2Node [3]

(93.0%), especially KPConv [35] (92.9%) using more

(6k) points. Moreover, when additionally using normal

information, BLNet achieves a higher accuracy of 93.7%

and significantly outperforms all existing methods,

particularly including PointNet++ [26] (91.9 %) and

SO-Net [14] (93.4%), which use more (5k) points.
1Only the single scale RSCNN [19] is released so far.
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Tab. 2 Quantitative results (%) of different approaches on

S3DIS, ShapeNet Parts, and ScanNet.

Methods
S3DIS 6-fold S3DIS Area-5 ShapeNet Parts ScanNet

OA mIoU OA mIoU mcIoU OA

PointNet [24] 78.6 47.6 - 41.1 80.4 73.9

PointNet++ [26] 81.0 54.5 - - 81.9 84.5

KCNet [29] - - - - 82.2 -

DGCNN [37] 84.1 56.1 - - 82.3 -

RSCNN [19] - - - - 84.0 -

RSNet [6] - 56.5 - 51.9 81.4 -

PointCNN [15] 88.1 65.4 85.9 57.3 84.6 85.1

SPGraph [13] 85.5 62.1 86.4 58.0 - -

A-CNN [12] 87.3 62.9 - - 83.0 85.4

PointWeb [45] 87.3 66.7 86.9 60.3 - 85.9

ShellNet [46] 87.1 66.8 - - 82.8 85.2

Point-Edge [16] 88.2 67.8 87.2 61.8 - -

ELGS [42] 87.6 66.3 88.4 60.1 - 85.3

Grid-GCN [41] - - 86.9 57.8 - 85.4

PointASNL [43] 88.8 68.7 87.7 62.6 83.4 -

RandLA-Net [5] 87.2 68.5 - - - -

BLNet (Ours) 89.3 70.8 89.1 64.2 85.1 86.7

4.2 Part Segmentation

Part segmentation is a challenging task for fine-

grained shape analysis. We evaluated our network on

ShapeNet Parts [44] benchmark and randomly sampled

2,048 points as the input. We reported class average

IoU (mcIoU) as the evaluation metric.

Results. As in Table 2, our BLNet achieves the best

performance with mcIoU of 85.1%. This considerably

outperforms other competitive baselines, i.e., DGCNN

[37] (82.3%), RSCNN [19] (84.0%), and the recent

PointASNL [43] (83.4%). Fig. 4 shows some qualitative

visualization examples of different shapes. BLNet can

segment distinctive parts from diverse shapes.

4.3 Semantic Segmentation

This task takes 3D point clouds as input and assigns

one semantic class label for each point. We evaluated

our network on two datasets: S3DIS [1] and ScanNet

[2]. Following PointCNN [15], we first split points

according to the room and sliced the rooms into 1.5m

by 1.5m blocks, with 0.3m padding on each side. We

sampled 2,048 points for each block in training, and

adopted all the points for evaluation during testing.

For S3DIS, we adopted two widely-used evaluation

metrics: Overall Accuracy (OA) and mean class IoU

(mIoU). For ScanNet, to make a fair comparison with

other approaches, we did not use RGB information

and converted the segmentation results from the testing

data into semantic voxel labeling for evaluation. Here

we reported voxel-wise Overall Accuracy (OA) as the

evaluation metric.

Results on S3DIS. As in Table 2, our BLNet

outperforms all previous approaches in terms of two

evaluation settings. Specifically, as for 6-fold mIoU,

Fig. 4 Part segmentation results from ShapeNet Parts.

BLNet significantly surpasses prior start-of-the-arts,

i.e., PointNet++ [26] (16.3↑), PointCNN [15] (5.4↑),
ELGS [42] (4.5↑), and the recent RandLA-Net [5]

(2.3↑); as for Area-5 mIoU, BLNet considerably

outperforms PointNet [24] (23.1↑), PointCNN [15]

(6.9↑), and also outperforms the recent Grid-GCN [41]

(6.4↑), PointASNL [43] (1.6↑). In addition, we listed

detailed mIoU results of all the categories in Table

3. BLNet achieves better or on par performance with

respect to other competitive approaches [5, 13, 15, 24,

42, 45]. It is worth mentioning that BLNet works

well in some similar geometric shapes (e.g., column

vs. wall) and the categories with various shapes (e.g.,

chair and table). This indicates that BLNet captures

discriminative shape representations from complex

structures. Some qualitative visualization results on

different real scenes are given in Fig 5.

Results on ScanNet. As in Table 2, when

doing semantic voxel labeling task, BLNet achieves

better performance (86.7%) than existing methods,

i.e., PointNet++ [26] (84.5%), PointCNN [15] (85.1%),

ELGS [42] (85.3%), and the recent Grid-GCN [41]

(85.4%).

4.4 Ablation Study

To validate the contribution of each module in our

framework, we conduct ablation studies in Table 4.

These experiments are evaluated on S3DIS [1] with

Area-5 cross validation and reported mIoU as the

standard metric.

(1) Remove position encoding. Position

encoding enables each 3D point to observe its local

geometry. After removing this unit, we directly

transform point features using per-point MLPs and

6
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Tab. 3 All categories results (%) of different approaches on S3DIS 6-fold.

Methods mIoU ceil. floor wall beam col. wind. door table chair sofa book. board clut.

PointNet [24] 47.6 88.0 88.7 69.3 42.4 23.1 47.5 51.6 54.1 42.0 9.6 38.2 29.4 35.2

SPGraph [13] 62.1 89.9 95.1 76.4 62.8 47.1 55.3 68.4 69.2 73.5 45.9 63.2 8.7 52.9

PointCNN [15] 65.4 94.8 97.3 75.8 63.3 51.7 58.4 57.2 69.1 71.6 61.2 39.1 52.2 58.6

ELGS [42] 66.3 93.7 95.6 76.9 42.6 46.7 63.9 69.0 70.1 76.0 52.8 57.2 54.8 62.5

PointWeb [45] 66.7 93.5 94.2 80.8 52.4 41.3 64.9 68.1 71.4 67.1 50.3 62.7 62.2 58.5

RandLA-Net [5] 68.5 92.7 95.6 79.2 61.7 47.0 63.1 67.7 68.9 74.2 55.3 63.4 63.0 58.7

BLNet (Ours) 70.8 94.3 97.1 83.5 64.1 50.5 72.5 63.2 74.2 79.5 50.7 64.0 63.6 62.7

Fig. 5 Qualitative results from S3DIS. From left to right are

ground truth, BLNet (Ours), and PointCNN [15], respectively.

The segmentation results of BLNet is closer to the ground truth

than that of PointCNN.

feed the output features into the subsequent attention

pooling. As shown in Table 4, removing position

encoding causes a significant performance drop. This is

because the spatial distributions of points play a crucial

role in 3D shape analysis, and our position encoding

unit can effectively increase structure-awareness via

explicitly encoding relative point positions.

Tab. 4 The mIoU results (%) of all ablated networks based on

our full BLNet.

mIoU

(1) Remove position encoding 54.90

(2) Replace with mean-pooling 58.72

(3) Replace with max-pooling 60.55

(4) Remove position feedback 59.70

(5) The Full framework (BLNet) 64.17

(2˜3) Replace attention pooling with

max/mean pooling. Attention pooling learns

to selectively focalize important features and then

combine them. To make comparisons, we replace this

unit with widely-used max/mean pooling. As Table

4 shows, our attention pooling considerably surpasses

max/mean pooling. This demonstrates that attention

pooling is able to keep important features and gather

a discriminative representation.

(4) Remove position feedback. This module

aims to adaptively shift 3D points towards a more

regular distribution. After removing this module,

we directly feed original irregular points into the

subsequent feature modeling module. As shown in

Table 4, removing position feedback considerably harm

performance. This indicates that shifted distributions

can fit the network better than original ones and

promote feature learning. To further verify the

effectiveness of position feedback, we visualize T-

SNE results of shape features from different categories

without and with this module in Fig. 6. Note that

since differences in distributions of input points will

result in different features (see Sec. 1 Introduction), we

visualize features to better view the effect of different

input distributions w/o and with position feedback. On

the left of Fig. 6, features extracted from irregular

points (w/o position feedback) are mixed and less

distinguishable from each other, showing that directly

consuming raw point clouds could cause more shape

information loss. In contrast, on the right of Fig. 6,

features extracted from shifted points (with position

feedback) can be more easily partitioned. This proves

that shifted distributions induced by adaptive 3D

displacements can lead to more intra-class consistency

and inter-class distinctiveness with respect to original

irregular distributions.

Robustness under Noises. We further

demonstrate the robustness of our BLNet with respect

to two representative baselines, i.e., PointNet++ [26]

and PointCNN [15]. When applying random noises

(increasing irregularity) from the range [−0.01, 0.01]

to each point, the mIoU of BLNet, PointCNN, and

PointNet++ on S3DIS Area-5 [1] decreases by 1.2%,

3.4% and 4.5%, respectively. We find that BLNet is

more robust under random noises. This is because

the position feedback module generates adaptive

3D displacements to shift each point, which can be

effective in resisting random noises.

Model Complexity. Fig. 7 qualitatively shows

the complexity comparison of different approaches by

Accuracy versus Parameters, and Accuracy versus

Latency. Compared with modern competitive methods

7
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Fig. 6 T-SNE visualization of features w/o (Left) and with position feedback module (Right). Left: red/grey/blue are all mixed up;

yellow and cyan are mixed. Right: they are clearly separated. Different (13) colors denote different categories, and these experiments

are performed on S3DIS [1].
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Fig. 7 Comparisons between BLNet and other representative baselines on ModelNet40 [39]. Left: Accuracy vs. Parameters. Right:

Accuracy vs. Latency. All baselines are evaluated on ModelNet40 with batch size 16 and 1024 input points for fair comparisons.

[3, 15, 24, 26, 37, 46], BLNet achieves a significantly

better accuracy vs. complexity trade-off, thus

demonstrating its effectiveness and efficiency. Note that

the BLNet model with the highest accuracy (middle)

is our original version, and we increase or decrease its

model complexity by simply scaling feature channels in

Fig. 2.

5 Conclusions

This is the first work to apply bidirectional learning

to point clouds and achieve bidirectional interaction

between points and features. Specifically, we propose

a novel point-based Bidirectional Learning Network

(BLNet) to analyze irregular 3D points. BLNet

optimizes the learning of 3D points through two

directions iteratively: feature-guided point shifting and

feature learning from shifted points. (1) The position

feedback module utilizes adaptive 3D displacements to

automatically shift points, leading to a more regular

distribution. (2) A new feature modeling module

explicitly encodes point positions with increased

structure-awareness, and a powerful attention pooling

in this module selectively combine important features.

These two modules alternately regularize the point

cloud and learn its geometric features, and iteratively

promote each other towards more effective feature

learning. Extensive experiments verified the superiority

of our BLNet on various challenging benchmarks.
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