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3D Object Tracking with Adaptively Weighted Local Bundles

Abstract The 3D object tracking from a monocular RGB image is a challenging task. Although popular color and

edge-based methods have been well studied, they are only applicable to certain cases and new solutions to the challenges

in real environments must be developed. In this paper, we propose an adaptively weighted local bundle structure and

define the energy function to handle more complicated cases. Each bundle represents a local region containing a set of

local features. To alleviate the negative effect of the features in low-confidence regions, the bundles are adaptively weighted

using a spatially-variant weighting function based on the confidence values of the involved energy terms. Therefore, in each

frame, the weight of the energy items in each bundle are adapted to different situations and different regions of the same

frame. Experiments show that the proposed method can improve the overall accuracy in challenging cases. We then verify

the effectiveness of the proposed confidence-based adaptive weighting method using ablation studies and show that the

proposed method overperforms the existing single-feature methods and multi-feature methods without adaptive weighting.

Keywords 3D tracking, local bundle, feature fusion, confidence map

1 Introduction

The 3D object tracking aims to estimate the 6DOF

relative pose between the camera and the target object

with known geometric model. It is a fundamental task

in augmented reality because of its capability to simul-

taneously capture the camera pose and the registered

3D object model[1]. It is also widely used in various vi-

sion related tasks such as robotics, medical navigation,

etc.

An important class of methods for 3D object track-

ing is focused on tracking the object pose based on lo-

cal image features[2, 3]. Such methods have been exten-

sively studied in the past decades. The tracking meth-

ods based on local features are often robust against

lighting changes, partial occlusion, fast motion, etc.

Nevertheless, such methods are much more efficient for

texture-rich objects, hence not applicable to texture-

less objects. To address this issue, a possible approach

is to utilize depth cameras[4] and 3D tracking can be

then performed using an ICP-like procedure[5]. There

are however practical issues with using depth for 3D

tracking such as depth noise and misalignment, the lim-

ited distance between the camera and the object, etc.

In this paper, our focus is on the 3D tracking of texture-

less objects based on monocular RGB video input.

Our objective is to perform 6DOF pose estima-

tion for tracking and the video objects are assumed

to undergo continuous transforms in their 3D pose,

where their initial pose in the first frame is also known.

Note that this is different from the 3D object detec-

tion and 6DOF pose estimation from a single image,

which has been greatly advanced using learning-based

approaches[6].

In our approach for tracking, we only need to per-

form a local search in the pose space and our objec-

tive is to achieve a high precision while keeping the

computational complexity as low as possible. This is

crucial for achieving high level of temporal coherence

and real-time execution even in mobile devices (a com-

mon requirement of AR applications). For detection,

an intensive global search is required which is often

more computational intensive than that of the tracking

methods. In practice, both detection and tracking are

required however detection is only performed for initial-

ization and/or re-localization in cases where the track-

ing is lost. Although several learning-based methods

are proposed for 3D tracking[7, 8], considering efficiency
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Fig.1. Overall pose estimation results of the proposed method in various challenging conditions including cluttered scene, similar
colored background, occlusion, direct sunlight and motion blur caused by fast movements.

and applicability, the methods based on hand-crafted

features are still preferred in this research area.

Based on the features involved, texture-less 3D

tracking methods can be categorized into edge-based

methods[9–13] and region-based methods[14–18]. The

edge-based methods are known to be sensitive to the

cluttered background which presents disproportionate

background edges that may easily force the optimiza-

tion to fall into a local minimum[10]. Image edge detec-

tion is also sensitive to image blur which makes edge-

based methods sensitive to fast-moving objects or cam-

era. In the region-based methods, the optimal object

pose is obtained through maximizing the color differ-

ence between the foreground and background based on

a statistical color model. Therefore, it can achieve

a better performance in the images with a cluttered

background. Nevertheless, in the scenes including fore-

ground and background with the same color, the region-

based methods become unstable. Since the statistical

color model depends on the absolute color values, the

region-based methods are often less robust against color

and lighting changes.

As it is seen, in certain situations, various feature

detection methods may become unreliable. Therefore,

addressing the issue of unreliable features improves the

accuracy of the tracking. Nonetheless, the reliability of

features might be very different even for different parts

of a single frame. Therefore, fusing features solely based

on a uniform weighting function cannot achieve optimal

combination of features. To address this issue, here

we propose an adaptively weighted local bundle struc-

ture to define the energy function for a spatial-variant

weighting of the features. In our proposed scheme, each

bundle includes the aggregated evidence from a set of

pixels in a local region. The adaptive weighting is then

obtained based on their confidence levels. The motion

of each bundle is independently calculated and com-

bined to obtain the pose transformation of the object.

Color and edge features with different spatial support

can be combined and adaptively weighted by packing

them into bundles. Fig.1 shows some results of the pro-

posed method in various challenging conditions.

Our main contributions in this paper are as the fol-

lowing:

• We propose adaptively weighted local bundles to

suspend the negative effect of unreliable features.

This results in higher accuracy and reduces the

sensitivity to the weighting parameters.

• We introduce techniques to compute the confi-

dence of each feature, and establish the effective-

ness of our proposed technique in handling a va-

riety of complex cases.

• We demonstrate the complementarity of the color
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and edge features and propose an optimized

method to fuse them to achieve a robust 3D ob-

ject tracking in real-time.

The rest of the paper is organized as the follow-

ing. Section 2 introduces the related work. Section

3 presents the proposed multi-feature tracking method

with local bundles based on confidence. The related

experiments are illustrated in Section 4, and Section 5

concludes the paper.

2 Related Work

According to the main feature used, texture-less 3D

object tracking with RGB image can be categorized as

region-based and edge-based methods. Generally, color

features are more informative than the edge features,

while the edge features are less computationally inten-

sive as fewer sample points are involved. Here we elab-

orate on these two tracking methods and then briefly

review the state-of-the-art in this research area.

2.1 Edge-based Methods

One of the first real-time 3D object tracking system

is RAPID[9]. It starts with locating all the 3D-2D cor-

responding points, then utilizes a nonlinear optimiza-

tion algorithm to minimize the square errors of each,

and then iteratively calculates the pose of the object.

Based on [9], Marchand et al.[19] then replace the gradi-

ent with the convolution kernel to select the best corre-

sponding point with the largest response. Drummond

et al.[20] further propose to weight each pair of 3D-2D

points according to the number of candidate points to

reduce the matching errors. Wuest et al.[21] pick up all

candidate points to obtain the best result via an opti-

mization with a rather high computation time. Choi

et al.[22] store image templates in advance. During the

tracking, [22] first estimates the initial pose based on

the feature points of the current image and the template

library, and then the pose optimization is completed ac-

cording to the edge features thereafter.

Finding the best corresponding points of the con-

tour points is the key function of the edge-based ap-

proach. The above-mentioned methods, however, are

prone to failure in the cases where the background is

complex. Some other ancillary information or strate-

gies are therefore needed to address this issue. Seo et

al.[10] propose using the color model to select the best

corresponding points. They first construct the color

model of the foreground and background, and then ob-

tain the best corresponding points by maximizing the

posterior probability. This method independently lo-

cates each corresponding point, hence tends to make

wrong matching. Wang et al.[11] further utilize the ge-

ometric constraints of the image contour to regularize

the location of the edge points and improve the robust-

ness against complex backgrounds. A graph model for

searching the optimal edge points is also proposed in

[11].

Moreover, Wang et al.[23] propose a tracking method

based on the edge distance field. The method aims to

minimize the value of the 3D contour projection points

over the edge distance field to obtain the optimal pose.

At the same time, to deal with fast movement and

occlusion, particle filtering and robust estimation op-

erators are introduced into the optimization method.

Wang et al.[12] further use the edge direction obtained

by the image gradient to verify the confidence of edge

matching to improve the robustness. They also pro-

pose a strategy for re-localization, which records the

key frame templates in real-time, and performs pose

recovery in cases where the object is lost.
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2.2 Region-based Methods

The region-based approach uses the level-set

function[24] to represent the projection contour of the

3D object. The 6DOF pose is then optimized by maxi-

mizing the color difference between the foreground and

the background. Such methods are often computation-

ally intensive as they involve building the color model

and computing the posterior probability. As the first

real-time region-based approach, PWP3D[14], is accel-

erated by using a GPU and shown to reach the pro-

cessing speed of around 20 FPS. It calculates the global

foreground and background probabilities, and also use

gradient descent technique to optimize the pose. In-

stead of using the gradient descent method, Tjaden et

al.[15] embrace a Gauss-Newton-like method for opti-

mization, and Lie algebra is further adopted to rep-

resent the pose. This enables the pose parameters to

quickly converge during the optimization process.

Calculating the global foreground and background

probability histograms is however difficult and it may

lead to an inaccurate posterior probability. To deal

with this, Hexner et al.[16] propose to replace the global

histogram with multiple local histograms, and then av-

erage them to improve the accuracy. Tjaden et al.[17]

propose to modify the representation of the local prob-

ability histogram, changing multiple local probability

histograms of [16] to temporally consistent local color

histograms, which significantly improve the accuracy of

computed color probabilities. A pose recovery method

is also proposed in [17] to handle the cases where the

object is lost.

Based on the method of [17], Tjaden et al.[18] further

re-weight the energy function, and use Gauss-Newton

strategy to optimize the pose. This improves the con-

vergence rate of the the optimization. It is also shown

that their method is capable of tracking multiple ob-

jects simultaneously. Zhong et al.[25] use overlapping

fan-shaped regions to build the local color model with-

out other sources to speed up the model building pro-

cess. This requires fewer local regions and gets a similar

or better segmentation result. They further propose an

explicit way to deal with the occlusion which is based

on the distance and color information of the contour

and edge points to determine the occlusion weight.

2.3 Other State-of-the-art Methods

In addition to the above two methods, several other

tracking strategies are proposed which shown to achieve

excellent results. For instance, Tan et al.[4] use the ran-

dom forest algorithm to regress the pose of the object.

This method, however, needs the depth data. Convo-

lutional Neural Networks (CNN)[26] are also used for

tracking[7, 8, 27]. However, these methods usually need

a large amount of training data and often demonstrate

a poor generalization performance. They also often re-

quire a pre-training process, which is computationally

intensive and requires GPU support. Real-time oper-

ation of such methods however is still not possible on

ordinary devices.

In another development, Zhong et al.[28] fuse statis-

tical and photometric constraints for 3D tracking, in-

corporate the color features and geometric constraints

into an energy function and use a weight coefficient to

appropriately balance the metrics. This method com-

bines the advantages of the two features. However, di-

rect fusion is sub-optimal and it is thus unable to fully

exploit the advantages of each feature. Besides, adjust-

ing the balance parameter requires experiments, and

the parameter may need to be re-adjusted for different

environments.
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3 The Proposed Method

In this section, we devise an optimized multi-feature

fusion method with adaptively weighted local bundles.

We propose the energy function based on the local bun-

dle which fuses multiple features and adaptively adjusts

their weights. The weights are adaptively adjusted us-

ing a spatially-variant function based on the confidence

of each feature. In the following, we first introduce pre-

liminaries and then elaborate on the proposed method.

3.1 Preliminaries

Given the object model with vertices Xi ∈ R3, the

camera internal parameters K ∈ R3×3 and the pose

of object P ∈ R4×4, we can obtain the mapping from

the object coordinate Xi ∈ R3 to the image coordi-

nate xi ∈ R2 based on the pinhole camera model as the

following:

x = π(K(PX̃)3×1), (1)

where X̃ = [X,Y, Z, 1]> represents the homogeneous

coordinates of X, π(X) = [X/Z, Y/Z]>.

The pose P of the object maps the model coordi-

nate to the camera coordinate, which can be then rep-

resented as a 4 × 4 homogeneous matrix by Lie-group

SE(3), i.e.:

P =

[
R t
0 1

]
∈ SE(3),

with R ∈ SO(3) and t ∈ R3.

(2)

Here we adopt the parametric form of Lie-algebra to

optimize the pose. The Lie-algebra se(3) correspond-

ing to the Lie-group SE(3) is formulated as a vector

ξ ∈ R6 or its twist ξ̂ ∈ R4×4. A detailed introduc-

tion to Lie-group and Lie-algebra can be found in [29].

The exponential mapping of the matrix establishes the

relationship between Lie-group SE(3) and Lie-algebra

se(3):

P = exp(ξ̂) ∈ SE(3). (3)

3.2 3D Tracking with Local Bundles

In order to suspend the effect of unreliable obser-

vations in color and edge features, we can assign each

pixel or edge point an individual weight adjusted with

the confidence of features. This approach, however, ig-

nores the local competition between different features,

and the weight of each single feature is also not easy to

be estimated stably. Both problems can be alleviated

with the proposed local-bundle model, which gathers

features in different regions with a set of local structures

(bundles) for a spatial-variant weighting, and the fea-

tures inside each bundle are also competitively weighted

to optimize their complementarity.

Fig.2. An illustration of the local bundles. Each bundle consists
of a set of points on a line segment perpendicular to the contour:
(a) The bundle Li at the contour point xi; (b) All bundles around
the object contour, with the red and the blue parts falling in the
interior and the exterior regions of the object, respectively.

Specifically, given the pose ξ of the object, we can

render the object contour C, as shown in Fig.2. For the

contour point xi on the contour C, it is then calculated

normal vector according to the contour direction and

then we draw the local bundle Li. The bundle L cre-

ates a sub-region that associates a contour point with

its foreground and background. The length of the L

is set to 17 (including 1 contour point, 8 foreground

points, and 8 background points). The choice of this

value is the same as in [18], which is an empirical value.

Combined with the multi-scale strategy, this value can

get the optimal balance point in the calculation speed

and accuracy. Furthermore, xj
i is the region point on
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the Li. Notice that xi ∈ xj
i , i.e., the contour point xi

is one of the region points xj
i on the Li.

The energy function with local bundles is defined as

follows:

E(ξ) =
∑

xi∈C
ωiEbundle(xi, ξ), (4)

where Ebundle(xi, ξ) is the bundle energy cost corre-

sponding to the i-th bundle, and ωi is a spatially-variant

adaptive weighting function. The bundle energy is de-

fined as:

Ebundle(xi, ξ) =αieedge(xi, ξ)

+ βi
∑

xj
i∈Li

λecolor(x
j
i , ξ),

(5)

where eedge and ecolor are the edge and color energy

terms, respectively. Further in Eq. 5, we borrow the

energy function in [12] and [18], as

eedge(xi, ξ) =
(
D(π(K(exp(ξ̂)X̃i)3×1))

)2
(6)

ecolor(x
j
i , ξ) = − log

(
He(Φ(xj

i (ξ)))Pf (xj
i )

+ (1−He(Φ(xj
i (ξ))))Pb(x

j
i )
)
.

(7)

Note that in Eq. 5 αi and βi are the adaptive weights

of the edge and color energies, respectively. We further

enforce αi + βi = 1, so the edge and color features are

competitive with respect to their confidences (see Sec-

tion 3.3.3). The constant parameter λ is also preserved

to balance the overall effect of the color and edge fea-

tures. We show that using the confidence-based adap-

tive weighting, λ can be easily set. Each bundle consists

of one edge point and multiple color points. The mul-

tiple color points are also bundled together and share

the same weight βi. Therefore, we can easily define the

competitive weights, and at the same time, improve the

stability of the estimated βi by summing up throughout

each bundle.

As it is seen, the bundles form a set of local regions

that divide the sampled contour and region points into

smaller subsets. This is mainly to deal with the spatial

inconsistency of color and edge features. The energy

weights in each bundle are independently weighted, this

enables them to fit the particular case in each sub-

region and take the full advantage of each existing fea-

ture. Although the bundles can be created in other

ways, our method as illustrated in Fig.2 is a natural

choice since it encodes the most informative features to

estimate the object motion along the sample line.

3.3 Adaptive Weighting of Local Bundles

By fusing the color and edge features in each bundle,

we can then weight the features based on their quality.

To measure the quality of the features we introduce

confidence. The confidence is obtained for the color

and edge features to ensure their independence, it is

also normalized to a value in [0, 1]. Using confidence,

we can then measure the quality of each feature. The

weight αi, βi, and ωi are then adaptively obtained via a

spatially-variant weighting function based on the confi-

dence.

3.3.1 Confidence of the Region Points

We use Ωf and Ωb to represent the foreground and

background. To distinguish foreground and background

[18] uses local histograms and mean probabilities. How-

ever this method in unable to efficiently distinguish the

foreground and background in some complex environ-

ments. To address this issue, here we borrow the idea

of [30] to construct an uncleared region Ωu for indistin-

guishable colors, and then use it to calculate the confi-

dence of the region points. Fig.3(a) is the input image

and Fig.3(b) shows per-pixel segmentation visualized

as Pf (x) − Pb(x) > 0. It is seen that the color of the

object is similar to the background color, especially the

lower part of the object, which may distract the opti-

mization. Specifically, for the cases where x is in the

foreground, but Pf < Pb, or x is in the background,

but Pb < Pf , we obtain the color at x to Ωu. Fig.3(c)
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illustrates the uncleared region Ωu constructed accord-

ing to the above, where the green line represents the

contour of the object.

Fig.3. (a) The first frame of the regular variant of the Can model
in the RBOT dataset[18], where the color of the object is similar
to the surrounding background. (b) Per pixel segmentation visu-
alized as Pf (x) − Pb(x) > 0. (c) The unclear region Ωu of the
image.

We collect Ωu on the full image and update it every

S frames. The reason for adopting this strategy is be-

cause: 1) collecting Ωu on the full image uses the global

color information, 2) the moving distance between the

frames is small during the tracking, thus the change of

Ωu is negligible. It takes much less time to perform full

image statistics every S frame than to perform local

averaging every frame.

For each region point xj
i , we now can obtain its con-

fidence ccolor(x
j
i ) by:

ccolor(x
j
i )

= 1− P (yj
i |Ωu)

P (yj
i |Ωu) + P (yj

i |Ωf ) + P (yj
i |Ωb)

,
(8)

where yj
i is the color value at xj

i on the image,

P (yj
i |Ωu), P (yj

i |Ωf ) and P (yj
i |Ωb) indicate the color

model of uncleared region, foreground region and back-

ground region, respectively. The color of point x has

a higher probability in the unclear region has a lower

confidence. Fig.4(b) shows an example of the color con-

fidence. The color model of Ωu is recursively adjusted

by:

P (y|Ωu) = (1− τ)P t−S(y|Ωu) + τP t(y|Ωu), (9)

where t is current frame index and τ is the decay factor.

Fig.4. (a) The first image of regular variant of the Cat model in
RBOT dataset, and the color confidence (b), contour confidence
(c) and weights of bundles (d) corresponding to the input image.

In our proposed approach, the confidence of the re-

gion points is used to calculate the weight of the color

energy term as mentioned in Eq. 5. However, if we

do not use the feature fusion strategy, we can still use

the confidence to weight the color energy term, i.e., by

adding the confidence of each point to the correspond-

ing cost term. This improves the performance of the

region-based method, which is also illustrated in the

experiment section.

3.3.2 Confidence of the Contour Points

We use the gradient direction to calculate the con-

fidence of the contour points because the gradient is

the most important property of the edge. For the con-

tour point xi on image I, we formulate its confidence

cedge(xi) as:

cedge(xi) = | cos(oriI(xi)− oriI
′
(xi))|, (10)

where oriI(xi) represents the gradient direction at xi

on the image, and oriI
′
(xi) is the gradient direction

of the object contour, which represents the normal di-

rection of the contour point xi. Fig.4(c) shows an ex-

ample of the contour confidence. This idea is inspired
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from [12], and we further use the normal information of

the projected contour for geometric consistency, which

combines the geometric properties of the object model.

Furthermore, the confidence of the contour point is used

to calculated the weight of the energy term, which is the

same as the confidence of region points. The definition

of confidence is also robust to the outliers (occlusion or

disappearance of image edges). Because the edge direc-

tion of the outlier and the direction of the projection

contour point do not match, therefore the confidence

at the outlier is small. Besides, this calculation method

requires minimal computational resources.

Both cedge and ccolor are naturally distributed be-

tween 0 and 1 and do not involve threshold parameters.

This enables our method to flexibly choose the weights

of features and also become highly tolerant against the

environmental variables.

3.3.3 The Weights

We use a spatially-variant weighting function based

in the confidence calculated above to adaptively weight

the energy term. For the i-th local bundle Li, we first

calculate the average confidence of the region points it

contains as the following:

c̄icolor =
1

|Li|
∑|Li|

xj
i∈Li

ccolor(x
j
i ). (11)

The weights of the edge term αi, the color term βi, and

the bundle term ωi are also obtained as:

αi =
cedge(xi)

c̄icolor + cedge(xi)
, (12)

βi =
c̄icolor

c̄icolor + cedge(xi)
, (13)

ωi =

{
0 if c̄icolor<γ& cedge(xi)<γ
c̄icolor+cedge(xi)

2 otherwise
, (14)

where αi and βi are normalized and directly obtained

from the confidence. Note that ωi weights each bundle,

see Fig.4(d) for an example. Considering that the num-

ber of bundles in each iteration may be different, we do

not use a normalization strategy to ωi. This is however

weaken the negative impact of untrusted bundle. For

c̄icolor < γ and cedge(xi) < γ, the confidence of the con-

tour point and the region points on Li are both very

small. In such cases, we simply eliminate it to avoid its

negative effect. We further emphasize that our method

does not need to calculate the costs when calculating

weights, and also does not need to unify metrics and

the energy term and bundles are adaptively weighted.

3.4 Pose Optimization

For pose optimization we use the Gauss-Newton

scheme presented in [18] and extend it to our multi-

feature cost function. We also note that Eq. 7 does not

have square terms thus cannot directly use a second-

order optimization strategy. We use the modified ver-

sion of Eq. 7 as in [18] so that it can be optimized using

the Gauss-Newton method. The color energy function

is therefore rewritten as:

ẽcolor(x
j
i , ξ) =

1

2
ψ(xj

i )e
2
color(x

j
i , ξ), (15)

with ψ(xj
i ) = 1/(ecolor(x

j
i , ξ)). For the edge energy

term, Eq. 6 includes the square term and therefore does

not require modification. The Jacobian of ecolor(x
j
i , ξ),

and eedge(xi, ξ) at the pose ξ are:

Jcolor(x
j
i ) =

∂ecolor(x
j
i , ξ)

∂ξ
, (16)

Jedge(xi) =
∂eedge(xi, ξ)

∂ξ
. (17)

Specifically, for the i-th bundle, we express its Ja-

cobian matrix and Hessian matrix as Ji and Hi. Each

of them can be divided into the edge part and the color

part, i.e.:

Ji = αiJ
edge
i + βiJ

color
i , (18)

Hi = αiH
edge
i + βiH

color
i . (19)

For the edge part,

Jedge
i = Jedge(xi) =

∂eedge(xi, ξ)

∂ξ
(20)
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=
∂eedge(xi, ξ)

∂xi
· ∂xi

∂ξ
, (21)

Hedge
i = Jedge>

i · Jedge
i = Jedge(xi)

> · Jedge(xi). (22)

For the color part,

Jcolor
i =

∑|Li|

xj
i∈Li

λJcolor(x
j
i ) (23)

=
∑|Li|

xj
i∈Li

λ
∂ecolor(x

j
i , ξ)

∂ξ
(24)

=
∑|Li|

xj
i∈Li

λCδe
∂Φ(xj

i (ξ))

∂ξ
, (25)

Hcolor
i =

∑|Li|

xj
i∈Li

λψ(xj
i )J
>
color(x

j
i )Jcolor(x

j
i ). (26)

In Eq. 25, C =
Pb(xj

i )−Pf (xj
i )

He(Φ(xj
i ))(Pf (xj

i )−Pb(xj
i ))+Pb(xj

i )
, δe =

δe(Φ(xj
i )) is the smoothed Dirac delta function. In Eq.

26, ψ(xj
i )J
>
color(x

j
i )Jcolor(x

j
i ) is the Hessian matrix of

one region point. Some optimization details can refer

to [18].

The update step of each iteration for all bundles is

also formulated as:

∆ξ=−H−1J>=−(
∑|C|

i
ωiHi)

−1
∑|C|

i
ωiJ

>
i , (27)

where

Ji = αiJedge(xi) + βi
∑|Li|

xj
i∈Li

λJcolor(x
j
i ), (28)

Hi =αiJ
>
edge(xi)Jedge(xi)

+ βi
∑|Li|

xj
i∈Li

λψ(xj
i )J
>
color(x

j
i )Jcolor(x

j
i ).

(29)

Because we divide the optimization point by the local

bundle L, therefore, the J>J term must be calculated

according to this division, and cannot be summed di-

rectly. Otherwise, it cannot play the role of weight item.

We perform the optimization on three scales with four

iterations on the 1/4 image, two iterations on the 1/2

image, and one iteration on the original image.

4 Experiments

We evaluate the performance of the proposed

approach on a laptop equipped with an Intel(R)

Core(TM) i7-8565U @1.8GHz processor, 8GB RAM,

and an NVIDIA GeForce MX250 GPU. We use a set

of default parameters for all experiments, including

S = 100, τ = 0.8, and γ = 0.5. We further set λ

to 1, unless otherwise specified, and we also clip each

model to a maximum of 5000 vertices.

4.1 Comparisons in 3D Tracking Datasets

We compared the proposed method with the state-

of-the-art methods, using the RBOT dataset[18] and the

OPT dataset[31], respectively. And we further show two

challenging examples based on real scenarios.

4.1.1 The RBOT Dataset

The RBOT dataset[18] is a synthetic dataset of im-

ages with 640×512px resolution, where the background

is a real scene image, and the object model is used

to render the foreground. The dataset consists of 18

objects, each contains four sets of variants, includ-

ing regular, dynamic light, noisy + dynamic light, and

occlusion.

Here, we use the same evaluation method as in [18].

For the k-th frame at the j-th sequence, we then ob-

tain the tracking error for translation and rotation as

the following:

ejk(t) = ‖tj(tk)− tjgt(tk)‖2, (30)

ejk(R) = cos−1

(
trace

(
Rj(tk)>Rj

gt(tk)
)
− 1

2

)
. (31)

If ejk(t) < 5cm and ejk(R) < 5◦, the pose is successfully

tracked. Otherwise, the pose is reset to the ground

truth pose. The accuracy of all poses in the sequence

is then obtained by counting the instances.

Table 1 presents a detailed accuracy of the pro-

posed method as well as the other four tracking

methods[17, 18,25,28], and all the results are taken from

their corresponding references. The results confirm

that our method illustrates the effectiveness of the

multi-feature fusion strategy with confidence and it is
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Table 1. Tracking accuracy (%) for the proposed method applied to the RBOT dataset compared to the other state-of-art methods.
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Avg.

Regular
ICCV17 [17] 62.1 30.5 95.8 66.2 61.6 81.7 96.7 89.1 44.1 87.7 74.9 50.9 20.2 68.4 20.0 92.3 64.9 98.5 67.0

TPAMI19 [18] 85.0 39.0 98.9 82.4 79.7 87.6 95.9 93.3 78.1 93.0 86.8 74.6 38.9 81.0 46.8 97.5 80.7 99.4 79.9
IJCV19 [28] 82.6 40.1 92.6 85.0 82.8 87.2 98.0 92.9 81.3 84.5 83.3 76.2 56.1 84.6 57.6 90.5 82.6 95.6 80.8
TIP20 [25] 88.8 41.3 94.0 85.9 86.9 89.0 98.5 93.7 83.1 87.3 86.2 78.5 58.6 86.3 57.9 91.7 85.0 96.2 82.7
Proposed 92.8 42.6 96.8 87.5 90.7 86.2 99.0 96.9 86.8 94.6 90.4 87.0 57.6 88.7 59.9 96.5 90.6 99.5 85.8

Dynamic Light
ICCV17 [17] 61.7 32.0 94.2 66.3 68.0 84.1 96.6 85.8 45.7 88.7 74.1 56.9 29.9 49.1 20.7 91.5 63.0 98.5 67.0

TPAMI19 [18] 84.9 42.0 99.0 81.3 84.3 88.9 95.6 92.5 77.5 94.6 86.4 77.3 52.9 77.9 47.9 96.9 81.7 99.3 81.2
IJCV19 [28] 81.8 39.7 91.5 85.1 82.6 87.1 98.1 90.7 79.7 87.4 81.6 73.1 51.7 75.9 53.4 88.8 78.6 95.6 79.0
TIP20 [25] 89.7 40.2 92.7 86.5 86.6 89.2 98.3 93.9 81.8 88.4 83.9 76.8 55.3 79.3 54.7 88.7 81.0 95.8 81.3
Proposed 93.5 43.1 96.6 88.5 92.8 86.0 99.6 95.5 85.7 96.8 91.1 90.2 68.4 86.8 59.7 96.1 91.5 99.2 86.7

Noisy +
Dynamic Light

ICCV17 [17] 55.9 35.3 75.4 67.4 27.8 10.2 94.3 33.4 8.6 50.9 76.3 2.3 2.2 18.2 11.4 36.6 31.3 93.5 40.6
TPAMI19 [18] 77.5 44.5 91.5 82.9 51.7 38.4 95.1 69.2 24.4 64.3 88.5 11.2 2.9 46.7 32.7 57.3 44.1 96.6 56.6
IJCV19 [28] 80.5 35.0 80.9 85.5 58.4 53.5 96.7 65.9 38.2 71.8 85.8 29.7 17.0 59.3 34.8 61.1 60.8 93.6 61.6
TIP20 [25] 79.3 35.2 82.6 86.2 65.1 56.9 96.9 67.0 37.5 75.2 85.4 35.2 18.9 63.7 35.4 64.6 66.3 93.2 63.6
Proposed 89.1 44.0 91.6 89.4 75.2 62.3 98.6 77.3 41.2 81.5 91.6 54.5 31.8 65.0 46.0 78.5 69.6 97.6 71.4

Occlusion
ICCV17 [17] 55.2 29.9 82.4 56.9 55.7 72.2 87.9 75.7 39.6 78.7 68.1 47.1 26.2 35.6 16.6 78.6 50.3 77.6 57.5

TPAMI19 [18] 80.0 42.7 91.8 73.5 76.1 81.7 89.8 82.6 68.7 86.7 80.5 67.0 46.6 64.0 43.6 88.8 68.6 86.2 73.3
IJCV19 [28] 77.7 37.3 87.1 78.7 74.6 81.0 93.8 84.3 73.2 83.7 77.0 66.4 48.6 70.8 49.6 85.0 73.8 90.6 74.1
TIP20 [25] 83.9 38.1 92.4 81.5 81.3 85.5 97.5 88.9 76.1 87.5 81.7 72.7 52.2 77.2 53.9 88.5 79.3 92.5 78.4
Proposed 89.3 43.3 92.2 83.1 84.1 79.0 94.5 88.6 76.2 90.4 87.0 80.7 61.6 75.3 53.1 91.1 81.9 93.4 80.3

performing better than the others, especially in the

noisy + dynamic light variant, the average accuracy

rate is improved by about 7.8% compared with [25].

This is because image of the noisy + dynamic light

variant contains a lot of random noise. This makes

the color histograms of the foreground and background

similar to each other, leading to an unreliable corre-

sponding probability. The proposed method fuses the

advantage of the edge feature which is less affected by

the noise, hence greatly improves the accuracy.

For the regular and dynamic light variables, our

method also improves by ∼ 3.1% and ∼ 5.4%. For

occlusion variant, our mean accuracy is still ∼ 1.9%

higher than [25] even if it adopts an explicit way to

handle occlusion. [28] is also a feature fusion method

that fuses color features and photometric constraints.

But this method adopts a direct fusion way, and its

result is only sightly better than the region-based[18]

and far less than that of the proposed method. This

confirms the effectiveness of our proposed approach.

Table 2. The AUC scores in the OPT dataset of the proposed
approach compared to the other methods.

Method bike chest house ironman jet soda Avg.
UDP [32] 6.097 6.791 5.974 5.250 2.342 8.494 5.825

ElasticFusion [33] 1.567 1.534 2.695 1.692 1.858 1.895 1.874
ORB-SLAM2 [34] 10.410 15.531 17.283 11.198 9.931 13.444 12.966

PWP3D [14] 5.358 5.551 3.575 3.915 5.813 5.870 5.014
MTAP19 [12] 1.053 8.669 5.599 3.895 1.596 9.055 4.978
TPAMI19 [18] 11.903 11.764 10.150 11.986 13.217 8.861 11.314

TIP20 [25] 12.831 12.240 13.613 11.214 15.441 9.012 12.392
Proposed 12.848 14.922 13.577 13.443 10.642 8.996 12.405

4.1.2 The OPT Dataset

The OPT dataset[31] is a real dataset with 6 ob-

jects, i.e., bike, chest, house, ironman, jet and soda,

where each object contains 7 motion patterns. We eval-

uate our method by using all RGB image sequences at

1920 × 1080px resolution. The pose error of the k-th

frame at the j-th sequence is:

ejk =
1

n

∑n

i=1
‖(P j(tk)X̃i − P j

gt(tk)X̃i)3×1‖2. (32)

In this setting, the pose is successfully tracked if ejk <

λedm, where λe is a predefined threshold, and dm is

the largest distance between the vertices of the model.

Within the tracking process, only the first frame of the

ground truth is used for initialization. If the tracking

fails, no recovery is taken. For a given λe, for all se-

quences we then obtain the accuracy which is between

0 and 100. The final tracking accuracy is measured
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by AUC (area under curve) score for all λe ∈ [0, 0.2],

meaning the AUC score is between 0 and 20.

Table 2 presents the results obtained based on our

approach compared with 7 other state-of-art methods.

In Table 2 PWP3D[14], MTAP19[12], TPAMI19[18] and

TIP20[25] are 3D Tracking methods, UDP[32] is a pose

estimation method, and ElasticFusion[33] and ORB-

SLAM2[34] are visual SLAM methods. Their results

except [12] are available in [18, 25, 31]. For [12], the

results are obtained using the code provided by the au-

thors. We only use one particle, which does not use

color information as a constraint, thus it is easy to be

lost. Besides, [12] only uses one re-projection process

in the calculation and utilize the L-M method for op-

timization. This may results in the object being easily

trapped in a local minimum during the tracking and

thus lost.

In Table 2, ORB-SLAM2 obtains the best results

because the objects are well textured thus stable fea-

ture points can be easily found. Our method performs

significantly better than UDP, ElasticFusion, PWP3D

and MTAP19, and slightly better than TPAMI19 and

TIP20. In the OPT dataset, the background surround-

ing the objects is a white region. Thus the color

feature[18, 25] is able to segment the foreground and the

background, therefore adding edge features does not

significantly improve the result.

Fig.5. Two typical cases that our method outperforms the region-
based method of [18]. Left: The light is drastically changed be-
tween the two frames. Right: The foreground object has similar
colors as the background, and the object is under highlight. In
both cases it is difficult to get accurate foreground probability
with color distribution, so the region-based method will be error-
prone.

4.1.3 Visual Analysis

Fig.5 demonstrate two typical cases and proves that

our method can outperform the region-based method of

TPAMI19[18].

The first case is demonstrated under a condition

where light changes drastically, as shown in the left two

columns of Fig.5. The image is obtained from the OPT

dataset and zoomed for better visualization. We can

see that the color of the image changes drastically un-

der the spotlight. In [18], only the color feature is used,

and the update of the color model cannot catch up with

the color change, result in a computed color probability

map with errors, leading to a further tracking failure,

especially in rotation. Our method incorporates edge

features in an optimized way, which is not effected by

the illumination changes, and thus can be more robust

in this case.

The second one handle a case where the color of

the foreground is similar to the background, and also

the object is under the highlight, as shown in the right

two columns of Fig.5. The Bunny model shares similar

color with the background, in which case it is unreliable

to estimate the foreground probability with color distri-

bution. Although local color distribution is adopted in
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[18] to improve the robustness of estimated color prob-

ability, but still we often can encounter cases that the

color feature is less accurate than edge. By fusing both

color and edge features with local bundle, our method

can achieve better robustness in handling different chal-

lenge situations.

4.2 Ablation Studies

The proposed method is based on adaptively

weighted local bundles for fusing the features. Here we

evaluate the accuracy of the part to analyze their cor-

responding contribution in improving efficiency. Here

we use RBOT dataset for our performance evaluations.

Table 3. Average tracking accuracy (%) in the RBOT dataset
of the different parts of the proposed approach.

Varaint [18]
w. conf

wo. edge
wo. conf
w. edge proposed

Regular 79.92 83.54 84.58 85.78
Dynamic Light 81.16 85.13 85.34 86.73

Noisy + DL 56.64 60.68 68.44 71.38
Occlusion 73.27 77.01 78.42 80.27

In Table 3, the first column is the result of [18] which

is considered as the baseline because we borrowed its

energy equation as the color feature energy term. The

second column shows the results of using the color fea-

ture only with confidence. The role played by each re-

gion point is weighted by the confidence, and the edge

energy terms eedge and bundle Li are not included. The

results show that the accuracy rate is 3% − 4% higher

than that of in [18]. This confirms the effectiveness

of the confidence and confirms that it is applicable in

different scenarios.

Further in Table 3, the third column shows the re-

sults of using fusion features without confidence, i.e.,

the local bundle structure is removed, and the confi-

dence values are set to a fixed number (c̄icolor = 1.0,

cedge(xi) = 1.0 and ωi = 1.0). The improvement is par-

ticularly evident in the noisy + dynamic light variant,

which shows that using the edge features compensates

for the disadvantages associated with the color features.

The accuracy of the other three variables also improved

by 4%− 5%. This further confirms the effectiveness of

multi-feature fusion. In addition, the results show that

the effect of adding multiple features is greater than

that of the effect of adding confidence alone.

The last column in Table 3 shows the results of the

proposed method, which uses the confidence and local

bundle to fuse two features. Adjusting the weight of

the color energy term and the edge energy term enables

them to be complemented. The above results confirm

that the weighting based on the confidence value is ef-

fective.

Table 4. The Average tracking accuracy (%) in the RBOT
dataset compared to the edge-based method[12].

Variant [12] [12]+ w. conf proposed
Regular 21.84 40.34 43.36 85.78

Dynamic Light 22.02 43.97 46.92 86.73
Noisy + DL 20.74 39.46 42.40 71.38
Occlusion 21.57 42.18 44.65 80.27

Table 4 presents another set of experiments that

makes the comparison based on the edge-based

method[12]. The first column is the result of [12]. For

a fair comparison, we modify its optimization strategy

to align with the proposed method, i.e., we changed

the number of re-projection operations to seven in the

pyramid and pick Gauss-Newton method for the opti-

mization. The results are shown in the second column

as [12]+. As it is seen here the results are significantly

worse than the region-based method[18]. This indicates

that on a single feature, the color constraint informa-

tion is significantly stronger than that of the edge con-

straint information. In [12]+, we also eliminate the

confidence term.

The third column is the result with confidence,

which improves the accuracy by about 3%. It is seen

that the accuracy of each variable is slightly different,
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which also shows that the influence of dynamic light

and noise on edge features is small. Adding the edge

features also compensates for the disadvantages of the

color features.

4.3 Analysis and Discussions

This section analyze the proposed method and dis-

cuss its function by presenting some intermediate re-

sults. All example images are taken from RBOT

dataset.

4.3.1 Adaptivity to different cases

The parameter λ is important for balancing the ef-

fect of the color and edge features. The proposed adap-

tive weighting method is also helpful for setting the

value of λ so that the optimal fusion of the features can

be achieved in different cases. To verify this we conduct

the experiments explained in Table 5, which shows the

changes of accuracy on the RBOT dataset for different

values of λ. We also obtain the results with and with-

out the confidence-based adaptive weights for different

cases. As it is seen, the proposed method with adaptive

weights achieves the highest accuracy for different cases

all achieved by λ = 1. In other words, by setting λ = 1

we get the optimal fusions of color and edge features for

all of the different cases. On the contrary, as shown in

Table 5, without using the adaptive weights, the highest

accuracy for different cases is achieved by very different

values of λ. This indicates that the optimal fusion is

not achieved by a constant value of λ.

Our method is adaptive to different cases mainly be-

cause the weights are adaptively estimated to suspend

the effect of unreliable features. The remaining features

have high confidence values and the optimal fusion is

achieved by uniform weights.

Table 5. Sensitivity to λ in different cases. The average track-
ing accuracy (%) on the RBOT dataset with and without the
confidences are presented separately for comparison.

w. conf λ = 0.5 0.8 1.0 1.2 1.5 2.0
Regular 83.66 84.84 85.78 84.97 84.74 84.69

Dynamic Light 84.88 85.95 86.73 86.09 85.96 85.92
Noisy + DL 70.96 71.13 71.38 70.02 70.11 68.12
Occlusion 79.05 79.37 80.27 79.49 79.39 78.92

wo. conf λ = 0.5 0.8 1.0 1.2 1.5 2.0
Regular 83.58 84.49 84.58 84.38 84.32 84.18

Dynamic Light 84.17 85.41 85.34 85.78 85.78 85.43
Noisy + DL 70.09 69.85 68.44 68.59 67.50 66.63
Occlusion 78.91 79.52 78.42 79.34 78.98 78.87

4.3.2 The Probability Map

The color-based method mainly depends on the

quality of the color probability model. If the back-

ground is clear and the foreground color and back-

ground color are distinguishable, then the region-based

method can generally get ideal results. Fig.6 shows the

intermediate results of the probability map. The second

to fourth columns represent the foreground probability

map, the background probability map, and the color

confidence map calculated by the proposed method. All

the map shown here are calculated on the last iteration

during optimization. It should be noted these calcula-

tions do not have to be performed on the full image in

the actual optimization, here are just shown on the full

map to analyze our results.

In Fig.6, the first line of the image (frame 0 of Clown

model of regular variant) shows a situation where the

foreground color and background color are easy to iden-

tify. In this case, the objects can be easily segmented

according to the foreground and background probabil-

ity maps. And the calculated confidence values are

high in the foreground and surrounding areas. Gaussian

noisy and dynamic light are added to the input image

in second row (noisy+dynamic light variant) based on

the first one. Although the probability map can also

distinguish the foreground and background regions, its

quality has decreased, especially the impact of noise.

In this case, our color confidence can play its role. By
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Fig.6. Probability analysis of typical images. The first column is the input image. The next three columns are the foreground
probability map, background probability map, and color confidence of each image point, respectively. The last column is the result.

assigning lower values to areas where the difference is

not obvious, the negative impact is reduced.

The third and fourth rows show another set of

examples (frame 528 of Koalacandy model of regular

and noisy+dynamic light variants). Although the fore-

ground color of the image in the third row is com-

plex and the probability map is indiscriminative, the

contour of the object can still be segmented from the

color around the object. And the confidence of the

color around the object is also very credible. This tells

us that even if the difference between the probability

maps of the foreground and background is not very ob-

vious (compared with the first row), the color model

still works, and the confidence can be used as a com-

plement to the color model. In the fourth row, due to

the addition of noise and dynamic light, it is difficult to

distinguish the position of the object in the probability

map, and the value of the confidence map is generally

lower. At this time, we need to add edge features to

overcome this shortcoming.

4.3.3 The Confidence Values

To better analyze the effect of the confidence val-

ues, we select several typical images, as shown in Fig.7.

Each row represents an image and its corresponding

confidence map. All the confidence maps are obtained

at the last iteration during optimization. Each column

from left to right represents the input image, per pixel

segmentation visualized as Pf (x)−Pb(x) > 0, the con-

fidence value of the region points, the confidence value

of the contour points, and the weights of the local bun-

dles.

In the first row (frame 11 of the phone model of
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Fig. 7. Confidence analysis of typical images. The columns 1-5 represent the input image, per pixel segmentation visualized as
Pf (x) − Pb(x) > 0, the confidence of the region points, the confidence of the contour points, and the weights of the local bundles.

regular variant), the color of the phone is similar to the

background, especially the part located inside the red

box. It is more likely that the color of the background

belongs to the foreground, as shown in the second col-

umn. Therefore, if we use the color model directly for

optimization the points inside the red box may nega-

tively affect the result. The third column is the result of

the confidence of the region points. It can be seen that

the color confidence in the red box is mostly between

0.4-0.8 which reduces the negative impact of similar

colors. Although the foreground and background col-

ors in the red box area are similar and a clear edge

is still detectable between them. Therefore, the confi-

dence values of the contour points are very high and

most of them are above 0.8, as seen in the fourth col-

umn. Finally, we can calculate the weight of each local

bundle using their confidence values, as in the fifth col-

umn. All the points in the red box are calculated, but

the color term plays a smaller role than the edge term.

Therefore, the negative effect of the similar colors is

reduced and the advantages of contour features is high-

lighted, resulting in higher accuracy than that of other

methods.

In the second row (noisy+dynamic light variant),

the colors of the foreground and background overlap

with each other, partially due to the dynamic light and

Gaussian noise. This is a challenge for the region-based

approach. As shown in the third column, compared

with the confidence of the region points in the first row,

the overall confidence in the second row is lower. How-

ever, the addition of these dynamic lights and Gaussian

noise has a little impact on edge detection. As shown in
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the fourth column, the confidence of the contour points

still reaches a high value. Finally, because the con-

tour points have high confidence, all bundles are still

involved in the calculation, but the role of the color

term is reduced.

The third and fourth rows are another set of ex-

amples (frame 171 of Camera model of regular and

noisy+dynamic light variants), similar to the previous

set. It is worth noting that in cases where the con-

fidence of the region points and the confidence of the

contour points are both low, the points on the bundle do

not participate in the optimization. For details, please

refer to the points in the lower-left corner of the red

box. Our optimized fusion method weights the features

in each bundle based on their confidence, therefore it

takes advantage of different features in each local region

to achieve better results.

4.3.4 The Weights of the Features

In this section, we analyze the weight of energy

terms and bundles, which are both adaptively weighted

by confidence. We select the sequence (regular variant

of the Ape model) for analysis.

Fig.8(a) shows the trend of color energy term

weights. β represents the mean weight of the color term

of all the bundles L, α = 1 − β is the mean weight of

the edge term. Besides, β is shown in the figure stands

for the last iteration of the tracking. We can see that

the weight of the color term is mainly distributed be-

tween 0.4-0.6, and its average value is 0.48. In general,

the average impact of the color term and the edge term

is the same. However, through adaptive adjustment,

we can fully exploit their respective advantages. For

the weight distribution at other iterations, there is no

significant difference from the last iteration, therefore

they are not listed here.

Fig.8. (a) β distribution of Ape model of regular variant and
(b) ω distribution of Ape model of regular variant. A smaller ω
indicates a lower participation level in the overall optimization
point.

Further, we pick out the images corresponding to

the maximum and minimum values of β. In cases where

β reaches its minimum, as shown in the first image, the

object is at a position similar to its color. This reduces

the weight of the color term. In cases where β reaches

its maximum, part of the object exceeds the image,

leading to the ill-matched edges. The color item weight

then becomes larger. It can be seen that the weights

are adjusted accordingly to improve the performance of

the algorithm.

Fig.8(b) further illustrates the trend of ω. Here ω

represents the average of the weights of all bundles,

which can reflect the participation of all optimization

points in the calculation. When the value of ω is small,

the optimization points have lower reliability and thus
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lower participation in the calculation. ω is mainly dis-

tributed between 0.8-0.9, and its average is 0.86. We

select two images corresponding to the minimum value.

The first image is the case in which the object exceeds

the boundary, and the second image shows the object

which is located in a position with a similar color. Cor-

responding to Fig.8(a), these two cases are the situa-

tions where one feature is invalid, and two figures to-

gether can reflect the validity of the weight setting.

Fig.9. The confidence of the contour points can shield the outliers
in the occlusion scene. The first column is the input occlusion
image. The second column is the confidence of the corresponding
contour points, and the last column is the weight of the corre-
sponding bundle. Our method gives low confidence to the contour
points in the occlusion area and makes the corresponding bundle
weight lower, shielding the outliers.

4.3.5 Robust to Outlier

We further show the confidence of the contour

points can handle occlusion situations, as shown in

Fig. 9. The first column is the image when the object is

occluded, where we zoom in on it to facilitate observa-

tion. We use a red box to mark the occluded part. The

second column is the confidence of the corresponding

contour points. The confidence of the occluded part

is generally below 0.4, indicating its robustness to the

outliers. Although the confidence of the region points is

not designed to consider the influence of the occlusion,

due to the contour point confidence, the corresponding

bundle still has only a small weight, which can reduce

the negative impact of outliers, as shown in the last

column.

4.4 The Time Cost

In our experimental environment, the average speed

of the proposed method on all sequences of the RBOT

dataset is 32.1ms, compared with TPAMI19[18] which

is 26.2ms, see Table 6. For other methods, we also list

the average time. ICCV17[17] and MTAP19[12] are the

result of testing in our experimental environment, and

IJCV19[28] and TIP20[25] are the results presented in

[25].

Table 6. Runtime performance.

Method Avg. time(ms) Std.

ICCV17 [17] 27.3 2.42
MTAP19 [12] 9.8 0.81
TPAMI19 [18] 26.2 2.31
IJCV19 [28] 47.0 -
TIP20 [25] 41.2 -
Proposed 32.1 3.05

4.5 Limitations

An optimized multi-feature fusion method with

adaptively weighted local bundles is proposed in this

paper. It has advantages when the background is com-

plex or the color of the foreground and the background

are similar. However, it still has some limitations.

A complete 3D tracking system also includes initial-

ization and relocation modules. In this paper, we only

focus on the tracking module, and the 3D detection

modules[35] can be added to our method to complete

the system. In addition, we can perform the tracking

for each object to do the multi-object tracking. This is

however limited by the computational efficiency. Effi-

cient multi-object tracking methods will be explored in
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future work.

The color feature is distinguishable enough to get

a proper segmentation when the background color is

pure. In this case, merging into the edge feature does

not provide significant improvement, see the experi-

ment in Table 2. Besides, our method is disturbed when

the background is particularly complex, or objects are

severely occluded. Finally, objects with symmetry and

translucency are still challenging.

5 Conclusion

This work proposes an optimized way to fuse multi-

feature for 3D object tracking. To achieve optimal fu-

sion and avoid the side effects of simple feature fusion

with uniform weights, we propose to group the region

and edge features as a set of local bundles, which are

adaptively weighted based on the confidence values of

the involved features. The benefits of using local bun-

dles are two-fold: First, the spatial-variant weights (ωi)

can be estimated more reliably by averaging over fea-

tures of each bundle. Second, the color and edge fea-

tures can compete via spatial-variant weights (αi,βi)

despite their spatial inconsistency. Using experiments,

we compare the proposed method with the previous

single-feature and multi-feature methods without adap-

tive weighting. In both cases, our proposed approach

significantly overperforms other techniques. Extended

experiments also show that the proposed method en-

ables balancing the overall effect of each feature in dif-

ferent conditions. We further show that the overall

weighting parameter λ is not essential. For the future

works, additional features fusing might be taken into

consideration, for example, the interior texture infor-

mation to handle the textured and texture-less objects.
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based gauss-newton approach to real-time monocular mul-

tiple object tracking. IEEE Trans. Pattern Anal. Mach.

Intell., 2019, 41(8): 1797-1812.
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