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Abstract A geometric mapping establishes the

correspondence between two domains. Since no realistic

object contains zero or even negative volume, the

mapping is required to be inversion-free. Computing

inversion-free mapping is a fundamental task in

numerous computer graphics and geometric processing

applications, such as deformation, texture mapping,

mesh generation, many more. This task is usually

formulated as a non-convex and nonlinear constrained

optimization problem. Various methods have been

developed to solve the optimization problem. Besides,

to be inversion-free, different applications have different

requirements. We expand the discussion in two

directions: (1) problems containing specific constraints

and (2) combinatorial problems. This report provides

a systematic overview of inversion-free mapping

construction, a detailed discussion of the construction

methods, including their strengths and weaknesses, and

the open problems in this research field.

Keywords inversion-free mapping; Jacobian matrix;

distortion; first-order methods; second-

order methods.

1 Introduction

In computer graphics and geometric processing, a

geometric mapping f : Ω ⊂ Rm → Rn transforms its

domain Ω into another domain. The task of computing

geometric mappings is expected and essential. For
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example, the difficulty of geometric processing tasks

can be significantly reduced in the mapped domains.

In texture mapping, the parameterization is used to

map an existing 2D image onto the 3D model. In

FEM simulation, the geometric mapping is optimized

to improve the mesh quality, thereby improving the

simulation accuracy.

Ω

f

Fig. 1 Illustration for the geometric mapping f .

There is no zero or even negative volume in any

natural material. Intuitively, any physical deformation

will not result in zero or even negative volume. Thus,

the determinant of the Jacobian matrix of f at any

x ∈ Ω, which indicates the ratio between the original

volume and the transformed volume, must be positive.

This constraint is called an inversion-free condition. In

other literature, other names are used, such as flip-free

constraint, foldover-free constraint, and orientation-

preserving constraint. We are interested in surveying

the body of work that focuses on the active creation of

such mappings.

Jix + ti

Fig. 2 Illustration for the piecewise linear mapping.

If not specified, the models we focus on are all the

d-dimensional simplicial meshes on Rm, which will
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be introduced in Section 2. The mapping we deal

with then will be the piecewise linear mapping on the

simplicial meshes:

f(x) = Jix + ti,∀x ∈ si

where x is a point on the simplex si of a mesh, and Ji
is the discrete Jacobian matrix, which is constant on

si. ti is a transformation vector.

1.1 Common applications

An increasing number of computer graphics and

geometry processing methods rely on inversion-free

geometric mappings. Here, we first discuss three

typical applications, including deformation, mesh

parameterizations, and mesh quality improvement [12].

Deformation Given the desired positions of the

manipulation handles in shape deformation, we seek a

new shape that satisfies the following properties:

� The shape distortion is small.

� The resulting model meets the positional

constraints of the handles.

� The deformation from the input shape to the result

is inversion-free.

Parameterizations Parameterizations map 3D

triangular surfaces onto the plane. By building a local

coordinate frame on each triangle, the parameterization

is a continuous piecewise affine map. The Jacobian

matrix on each triangle is constant and is a 2 × 2

matrix. In addition to satisfying the inversion-free

constraint, the parameterization is also required to

contain small distortion. As a consequence, the texture

image can be projected onto the 3D surface with small

distortion. Figure 3 shows a comparison between

parameterizations with and without inversion-free

constraints. The inverted triangles cause significantly

visual artifacts in texture mapping.

Without With

Fig. 3 Parameterizations with/without inversion-free

constraints. The yellow triangles in the left image indicate the

inverted triangles. The color on triangles encodes the distortion,

with white being optimal.

Mesh quality improvement To improve the accuracy

in FEM simulation, the mesh elements are required

to approach their ideal shapes. Since the element

degeneration threatens the robustness and realism of

FEM, the element should be with positive volume.

Thus, the mesh quality improvement problem can also

be treated as an inversion-free mapping construction

problem.

1.2 General formulation

Based on the introduction of the three common

problems, inversion-free geometric mappings can be

constructed by a computational model that optimizes

mapping objectives while satisfying inversion-free

constraints.
min
u

E(u)

s.t. detJ(x) > 0, ∀x ∈ Ω,

Au = b,

(1)

where J(x) is the Jacobian matrix of f at x, u

indicates the vector representation of the optimization

variables, E(u) means the optimization objective, and

Au = b denotes the linear constraint, where J(x)

is the Jacobian matrix of f at x, u indicates the

vector representation of the optimization variables,

E(u) means the optimization objective, and Au = b

denotes the linear constraint.

For example, in shape deformation, E(u) represents

the shape distortion, and the linear constraint indicates

the positional constraint of handles.

1.3 Overview

To provide a comprehensive overview of the recent

contributions that have been made to this topic, we

study problem (1) in the following aspects:

Variables Different representations of u have

various algorithm performances. The mesh vertex

positions are commonly used variables in geometric

mapping computation. However, a more appropriate

representation can significantly improve the algorithm’s

efficiency and robustness for dedicated geometric

process tasks. We introduce these representations in

Section 2.

Objectives Different applications have their own

goals. For example, shape deformation and mesh

parameterizations usually optimize the distortion from

the reference mesh. In general, a lot of distortion

metrics exist. Various optimization objective metrics

are covered in Section 3.
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Inversion-free constraints The inversion-free

constraint is nonlinear. The method of handling

constraints determines the difficulty of the algorithm.

More mathematical analyses of the inversion-free

constraints and different approaches to realize the

inversion-free goal are described in Section 4.

Methods Many methods have been proposed to solve

the problem (1) to construct inversion-free geometric

mappings. If the initial geometric mappings are

inversion-free, keeping the mappings always staying in

the inversion-free space can theoretically guarantee the

inversion-free constraint to be satisfied. Otherwise,

various methods are presented to push the invalid

mappings into the inversion-free space. We analyze

their strengths and weaknesses in Section 5.

More constraints The formulation (1) is not suitable

for all applications. For the special applications, it

should be added with some other constrains that are

linear or non-linear. There are more specific constraints

demanded by applications. In Section 6, we outline the

bijective, bijective inter-surface, axis-aligned and global

seamless constraints. These constraints present more

difficulties in constructing geometric mappings, thereby

requiring the design of dedicated algorithms.

Combinatorial problems Discrete variables or

constraints may arise in geometric mapping

construction problems, such as cone singularity

detection, cut construction for parameterizations, and

hex mesh structure simplification. These combinatorial

problems are difficult to be resolved. We present these

problems and their existing solutions in Section 7.

Open questions By discussing open problems,

shortcomings, and remaining questions, we conclude in

Section 8.

2 Variables

Many representations of the variable u have been

used for computing inversion-free mappings. Each

representation has its strengths and weaknesses.

Thus, given a geometric process task, an appropriate

representation can significantly improve algorithm

efficiency and robustness.

2.1 Mesh-based mappings

We first study mappings on simplicial meshes (2D

triangular meshes or 3D tetrahedral meshes). The

domain Ω of the mapping f is a d-dimensional simplicial

va

vb

ei = vavb

si

v̂a

v̂b

ŝi

Fig. 4 Illustration for the symbols

mesh M containing Nv vertices {vi, i = 1, . . . , Nv},
Ne edges {ei, i = 1, . . . , Ne} and N simplices {si, i =

1, . . . , N}. The mapping f is a continuous piecewise

linear mapping. The Jacobian matrix of f on each

simplex si is constant, denoted as Ji. We denote the

image of the mesh, vertex, edge and simplex under the

mapping f as M̂, v̂, ê, ŝ, respectively.

2.1.1 Vertex positions

Manipulating mesh vertex positions v̂ is a common

approach in mapping computation.

Jacobian matrices We denote the simplex si with

(d + 1) corresponding vertices as si = 4vi,0, · · · ,vi,d
and its image as ŝi = 4v̂i,0, · · · , v̂i,d. Then, we get a

simple form of the Jacobian matrix Ji:

Ji = [v̂i,0−v̂i,1, · · · , v̂i,0−v̂i,d][vi,0−vi,1, · · · ,vi,0−vi,d]
−1.

The Jacobian matrix Ji is a linear function of the vertex

positions v̂.

Discussions If the initial mapping is inversion-free,

vertex positions are very appropriate. We can use

the explicit checks in combination with line search

to always satisfy the inversion-free constraint when

performing mapping distortion reduction. However,

the initializations with inverted simplices increase the

difficulty of creating inversion-free results. As the

inversion-free constraint concerning vertex positions

is nonlinear and non-convex, eliminating the inverted

simplices is difficult and non-trivial.

2.1.2 Jacobian matrices

Motivation To effectively handle the inverted

initializations, Jacobian matrices are used [39]. Since

the Jacobian matrices become the variables, we can

easily project inverted Jacobian matrices of the initial

mapping into the inversion-free space. Then, the

explicit checks combined with line search can keep

Jacobian matrices inside the inversion-free space

during the mapping construction process.

Assembly constraints However, the individual

Jacobian matrices disassemble the input mesh into

3
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disjoint simplices. To assemble disjoint simplices, two

assembly constraints should be satisfied [39]:

� Edge assembly constraints. For any two

neighboring simplices si and sj who share an edge

ek, the mapping images of any end points of ek by

the individual mappings should be the same.

� Positional assembly constraints. For any simplex

si which contains positional constraints, the

individual mapping should satisfy the positional

constraints.

Recover M̂ When the optimal Jacobian matrices,

which satisfy the edge assembly constraints and

positional assembly constraints, are achieved, the

vertex positions of M̂ can be recovered by solving the

following least squares problem:

min
v̂1,...,v̂n

Ne∑
k=1

(
‖Ji(va − vb)− (v̂a − v̂b)‖22 +

‖Jj(va − vb)− (v̂a − v̂b)‖22
)
.

Here the edge vavb is adjacent to simplices si and sj ,

and the positional constraints are fixed.

2.1.3 Angles

In addition to vertex positions, other geometric

concepts can also be used to compute inversion-free

mappings. Triangle angles are used to compute

inversion-free parameterizations with small conformal

distortion [120, 122]. For tetrahedral meshes,

dihedral angles are used to compute inversion-free

mappings [104].

Angle-based flattening To reconstruct a valid

parameterized mesh from angles, the following

consistency conditions are required [120]:

� Triangle consistency. For each triangular face with

angles α̂, β̂, γ̂:

α̂+ β̂ + γ̂ = π.

� Vertex consistency. For each internal vertex v̂,

with central angles α̂1, ..., α̂n:
n∑
i=1

α̂i = 2π.

� Wheel consistency. For each internal vertex v̂ with

left angles β̂1, ..., β̂n and right angles γ̂1, ..., γ̂n:
n∏
i=1

sin β̂i
sin γ̂i

= 1.

To satisfy the inversion-free constraint, the angles

are required to be positive. There are two common

methods to recover a parameterized mesh from the

angles:

� The ABF technique [120] proposes an unfolding

mechanism that constructs the parameterization

coordinates for one vertex at a time in a front

propagation procedure. This method suffers from

error accumulation that breaks the parameterized

mesh.

� The ABF++ technique [122] formulates the

reconstruction problem as a global linear

system and computes all the vertex coordinates

simultaneously by the least-square method.

Dihedral angles of tetrahedral meshes Dihedral

angles are used to determine the shape of a tetrahedral

mesh [104]. To obtain this mappings for tetrahedral

meshes, three types of structural constraints and

some inequalities are needed. Then the dihedral

angle determination process is formulated as a

constrained nonlinear optimization problem. Finally,

a robust linear spectral reconstruction method, which

distributes numerical errors uniformly across the mesh,

is proposed to recover positions.

2.1.4 Metrics

Metric scaling, i.e., scalings of mesh edge lengths,

is another good representation for conformal

embedding [9, 24, 34, 129].

Discrete conformality According to [92, 112], two

discrete metrics l̂i and li on M are conformally

equivalent if the metrics are related by:

l̂i = eua+ub li, ei = vavb,

where ui ∈ R is the conformal factor assigned for

vi. This metric is called piecewise linear metric (PL

metric). Actually, li is the edge length of ei.

Conformal parameterizations via intrinsic flow

Since the parameterized mesh is planar, its curvature

is zero everywhere. From Gauss’s Theorema Egregium,

Gaussian curvature is an intrinsic invariance of a

surface determined by a metric. The conformal

parameterizations can be achieved by intrinsic flows

(e.g., Ricci flow, Calabi flow, Yamabe flow) that

evolve the surface metric into a flat one. The final

parametrization is obtained by embedding the surface

of the flat metric to the 2D plane.

Recovering vertices After the convergence of the

intrinsic flows, we achieve a new length l̂i for each edge

ei = vavb to reconstruct a parameterized mesh. The

first reconstruction method assembles the triangle one

by one [132]; however, it accumulates the numerical
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Handles AMIPS Meshless-AMIPS

Fig. 5 3D meshless deformation of a spherical tet mesh using

AMIPS. Deformed meshes and their cut-views are shown. The

meshless deformation generates smooth results. Image courtesy

of [41].

error so that the resulting parameterized mesh breaks.

To distribute the numerical errors evenly, a novel

extrinsic shape optimization procedure is proposed

in [34]. It optimizes the edge length to the target and

minimizes the mean curvatures to zero by a local-global

solver. Nevertheless, its solver cannot theoretically

guarantee no inverted triangles. To this end, we

propose a new optimization problem to recover vertices:

min
v̂1,...,v̂n

Ne∑
i=1

dli +
N∑
j=1

dbj . (2)

dli measures the length difference:

dli =
|v̂a − v̂b|22

l̂2i
+

l̂2i
|v̂a − v̂b|22

.

dbi is a triangle inequality-based barrier function [131]

defined on the triangle ŝi = 4v̂i,0v̂i,1v̂i,2 to avoid

inversion.

dbj =
1

|v̂i,1 − v̂i,2|+ |v̂i,1 − v̂i,3| − |v̂i,2 − v̂i,3|

=
1

|v̂i,2 − v̂i,1|+ |v̂i,2 − v̂i,3| − |v̂i,1 − v̂i,3|

=
1

|v̂i,3 − v̂i,1|+ |v̂i,3 − v̂i,2| − |v̂i,1 − v̂i,2|

.

Starting from an inversion-free parameterization,

solving (2) can achieve a desired result.

2.2 Meshless mappings

In general, the mesh-based mapping is C0 and lacks

high-order smoothness. To this end, we then study

meshless mappings to achieve high-order smoothness

(Figure 5).

Mapping representation A meshless mapping f is

usually defined as:

Jx =
m∑
j=1

cj∇xBj(x).

where B = {Bj}mj=1 is a set of basis functions and

the coefficients of basis functions c = [c1, · · · , cm] are

unknowns. For example, the uniform cubic tensor

product B-splines and RBF basis functions can be used

as the basis functions.

Jacobian matrices Then, the Jacobian matrix of f at

x has the form:

Jx =
m∑
j=1

cj∇xBj(x).

Based on [107], a meshless mapping is considered to be

inversion-free if the mapping is inversion-free on dense

sampling points. Without loss of generality, we denote

the sampling points as {pi ∈ Ω, i = 1, ..., N} and the

Jpi as Ji. Ji is also a linear function of the unknown

coefficients c.

Discussions In shape deformation [21, 22, 42, 76,

107], the rest pose indicates an identity map that is

inversion-free and contains the least distortion. Then,

after the handles are moved to the desired positions, we

optimize c to reduce shape distortion while satisfying

the inversion-free constraints. The size of c is usually

small enough to enable real-time interaction.

In isogeometric analysis [60], domain

parameterizations are generated by mapping

parametric domains (generally unit cubes) to

computational domains. Usually, the basis functions

of the parameterizations are formulated as spline

functions. Inversion-free parameterizations are

required to improve the subsequent accuracy and

computational robustness for solving partial differential

equations. However, the initial parameterizations often

contain inverted regions, so the challenges are to

eliminate them [83, 101].

Smooth mappings are used to seamlessly transform

the floor plan of a large virtual scene into a small

physical space for real walking in virtual reality [29,

30, 133]. The mapping is required to be inversion-free

for avoiding visual artifacts and be with low isometric

distortion for keeping the real sence of walking.

3 Objectives

The distortion of the input domain Ω under the

mapping f is expected to be as small as possible and

often treated as the optimization objective. To measure

the distortion, Jacobian matrices are commonly used

in the variable representations of vertex positions and

Jacobian matrices. Other representations have their

own methods to define the distortion objectives.
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Fig. 6 Illustration for the SVD.

3.1 Jacobian matrix-based energies

Except for three commonly used distortion metrics,

i.e., (1) conformal distortion, (2) area-preserving

distortion, and (3) isometric distortion, other types of

distortions still exist. These three types of distortion

energies are formulated by the singular values of the

Jacobian matrices.

Signed singular value decomposition The singular

value decomposition (SVD) of Ji is denoted as:

Ji = UiSiV
T
i ,

where Ui and Vi are the orthogonal matrices, and Si =

diag(σi,1, ..., σi,d) is a diagonal matrix with singular

values on the diagonal. Without loss of generality,

we assume σi,j ≥ σi,k, ∀1 ≤ j < k ≤ d. To define

inversion-free constraints and mapping distortions,

signed singular value decomposition (SSVD) [1] is

introduced. If det Ji < 0, Ui and Vi are modified to

be rotation matrices, and the smallest singular value

σi,3 becomes negative; otherwise, SSVD is the same as

SVD. Then, the squared Frobenius matrix norm ‖Ji‖2F
of Ji is equal to

∑d
j=1 σ

2
i,j and det Ji =

∏d
j=1 σi,j .

Conformal distortion metrics Conformal distortion

energies measure the deviation of the Jacobian matrices

Ji from similar transformations. When σi,1 = σi,d, the

energy reaches the optimal. Commonly used energies

are proposed in literature:

� Conformal distortion [28]: σi,1/σi,d.

� MIPS energy [56]: ∑d
j=1 σ

2
i,j

d(
∏d
j=1 σi,j)

2/d
.

� As-similar-as-possible energy [77, 87]:∑
j 6=k

(σi,j − σi,k)2.

For 3D MIPS energy, Fu et al. [42] propose a different

formulation:
1

8

(
σi,1
σi,2

+
σi,2
σi,1

)(
σi,2
σi,3

+
σi,3
σi,2

)(
σi,3
σi,1

+
σi,1
σi,3

)
.

Area distortion metrics Preserving area in mapping

construction is important. As we know, the

determinant of the Jacobian matrix indicates the ratio

between the original volume and the mapped volume.

An area-preserving mapping requires the determinant

to be 1. There are three common approaches to

compute the difference from 1:

� Area distortion: max{
∏d
j=1 σi,j ,

1∏d
j=1 σi,j

}.

� Ratio form [42]:
∏d
j=1 σi,j + 1∏d

j=1 σi,j
.

� Difference form: (
∏d
j=1 σi,j − 1)2.

The ratio form penalizes degenerate simplices since it

goes to infinity when det Ji approaches to zero. Thus,

the ratio form is more popular than the difference form.

Isometric distortion metrics A mapping is isometric

if and only if it is both conformal and area-preserving.

Thus, when σi,1 = σi,d = 1, the isometric energy

reaches the optimal.

� Isometric distortion: max{σi,1, 1
σi,d
}.

� Symmetric Dirichlet energy [117, 126]:
d∑
j=1

(σ2
i,j + σ−2i,j ).

� AMIPS energy [42]:

1

d

( ∑d
j=1 σ

2
i,j

(
∏d
j=1 σi,j)

2/d

)
+

1

2

 d∏
j=1

σi,j +
1∏d

j=1 σi,j

 .

� As-rigid-as-possible energy [87]:
d∑
j=1

(σi,j − 1)2.

The AMIPS energy linearly combines the MIPS energy

and the ratio form of the area distortion metric.

Other energy metrics There are many other energy

metrics:

� Dirichlet energy :
∑d
j=1 σ

2
i,j .

� Green-Lagrange energy :
∑d
j=1(σ2

i,j − 1)2.

� Hencky strain energy : ‖ log JTi Ji‖2F .
� The difference from a given mapping [1]:‖Ji −
J init
i ‖2F , where J init

i is the Jacobian matrix of the

initial mapping.
For a mesh or all sampling points, the energy should

be added up over all elements.
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3.2 Energies without Jacobian matrices

For the angle-based and metric-based

representations, the distortion energy is usually

defined as the difference from the ideal reference.

Angle-based flattening As reported in [120], the

energy function is simply∑
si

3∑
j=1

1

ωi,j
(α̂i,j − α?i,j)2,

where α̂i,j are the unknown planar angles, and α?i,j
are the optimal angles. The weights ωi,j are set

to (α?i,j)
−2 to reflect relative rather than absolute

angular distortion. In general, α?i,j is computed as

follows [120, 122]:

α?i,j =

α0
i,j

2π∑n
k=1 α

0
i,k
, around an interior vertex

α0
i,j , around a boundary vertex

where α0
i,j is the angle in the input mesh. As shown

in [104], the objective function for dihedral angles in

the tetrahedral mesh is similarly defined.

Metric-based flattening The intrinsic flows for

conformal parameterizations output a metric to agree

with the input Gaussian curvature. For example,

the Calabi energy is squared difference between

current Gaussian curvature vector and target Gaussian

curvature:
Nv∑
i=1

(K(v̂i)−Kt
i )

2,

where K(v̂i) is the Gaussian curvature at v̂i and Kt
i is

the target Gaussian curvature at v̂i. The Calabi energy

can be minimized by the Calabi flow [132].

4 Inversion-free constraints

4.1 Relationship with volume

Here we study the mappings on simplicial meshes and

remind that no zero or negative volume exists in the real

world. For a transformed simplex ŝi = 4v̂i,0, · · · , v̂i,d,
its signed volume is computed as a determinant:

1

d!
|v̂i,1 − v̂i,0, · · · , v̂i,d − v̂i,0|.

Note that the signed volume may be negative. Thus,

the inversion-free constraint requires that the sign of

the signed volume before and after the transformation

is unchanged. The signed volume is a polynomial with

degree d and is non-convex.

4.2 Relationship with singular values

Here we study the inversion-free constraints using the

Jacobian matrices.

Determinant and conformal distortion If det Ji >

0, i = 1, · · · , N , the map f is inversion-free. From

the view of SSVD, the inversion-free constraint requires

the smallest singular value of each Jacobian matrix

to be positive. If the conformal distortion τ(Ji) =

σi,1/σi,d < 0,∃i ∈ [1, N ], the map f has negative σi,d.

Thus, inversion-free property requires τ(Ji) ≥ 1, i =

1, · · · , N .

Bounded conformal distortion Bounded conformal

distortion mappings require:

1 ≤ τ(Ji) ≤ ki, i = 1, · · · , N.
Here, ki denotes the upper bound of the conformal

distortion τ(Ji). Since σi,1 is always positive and σi,1 ≥
|σi,d|, the bounded conformal distortion constraint 1 ≤
τ(Ji) ≤ ki is equivalent to require σi,1 ≤ kiσi,d. If

σi,1 ≤ kiσi,d, it means that σi,d > 0 indicating the

mapping is inversion-free. If detJi > 0, it is trivial

to choose ki that makes the constraint τ(Ji) ≤ ki
hold, for example, ki = τ(Ji). Accordingly, inversion-

free constraints can be converted to bounded conformal

distortion constraints.

More analyses for 2D case Similar to [81], we rewrite

the 2× 2 Jacobian matrix Ji as[
ai + ci di − bi
di + bi ai − ci

]
.

Then, we have analytical expressions for the two

singular values:

σi,1 =
√
a2i + b2i +

√
c2i + d2i ,

σi,2 =
√
a2i + b2i −

√
c2i + d2i .

Then inversion-free condition can be rewritten as:√
a2i + b2i >

√
c2i + d2i . (3)

The bounded conformal distortion constraint is

similarly reformulated as [81]:
ki − 1

ki + 1

√
a2i + b2i >

√
c2i + d2i . (4)

These two constraints are nonlinear and non-convex.

For 3D case, the condition formulations are more

complicated due to the complex forms of roots of a cubic

equation.

5 Methods

In this section, we focus on the recent works

closely related to generating inversion-free geometric

mappings. Three main families of methods have been

proposed to deal with the challenging inversion-free

constraint: maintenance-based methods for inversion-

free initializations, elimination of foldovers for inverted

7
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initializations and expanding the feasible region by

connectivity-updated methods.

5.1 Inversion-free initializations

If the initial geometric mappings are inversion-free,

keeping the mappings always staying in the inversion-

free space can theoretically guarantee the inversion-

free constraint to be satisfied. A few methods use

maintenance-based methods to optimize “barrier”-type

energies, in which the objective function includes

terms that grow asymptotically as an element becomes

degenerate.

5.1.1 Pipeline

Starting from inversion-free initializations x0,

maintenance-based methods minimize objective

functions which avoid inverted elements. The

optimization approach is very simple and is described

in Algorithm 1.

Algorithm 1 Maintenance-based methods

Input: inversion-free initialization x0;

Initialize: Set iteration number n = 0;

while not converged do

Compute descent direction pn;

Find max step size αmax;

Perform line search to find step size α;

xn+1 ← xn + α pn;

n← n+ 1;

end while

It is an iterative algorithm producing a sequence of

approximations xn to the optimal point x?. There are

three intermediate steps in each iteration: computing

descent direction (pn), finding max step size (αmax),

and performing a line search to find step size (α)

starting from αmax.

Generating initializations Tutte’s embedding [138]

is guaranteed to create bijective mappings under the

minimal assumptions that both domains are simply

connected and the target planar domain is convex.

Since Tutte’s embedding guarantees inversion-free,

it has achieved great success in the field of mesh

parameterizations [25, 86, 124, 126]. Although several

works extended it [2, 36] to other specific classes

of mappings, its essential limitations remain: it can

only map injectively to a prescribed convex boundary,

without any interior constraints.

Furthermore, it is very challenging to compute

inversion-free initializations in 3D. For example, a

tetrahedral mesh can be bijectively mapped to a cube or

a ball [17]; but it cannot be used for general boundary

shapes. For tetrahedral mesh deformation, they use the

meshes in the rest-pose as initializations and treat the

handle positions as soft constraints.

Barrier functions Barrier functions diverge to

infinity when elements become degenerate, thus

inhibiting inversion. [118] used the log of the

determinant as a barrier term and [89] followed a

similar path by solving a sequence of convex programs.

Instead of using an auxiliary injectivity barrier, several

methods directly optimize distortion metrics that

explode near degeneracies, such as, the MIPS energy,

the AMIPS energy and the symmetric Dirichlet energy

in Section 3.

Descent directions These non-linear energies are

difficult to minimize. Existing optimization algorithms

typically produce a sequence of approximations, xn,

designed to converge to an optimal point x?. To

this end, most approaches use a local quadratic

approximation of the objective function, or proxy :

En(x) = E(xn)+(x−xn)T∇E(xn)+
1

2
(x−xn)THn(x−xn),

where E(x) is the objective function and Hn is a

symmetric matrix, named the proxy matrix. Thus,

En(x) is an osculating convex quadric approximation

to E at xn and its minimization determines the next

approximation xn+1. From this point of view, the

difference between the various methods lies in the

choice of En(x), or more precisely, the choice of

its proxy matrix H. Broadly, existing methods for

the local energy approximation fall into three rough

categories that vary in the construction of proxy matrix

H.

� First-order methods (Section 5.1.2): the methods

use only first derivatives and do not directly use

second order derivatives of the energy;

� Quasi-Newton methods (Section 5.1.3): the

methods iteratively update H to approximate

second derivatives using just differences in

gradients.

� Newton-type methods (Section 5.1.4): the

methods exploit expensive second-order derivative

information;

Line search Consider a non-degenerate 2D triangle

with vertices u1,u2,u3 with corresponding search

direction vectors v1,v2,v3. The triangle becomes

degenerate when its signed area becomes zero [126]:

det

(
(u2 + v2t)− (u1 + v1t)

(u3 + v3t)− (u1 + v1t)

)
= 0. (5)

8
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Fortunately, (5) is quadratic in t and the max step sizes

are simply given by the roots of this quadratic. Given

that we are only concerned with searches in the positive

direction, the smallest positive root gives the max step

size for this triangle. The max step size tmax for the line

search is given by computing the minimum parameter

over all triangles [126]. For a tetrahedron, it is also

easy to generalize by replacing the signed area with the

signed volume.

Termination conditions The iteration continues

until we are able to stop with a “good enough” solution,

but the termination requires a precise computational

definition. The common termination conditions are:

� The gradient is small ‖∇E‖ < ε, for a specified

tolerance ε > 0;

� A fixed number of iterations [110];

� The absolute or relative error in energy ‖En+1 −
En‖ and/or position ‖xn+1 − xn‖ are small [71,

124].
However, an appropriate value of ε for a given

application is highly dependent on the other

conditions, such as the mesh and the energy. To

provide reassuring termination criteria in practice,

the Blended Cured Quasi-Newton (BCQN) method

develops a gradient-based stopping criterion [163]. The

proposed termination condition remains consistent for

optimization problems even as we vary scale, mesh

resolution and energy type:

‖∇E‖ < ε〈W 〉‖l(T )‖ (6)

where 〈W 〉 is the 2-norm of a matrix related to

W (·) and l(T ) ia a vector. The specific definitions

can reference Section 6 in [163]. The gradient-

based stopping criterion allows users to set a default

convergence tolerance ε in the solver once and leave it

unchanged, independent of scale, mesh and energy.

5.1.2 First-order methods

Block coordinate descent solvers The Block

Coordinate Descent (BCD) method is a popular

optimization tool suitable for solving large-scale

problems. Considering the optimization problem,

min
x
E(B1, · · · , Bl, · · · , Bm),

where E is the objective energy and the variables x is

partitioned into m blocks {Bi, i = 1, · · · ,m}. In each

iteration, for every l, l ∈ {1, · · · ,m}, a subproblem is

solved by treating the block Bl as the free variables

of the optimization problem while keeping the rest

variables fixed.

The BCD method is categorized into two types:

exact BCD and inexact BCD. The MIPS energy is

locally convex with respect to each vertex around its

1-ring region. The standard MIPS algorithm [55]

employs the exact BCD where each vertex forms a

block of variables and the Newton method is adopted

to solve each subproblem exactly. However, solving the

subproblem exactly is usually time-consuming, seeking

an approximate solution is a common way to accelerate

the algorithm. The inexact BCD method is employed to

optimize the AMIPS energy by applying only one step

of gradient descent [42]. The experiment demonstrates

that exact BCD is easily trapped in local minimum

early while inexact BCD always yields lower energy.

Note that the BCD method can be accelerated using

parallel technology by partitioning the variables into

blocks where any two variables in the same block are

independent.

AQP Given the current iteration xn, the Accelerated

Quadratic Proxy (AQP) method computed the next

iteration xn+1 by an intermediate guess yn+1 [72].

AQP used an affine combination of current iteration

xn and previous iteration xn−1 with a constant θ > 0

to produce yn+1, namely,

yn = (1 + θ)xn−1 − θxn−2.
An optimal choice θ leads to an optimal convergence

rate, which is proved by Lemma 2 in [72]. Then,

AQP uses a quadratic polynomial proxy, whose Hessian

is taken to be the Laplacian, to compute a descent

direction pn.

AQP utilizes the common structure of optimization

problems over meshes to improve iteration efficiency

and incorporate acceleration in an almost universal way

(i.e., insensitive to different energy types and mesh

sizes). However, AQP does not have a principled way of

determining how effective the Laplacian approximation

for Hessian of arbitrary energy. Besides, the optimal

choice θ requires the condition number of a matrix,

which is challenging to obtain.

SLIM The local/global method is used in [87] to

minimizes the ARAP energy:

DARAP(J) = ‖J −R‖2F ,
where R is the closest rotation to J in the Frobenius

norm and ‖ · ‖F denotes the Frobenius norm. The

local/global algorithm iteratively alternates between a

local step and a global step. In the local step, each

element is individually perfectly mapped (without any

distortion), and in the global step, a linear system is

solved to stitch all elements back together.

9
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The Scalable Locally Injective Mappings (SLIM)

method extends the local-global strategy to a

wide range of distortion energies [110]. It uses

the local/global paradigm and enriches it with a

reweighting scheme to efficiently minimize nonlinear

and flip-preventing energies. The proxy functions is:

PW (J) = ‖W (J −R)‖2F ,
where W is the weighted matrix.

SLIM is a scalable approach for optimizing flip-

preventing energies in the general context of simplicial

mappings. The central theoretical limitation and

advantage of SLIM are both inherited from the

local/global method. The algorithm is high-speed

while approaching a local minimum, but it requires

many iterations to converge to a numerical minimum.

Besides, the proxy energy definition only works for the

rotation invariant distortion energies.

AKVF The Approximate Killing Vector Fields

(AKVF) method formulates a new preconditioner

specifically designed for parameterization problems,

using the language of vector field design [25]. The

Killing operator K(x) measures the deviation of a

vector field on x from being a rigid motion, and AKVF

applies the Moore–Penrose pseudoinverse K(x)+ of

Killing vector field operator K(x) as the proxy matrix.

Then the descent direction −∇xE(x) is transformed

into an approximately rigid motion −K(x)+∇xE(x) by

the proxy matrix K(x)+ when possible.

For planar case and volumetric case, K(x) can be

computed as Equation (6) and Equation (10) in [25],

respectively.

SLIM and AKAP converge faster than AQP.

However, they require re-assembly and factorization

of their proxies for each iteration. Besides, they do

not match the convergence quality of the second-order

methods, such as CM and PN.

5.1.3 Quasi-Newton method

L-BFGS L-BFGS directly approximates the inverse

of the Hessian, requiring only the position and gradient

information of a few previous iterations. While L-

BFGS iterations are fast, they typically require many

iterations to converge. L-BFGS convergence can be

improved with the choice of a preconditioner, such

as the diagonal of the Hessian [102], application-

specific structure [62] or even the Laplacian [88].

However, so far, for distortion optimization problems,

L-BFGS has consistently and surprisingly failed to

perform competitively irrespective of the choice of

preconditioner [72, 110]. Moreover, [102] points out
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Fig. 7 Comparison for four competing methods, including

CM [124], PP [86], AKVF [25], SLIM [110]. Image courtesy

of [86].

that the secant approximation can implicitly create a

dense proxy, unlike the sparse true Hessian, directly

and incorrectly coupling distant vertices.

BCQN For the aforementioned issue of a dense

proxy incorrectly coupling distant vertices in L-BFGS,

the Laplacian provides the correct structure for the

proxy essentially. It only directly couples neighboring

elements in the mesh and is well-behaved initially

when far from the solution. However, the Laplacian

is constant, thus it ignores valuable local curvature

information, thereby leading to prohibitively slow

convergence.

Fortunately, the L-BFGS offers superlinear

convergence near solutions, [163] develop a new

quasi-Newton method, which adaptively blends

gradient information with the matrix Laplacian at

each iteration. Then, it can regain improved and

robust convergence with efficient per-iterated storage

and computation across scales while avoiding the

current pitfalls of L-BFGS methods.

5.1.4 Second-order methods

Overview Second-order methods generally can

achieve the most rapid convergence but require the

costly assembly, factorization and backsolve of new

linear systems per step. At each iteration, second-order

methods use the energy Hessian, ∇2E, to form a proxy

matrix H. This works well for convex energies, but it

requires modification for non-convex energies [103] to

ensure that H is at least positive semi-definite (PSD).

A general solution is to add small multiples of the

identity and project the Hessian to the PSD cone, but

this generally damps convergence too much [103, 124].

The global Hessian matrix of the objective function is

constructed from the element Hessian matrix, which

is based on locally individual elements (triangle or

tetrahedra). As long as the Hessian matrices of all

elements are PSD, then the global Hessian matrix is

PSD. Thus, most second-order methods locally modify

the element Hessian matrices, whose dimensions are far

10
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lower than the global Hessian matrix.

Locally modifying Hessian matrices Projected

Newton (PN) does eigendecomposition on per-element

Hessian and clamps all negative eigenvalues to zero,

to project per-element Hessian to the PSD [136].

PN is an effective and general purpose for 2D and

3D problems. However, PN introduces a significant

computational overhead on eigendecomposition and

becomes computationally prohibitive.

The Composite Majorization (CM) method provides

an analytic formula to modify element Hessian [124].

Composite majorization, a tight convex majorizer, was

recently proposed as an analytic PSD approximation

of the Hessian. CM method is concerned with

objective functions that can be represented as the

composition of simpler functions for which convex-

concave decompositions are known.

f(x) = h(g(x)) = h(g1(x), . . . , gk(x)),

where h : Rk → R and gj(x) : Rn → R are C2

functions with convex-concave decompositions. That

is, they each decompose as

h = h+ + h−, gj = g+j + g−j ,

with h+ and g+j convex and, respectively, h− and g−j
concave.

CM’s strategy for picking a convex osculating quadric

at xn is based on: (i) exploiting the composite structure

for constructing a convex majorizer to f centered at xn,

and (ii) computing its Hessian at xn. The majorizer

provides a tight convex upper bound to f and therefore

provides a well justified choice of a PSD proxy matrix

H at xn:

H =
∂[g ]T

∂x
∇2h+

∂[g ]

∂x

+
∑
j

(
∂h

∂uj
)+∇2g+j +

∑
j

(
∂h

∂uj
)−∇2g−j ,

where (·)+ keeps only positive numbers (linear

rectifier), (·)− only negative numbers. CM is efficient

and is even better relative performance improvement

over PN. However, it is limited to two-dimensional

problems.

The KP-Newton method [45] has applied the complex

view to the piecewise linear mapping. It shows that

simple analytic expressions of the Hessian are obtained,

which allows simple and close to optimal analytic

PSD projection. Based on the complex view of the

linear mapping, KP-Newton speed-ups the numerical

projection for PN by reducing the matrix size (reducing

the full 6× 6 projection to the 4× 4 case).

CM needs to construct a convex-concave

decomposition of the objective function. The choice of

this decomposition is not unique and is likely to result

in different PSD matrices and consequently affects the

convergence behavior. In contrast, KP-Newton only

requires the partial derivatives of a simple-to-obtain

energy formulation. Additionally, KP-Newton has the

property that the element Hessians are not modified

if they are already PSD, which is not necessarily the

case for CM. However, KP-Newton is also limited to

two-dimensional problems.

Analytic Eigensystems (AE) provides compact

expressions to optimize problems both in 2D and 3D,

and does not introduce spurious degeneracies [125].

At its core, AE utilizes the invariants of the stretch

tensor S that arises from the polar decomposition of

the deformation gradient J = RS:

I1 = tr(S) =
∑
j

σj

I2 = ‖S‖2 =
∑
j

σ2
j

I3 = det(S) =
∏
j

σj

.

The majority of distortion energies used in geometry

optimization are isotropic and can be expressed in

terms of invariants, such as, the ARAP energy

DARAP(J) =
∑d
j=1(σj−1)2 = I2−2I1+d. AE provide

closed-form expressions for the eigensystems for all

these invariants, and use them to systematically derive

the eigensystems of any isotropic energy. Then these

systems can then be used to project energy Hessian to

PSD analytically.

Different from the aforementioned methods, PP [86]

observes that when the distortion between each

parameterized triangle and its corresponding reference

triangle is below a threshold K, only a few iterations

are needed to reach a result that is comparable with

the convergent one. Based on this key observation,

PP iteratively update the optimization objective by

constructing the new reference triangles, which makes

distortion between the new reference and the current

parameterizations bounded. Combined with a hybrid

solver, PP outperforms the competitors.

5.2 Inverted initializations

5.2.1 Quasi-conformal mappings

A quasi-conformal mappings (QC mapping) is an

extension of conformal mapping. For conformal

mappings, there is no angular distortion. For QC

mappings, the angular distortion is bounded and is

11
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introduced by the Beltrami coefficient or Beltrami

differentials.

QC mappings of plane domains For conformal

mapping f from the complex plane C to C, the Cauchy-

Riemann equation ∂f
∂z = 0 is satisfied. Correspondingly,

f is called a QC mapping, if f satisfies the following

Beltrami equation:
∂f

∂z
= µ(z)

∂f

∂z
.

Here, µ is called the Beltrami coefficient of f . In this

case, the Jacobbi of f : J(f) = |∂f∂z |
2(1 − |µ|2). Thus

the Beltrami coefficient ||µ||∞ < 1 must hold for f to

be orientation-preserving.

QC mapping between Riemann surfaces QC

mapping can also be defined on Riemann surfaces. For

two surfaces S1, S2 embedded in R3, let φ1 : U ⊂
S1 → C, φ2 : V ⊂ S2 → C be two local conformal

parameterization, φ1(U) or φ2(V ) forms the isothermal

coordinate chart of S1 or S2. Then f : S1 → S2 is

quasi-conformal if for any φ1, φ2,

f12 = φ2 ◦ f ◦ φ−11 : φ1(U)→ φ2(V )

is quasi-conformal. Instead of Beltrami coefficient,

the Beltrami differential µdzdz is used, which is

kept unchanged under different coordinate charts.

According to Teichmüller theory, there is a one-

to-one correspondence between the set of Beltrami

differentials and the set of QC surface mappings under

normalization conditions.

Applications QC mapping has been widely used

in computer graphics, such as parameterization,

deformation and shape registration [53, 93, 142, 154].

The research focuses on two main areas:

� How to calculate QC mapping under boundary and

landmark constraints?

� How to find a QC map that satisfies the described

Beltrami coefficients?

Boundary and landmark constraints The most

popular method is to optimize the angular distortion

energy instead, when there is no restriction on Beltrami

coefficients or Beltrami differentials. If the QC

mapping is specified to Teichmüller mapping with

uniform conformality distortion over the whole domain,

[93] locally projected Beltrami coefficient µ into the

one with constant norm after computing a global

harmonic mapping and iterated until convergence. An

alternating-descent algorithm is proposed in [142] to

minimize the difference error of the Beltrami equation

efficiently, although there is no theoretical guarantee to

reach the global minimum.

Described Beltrami coefficients There are different

algorithms to compute QC maps on planar domains

[27, 51, 94]. For arbitrary Riemann surfaces, [143]

and [91] establish a discrete Beltrami flow to evolve

an identity map to the desired QC mapping. An

auxiliary metric is proposed in [155], and the original

QC mapping becomes conformal under the auxiliary

metric. Then, the desired QC mapping can be obtained

by using the conformal mapping method.

5.2.2 Bounded distortion mappings

Bounded distortion mapping methods [1, 21, 69, 76,

81, 107] tries to bound the distortion of the mappings.

Different from the aforementioned quasi-conformal

mappings, these methods study the mappings from

the discrete view. Namely, the bounded distortion

constraint is enforced on each Jacobian matrix. Then,

a constrained optimization problem with non-convex

constraints is achieved. To this end, some elegant

methods are proposed. Based on the strategies

processing the bounded distortion constraints, these

methods can be classified into two categories: (1)

extracting convex subspace and (2) linearizing the

constraints.

Maximal convex subspace For triangular meshes,

the bounded distortion constraint (4) and inversion-

free constraint (3) are nonlinear and non-convex. By

introducing a new variable ri ∈ R, they can be

simplified as [81]:√
c2i + d2i ≤ ri

ki − 1

ki + 1
,√

a2i + b2i ≥ ri,

ri > 0.

Then, the maximal convex subspace can be achieved as

follows (see more details in [81]):√
c2i + d2i ≤ ri

ki − 1

ki + 1
,

ai cos θi + bi sin θi ≥ ri, θi ∈ [0, 2π),

ri > 0.

θi is a parameter and is adaptively adjusted during the

optimization. Then, a convex problem is built and can

be solved effectively. The linear matrix inequality [69]

is used to extend this idea to the tetrahedral meshes.

Quadratic programming For the SSVD Ji =

UiSiV
T
i , if Ui and Vi are known, then the singular

12
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values is linear functions with respect to the vertex

positions. Based on this fact, Aigerman et al. [1] uses

Ui and Vi in the last iteration as the estimator in the

current iteration. Then, the non-convex constrained

problem becomes a quadratic programming problem

that can be effectively solved. By iteratively performing

these two steps, the method [1] usually converges within

a small number of iterations. This method work for

both 2D and 3D.

Discussions Bounded distortion mapping methods

ensure no inversion if the resulting mappings fall into

the bounded distortion space; however, setting an

appropriate distortion bound remains an open problem.

5.2.3 Projection-based methods

Motivation Our goal is to project the inverted

initializations into the inversion-free mapping space.

As mentioned before, inversion-free constraints can be

converted to bounded conformal distortion constraints.

In practice, we can try to minimize the distance

from the mapping to the bounded conformal distortion

mapping space. Then, the optimization problem can

be formulated as:

min
µ

N∑
i=1

‖Ji −Hi‖2F ,

s.t. Hi ∈ Hi, i = 1, · · · , N,
Au = b.

(7)

Here, Hi = {Hi|1 ≤ τ(Hi) ≤ ki} denotes the bounded

conformal distortion space with bound ki. ki is a

variable in the optimization. Next, we first fix it and

then discuss the updating cases.

Algorithms Given distortion bounds ki, it is difficult

to solve the problem (7) due to the nonlinear

bounded distortion constraints Hi ∈ Hi. Thus

the projection-based methods decouple the bounded

distortion constraints from the problem (7) and devise

an alternating pipeline. Generally, the methods can be

classified based on different projection approaches: (1)

tangential projection and (2) closest point projection.

Closest point projection The most common

projection method is the closest point projection [130].

Given fixed Ji, we want to solve Hi. Hi is separated,

and we compute it one by one through solving the

following problem (local step):

min
Hi

‖Ji −Hi‖2F ,

s.t. Hi ∈ Hi.

This problem has a closed-form solution [70]. Then,

given fixed Hi, we solve µ as follows (global step):

min
µ

Ed =
N∑
i=1

‖Ji −Hi‖2F ,

s.t. Aµ = b.

This problem can also be easily solved. Although

the local-global method monotonically decreases the

objective function, it converges slowly [106]. Then,

the Anderson acceleration method [106] is used for

acceleration.

Tangential projection In the global step, the

tangential projection method [70] restricts the Jacobian

matrix to belong to a single hyperplane locally

supporting Hi at the closest point projection. However

this method may oscillate due to an inappropriate ki; as

a result, the distance from the mapping to the bounded

distortion space may not consistently decrease. Thus,

it works poorly in practice.

Updating bounds Su et al. [130] devise a simple

method to update the distortion bound. It gradually

increases the distortion bound after one pass of the

accelerated local-global solver converges. However, it

has no theoretical guarantee of success for any model.

5.2.4 Area-based methods

As observed by [146], the Total Unsigned Area

(TUA) is an upper bound to the sum of signed areas,

which is constant for a fixed boundary, and equal

if and only if the triangulation is injective. When

the triangular mesh is inversion-free, it minimizes

the sum of the unsigned triangle areas among all

the triangulations of the given boundary. However,

as [31] points out, directly minimizing TUA suffers

from three deficiencies: (1) the triangulation containing

degenerate elements is a global minimum of TUA but a

non-injective embedding. (2) derivative discontinuity:

TUA is not C1 continuous when a vertex moves across

the supporting line of its opposite edge. (3) vanishing

gradient: TUA has zero gradients with respect to any

vertex surrounded by a ring of consistently oriented

elements. Based on those observations, [31] proposes a

novel energy form, called Total Lifted Content (TLC),

that lifts the simplices of the mesh into a higher

dimension and then measures their contents,

TLCs̃,α(s) =
1

d!

√
det(XTX + αX̃T X̃)

where s is a d-dimensional simplex, s̃ is the auxiliary

simplex, and X (X̃) is a d × d matrix whose column

vectors are edge vectors of the simplex s (s̃). TLC
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reduces to TUA when parameter α = 0. TLC is

smooth over the entire space and has only injective

global minima for sufficiently small values of α. This

simple energy can be efficiently minimized using Quasi-

Newton or Projected-Newton solver.

5.2.5 Penalty-based methods

A simple idea for inversion elimination is to devise a

penalty function having two main properties:

� it is very large to penalize the inverted Jacobian

matrices;

� it is very small to accept inversion-free Jacobian

matrices.
After designing a suitable penalty function,

optimization solvers are then the challenges.

This idea has been applied to many untangling

problems [33, 137].

Here we discuss a popular penalty function as

follows [33]:

Epenalty =
N∑
i=1

‖Ji‖dF
det Ji +

√
(det Ji)2 + ε

,

√
ε

0 ρ

ρ +
√
ρ2 + ε

where ε is a small positive number

that makes Epenalty very large

when inversion exists (see the right

inset). This penalty function works

for both 2D and 3D domains. The

key to this penalty function is the

setting of ε. In [33], a detailed

setting method is provided.

Then, two common methods for optimizing Epenalty

are proposed.

� Block coordinate descent method [33] updates one

block of variables each time.

� Monotone preconditioned conjugate gradient

method [147] monotonically and efficiently reduces

the objective function.
The block coordinate descent method is a local method.

When the number of inverted elements is very large, it

may be struggled and trapped by the local minimum.

In the monotone preconditioned conjugate gradient

method, the linear systems for computing descent

directions have a fixed left-hand side; thus, it is

pre-factorized once during the preprocessing, thereby

making the solver efficient. This solver can eliminate

most inverted elements, but its result often contains

a small set of inverted elements. Thus, a practical

solver can be devised as a hybrid one that first uses the

monotone preconditioned conjugate gradient method

and then uses the block coordinate descent method.

5.2.6 Representation-based methods

Simplex assembly [39] Using the Jacobian matrices

as the variables, the problem (1) is converted to a non-

constrained optimization problem:

min
J1,...,JN

µEm + Ec + λEassembly,

where Em is the mapping energy, Ec is a barrier

function to keep each Jacobian matrix inside the

feasible space, and Eassembly is the summation of

squares of all the left sides of the two assembly

constraints. Given an inverted initialization, it projects

the Jacobian matrices associated with each simplex

into the inversion-free and distortion-bounded space.

The projected Newton’s method is used to solve the

optimization problem. λ is adaptively adjusted to

enforce Eassembly to approach zero.

Angle-based methods For ABF-based conformal

parameterizations, three solvers are proposed to solve

the constrained problem:

� ABF [120] uses Newton’s method to solve an

augmented objective function that formulates the

constrained minimization problem using Lagrange

multipliers.

� ABF++ [122] uses the sequential linearly

constrained programming.

� Linear ABF [153] linearizes the non-linear

constraint and solve a linear system to obtain the

resulting angles.
In practice, inverted triangles still arise, as

demonstrated in [81].

Metric-based methods Surface parameterization can

be formulated as designing a Riemannian metric of

the surface, such that all the interior points are

with zero Gaussian curvatures, namely a flat metric.

Discrete intrinsic flows were studied in recent decades.

These methods evolve the curvature of the triangular

meshes [26], or the piecewise linear metric of triangular

meshes independent of embedding or immersion, such

as discrete Ricci flow [64], Yamabe flow [92] and Calabi

flow [44]. Based on these methods, powerful tools for

conformal parameterization has been developed [141,

159].

5.3 Connectivity-updated methods

For highly non-linear optimization problems, the

fixed connectivity may impose a strong restriction on

the solution. As a consequence, the feasible region may

be too small to contain an ideal solution. This leads

to slow convergence, poor solution, or even that no

14
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Without With

Fig. 8 Parameterizations with/without bijective constraints.

Without bijective constraints, a 2D point may be mapped to

more than one point on the surface.

solution can be found because of the nearly degenerated

triangles generated during the iterations [65]. Thus,

some methods are proposed to integrate connectivity-

update into vertex optimization to solve this issue.

Here, we introduce two connectivity-update techniques:

adaptive refinement and hierarchical meshes.

Adaptive refinement [65] proposes a connectivity-

updated optimization method for locally injective

mappings of 2D triangular meshes with position

constraints. Their algorithm iteratively solves the

vertex position and updates the connectivity according

to the criteria based on residual, gradient and condition

number of the energy. The connectivity-updated

operators include edge-flip and edge-split. [158] applies

adaptive refinement to the 3D deformation problem.

Hierarchical meshes [58] focuses on computing high-

quality spherical parameterizations with bijection and

low isometric distortion. The method first simplifies

the mesh until the model becomes a tetrahedron. After

mapping the tetrahedron onto the sphere, The method

alternately inserts vertices and do global distortion

optimization to distribute the vertices uniformly on the

sphere. Inspired by the similar idea, the progressive

embedding is proposed in [123] with similar theoretical

guarantees to Tutte’s embedding, but it is more resilient

to the rounding error of floating point arithmetic.

[123] collapses edges on an invalid embedding to a

valid, simplified mesh, then insert points back while

maintaining validity.

6 More constraints

Inversion-free constraint is not the only one

constraint in many applications. This section

introduces the applications with other four constraints:

(1) bijective mappings, (2) bijective inter-surface

mappings, (3) axis-aligned structure construction, and

(4) global seamless parameterizations.

6.1 Bijective constraints

In addition to being inversion-free, applications may

ask for intersection-free boundaries [63, 78, 126, 131].

An inversion-free and intersection-free mapping is

bijective. For example, bijective parameterizations

can establish a one-to-one correspondence between the

input surface and the parameterized mesh (Figure 8).

In fact, except for the negative or zero volume,

physical objects also do not contain global overlaps.

Thus the physical deformation/simulation should avoid

intersecting boundaries and only contain positive

volume. Here, we focus on the mesh-based mappings.

Constraint overview This intersection-free

constraint is more complicated than the inversion-free

constraint. Preventing overlaps for the boundary

leads to non-linear collision constraints. Besides,

boundary collisions may occur everywhere on the

boundary. Thus for a simplicial mesh, the number

of potential collisions is quadratic in the number of

boundary elements, thereby significantly increasing

the computational cost.

There are two common strategies to handle the

bijective constraints: (1) barrier functions and (2)

scaffold meshes. Both of these approaches start

from an intersection-free shape and avoid any overlap

during the optimization process. For example, Tutte’s

embedding method [138] generates a bijective initial

parameterization, and the rest shape in deformation is

usually free of overlaps.

6.1.1 Barrier functions

Using barrier functions to avoid overlaps is a

commonly used technique. Barrier functions for

intersection-free constraints should satisfy a property:

when the overlap is about to occur, the function goes

to infinity. Thus, we need to answer the following

questions: (1) how to use mathematical language to

describe the occurrence of collisions and (2) what the

concrete barrier function is?

Distance-based approach When a boundary vertex

approaches a boundary element (edge in 2D and

triangle in 3D), the collision is about to occur. In

3D, when two boundary edges are close to each other,

they will collide. For the first question, the distance

from a boundary vertex to a boundary element or the

distance between two boundary edges is used, denoted

as dinter [78, 126].
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Triangle inequality approach For 2D triangular

mesh, Su et al. [131] propose a triangle inequality

approach. A boundary vertex v̂ and two end points

of a boundary edge ê = v̂av̂b form a triangle. Based

on the triangle inequality, we have

‖v̂ − v̂a‖2 + ‖v̂ − v̂b‖2 ≥ ‖v̂a − v̂b‖2.
The equality holds when v̂ is on ê. Thus, dinter :=

(‖v̂− v̂a‖2 + ‖v̂− v̂b‖2−‖v̂a− v̂b‖2) is used to answer

the first question.

Concrete barrier functions Given a distance

threshold εinter, the barrier function is zero when

dinter ≥ εinter. Two barrier functions are commonly

used when dinter < εinter:

� Reciprocal-based barrier [126]: (εinter/dinter − 1)2.

� Log-based barrier [78]: − ln(dinter/εinter)(εinter −
dinter)

2.
They go to infinity when dinter approaches zero.

Computational cost The barrier functions are at

least C2 when dinter < εinter. Thus quasi-Newton

solvers [126] and second-order solvers [78, 131] can be

used. However, the number of potential collisions is

quadratic in the number of boundary elements, thus the

density of the Hessian matrix in second-order solvers

significantly increases, thereby causing much more time

for optimization. For 2D triangular mesh, a coarse shell

mesh is used [131] to reduce the computational cost;

however, it extends this idea to 3D case.

6.1.2 Scaffold-based methods

Another idea to avoid overlaps is the use of a scaffold

mesh. The scaffold mesh is introduced to convert the

globally overlap-free constraint to a locally flip-free

condition [63, 95, 96, 157].

Updating connectivity During the optimization,

the boundary of the scaffold mesh is fixed. To

efficiently reduce distortion and prevent possible

locking situations, the scaffold mesh must be frequently

updated and optimized during the optimization [63].

This updating connectivity leads to a changed size and

an updated nonzero structure of the sparse Hessian

matrices for computing descent directions. Then,

solving linear systems become more time-consuming,

as observed by [131]. In addition, efficiently performing

connectivity updates for tetrahedral meshes is difficult.

Very-Large-scale bijective parameterizations As

high-precision 3D scanners become more and more

widespread, it is easy to obtain very-large-scale meshes

containing at least millions of vertices. However, due

to the memory limitation of the used computer, the

commonly developed methods for creating inversion-

free mappings may fail for these models. Ye et al. [151]

use the scaffold-based method to compute bijective

parameterizations for very-large-scale models. Instead

of computing descent directions using the mesh vertices

as variables, they estimate descent directions for each

vertex by optimizing a proxy energy defined in spline

spaces. Since the spline functions contain a small

set of control points, it significantly decreases memory

requirement.

6.2 Bijective inter-surface mappings

Computing inter-surface mappings is a hot research

topic [57, 80, 139]. Here, we focus on bijective

inter-surface mappings that provide one-to-one

correspondences between two shapes. Besides,

inter-surface mappings can be used to generate

compatible meshes that possess the same connectivity

structures [73, 147, 149].

Common domain-based methods Many approaches

compute bijective inter-surface mappings via common

domains, such as spheres [6, 58], coarse triangular

meshes [73, 74, 117], and planar domains [3–5].

The algorithm workflow usually contains three steps:

(1) constructing a common domain, (2) bijectively

mapping the input models onto the common domain,

and (3) determining the inter-surface mapping by

composing one mapping with the inverse of the other.

Domain construction Spheres are standard domains

and only suitable for genus-zero shapes. In general,

mapping the input shapes onto spheres (i.e., spherical

parameterizations) contains very large distortion, thus

the resulting inter-surface mappings may be distorted

severely [58, 109, 140]. In addition, robustly computing

bijective spherical parameterizations without numerical

issues still deserves more research.

Constructing coarse triangular meshes is non-trivial

for arbitrary inputs. For example, progressive

meshes [54] are used to define the base domain [117].

In [73, 74], common domains are built by consistently

connecting feature points with equivalent paths over

the two meshes.

The common planar domain is automatically

obtained by computing bijective parameterizations

with common boundary constraints [3–5]. The

parameterizations require the two input meshes to be

cut to disk topology. Thus, consistent cuts on two
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Input PolyCube Hex mesh

Fig. 9 PolyCubes for all-hex remeshing. It contains three

steps: (1) constructing a PolyCube, (2) performing hex mesh

generation of the PolyCube domain, and (3) mapping the hex

mesh back to the input model.

meshes are needed. However, it is difficult to construct

them that will always lead to low distortion inter-

surface mappings.

Distortions optimization Since the inter-surface

mapping is computed by composing one mapping with

the inverse of the other, it is difficult to reduce the

distortion. When two mappings are with low distortion,

the final inter-surface mapping has a high probability

of being low distortion; however, this is not absolute.

Then, an end-to-end method is proposed to reduce

the distortion of the final inter-surface mapping [115–

117]. They represent the inter-surface mapping via

a mutual tessellation and optimize the symmetric

Dirichlet energy.

6.3 Axis-aligned constraints

If the boundary of a closed shape is axis-aligned, it

is an axis-aligned structure. Axis-aligned structures

(PolyCubes in 3D and PolySquares in 2D) provide

compact representations for closed complex shapes.

They have been proved to be very useful to many

computer graphics applications, such as texture

mapping [20, 135, 150], hex/quad meshing [35, 38, 46,

49, 59, 82, 90, 145, 152] (Figure 9), and GPU-based

subdivision [144], and atlas refinement [85, 156].

Constraints Generally, closed complex shapes are

not axis-aligned. Thus, the goal of the axis-aligned

structure construction method is to automatically and

efficiently compute an axis-aligned structure. In our

view, a high-quality construction algorithm usually

satisfies the following properties:

� Inversion-free constraint : the axis-aligned

structure contains no degenerate or inverted

elements;

� Distortion constraint : the mapping distortion is as

low as possible;

� Corner constraint : the number of corners of the

axis-aligned structure is small.
Since the rest shape serves as the initialization, the

initial mapping is an identity map. Thus, we can

keep the axis-aligned map inversion-free by performing

explicit checks combined with line search. Then, the

left challenge is to strictly satisfy the axis-aligned

constraint while reducing as many corners as possible.

Deformation-based methods The deformation-

based methods [38, 46, 59] contains three main

steps:

� Pre-axis-aligned deformation: it deforms the input

closed mesh to a pre-axis-aligned shape, whose face

normals are almost aligned with the coordinate

axes;

� Boundary segmentation: it determines whether the

boundary surface is sufficient to form a valid axis-

aligned structure [32];

� Boundary flattening : it maps the input to be

strictly axis-aligned.
Many axis-aligned energy terms are proposed and

optimized to drive the input shape to be pre-axis-

aligned. There are three common strategies:

� Rotation-driven strategy [46]: it computes

deformation gradients as the minimal rotation

necessary to align each surface vertex normal with

one of ±X,±Y,±Z, and then uses the computed

deformation gradients to deform the shape.

� L1-based energy [59]: if normals are along axes,

their L1 norms reach the optimal.

� Normal-smooth energy [38]: it first computes

target normals by Gaussian smoothing and closest

axis projection, and then measure the difference

between the current normals and the target

normals as the objective energy.
In practice, high-quality results are usually achieved.

However, these deformation-based methods have no

theoretical guarantee that the valid axis-aligned

topology can always be achieved under the inversion-

free constraints.

Segmentation-based method This method [90] first

segments the input shape with valid axis-aligned

topology and then deforms the input to be strictly axis-

aligned. For the first step, a graph-cut based approach
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is proposed to control the corner counts. However, it

contains two main limitations: (1) their algorithm could

be time-consuming due to its local and greedy search

and (2) their method cannot always achieve valid axis-

aligned topology, as demonstrated in [148].

Construction-based methods Given a closed mesh

and a pre-axis-aligned shape, the construction-based

methods first construct a valid axis-aligned structure

and then compute a bijective correspondence between

the constructed structure and the input mesh [145, 148,

152]. The pre-axis-aligned shape can be generated by

the aforementioned deformation methods [38, 46, 59].

The goal of axis-aligned structure construction is

to reduce the number of corners and generate low

distortion mappings. However, axis-aligned structures

are not determined during the construction process,

and the distortion of the final mapping cannot be

computed. Therefore, the distortion metric should

be replaced with the approximation error between

the pre-axis-aligned shape and the constructed axis-

aligned structure. Morphological operations [152] and

an erasing-and-filling solver [148] are proposed for

construction. To build a bijective correspondence

between the axis-aligned structure and the input mesh,

Yang et al. [148] use a quad mesh optimization

algorithm.

These construction-based methods can theoretically

guarantee a valid axis-aligned structure. They have two

main limitations: (1) they are unable to handle the pre-

axis-aligned shapes containing global overlaps and (2)

they do not adequately align the sharp features of the

models.

Sharp features Aligning the sharp features of the

input models to the edges of the axis-aligned structures

is non-trivial. To align most of sharp features,

Guo et al. [49] use a feature-aware energy into

the aforementioned deformation processes. However,

strictly preserving sharp features remains a challenge.

6.4 Global seamless parameterizations

Problems The global seamless parametrization is

widely used in some specific applications, such as

conforming quadrangulation and seamless texturing.

For the seamless mapping f : M → Ω, two kinds of

constraints should be satisfied. The one is the inversion-

free constraint in (1), the other one is the seamless

constraints of the parametrization [97]:(
u

v

)
i

= Rij

(
u

v

)
j

+ tij , (8)

Without With

Fig. 10 Global seamless parameterizations.

where tij ∈ R2, and (u, v)i, (u, v)j are the

parameterization positions of any point on the the edge

eij adjacent to simplices si and sj , and

Rij =

(
0 1

−1 0

)kij
is a rotation matrix with a seam rotation angle wij =

kijπ/2, kij ∈ Z. It can also be written as follow [39, 99]:

Jieij = RijJjeij , (9)

where Ji, Jj are the Jacobian matrix mentioned in

Section 2, eij is the edge adjacent to simplices si and

sj . Figure 10 shows an example with and without the

seamless constraint (8).

There are mainly three kinds of methods, which

are metric-based, field-based, and harmonic-based, to

generate global seamless parameterizations.

Metric-based methods The Jacobian matrix Ji can

also be regarded as the metric of surfaces, so the direct

way to get the seamless mappings is to construct an

optimization problem with the constraints (9) [40].

However, there are many other methods with

different representations of the metric. Based on the

notion of the PL metric in Section 2.1.4, a precise

notion of discrete conformal equivalence is presented

in [129]. The parametrization is generated by finding a

flat mesh that is discretely conformally equivalent to a

given mesh. The problem is convex, and the seamless

condition is transformed into the angle defect condition

on the vertices. Different from [129], another conformal

method, called BFF (boundary first flattening), is

presented in [114]. The method is based on the Cauchy-

Riemann equation, and the final parametrization is

obtained by a linear system, so it is computed in real-

time. The seamless condition is also transformed into

the cone condition.

Recently, some methods firstly cut the surface to

topological disk(s), then modify the cone metric so
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that the parametrization with the modified metric

is seamless. The fact is demonstrated in [16] that,

for (almost) any choice of cones, a corresponding

global parametrization can be constructed without

introducing additional cones. Based on this fact,

their algorithm firstly cut the surface to topological

disk(s), then compute a cone metric on with prescribed

boundary curvature, and the boundary is rectilinear.

With map padding, the metric is modified into a

seamless one. However, the nonlinear optimization

convergence is not sure to the prescribed singularities,

and there are some numerical issues such as precision

limit, which affect the discrete conformal map

computation. The method in [160] is a general

combinatorial method, which eliminates the potential

numerical issues in [16]. Similar to [16], the surface is

cut firstly. Then the metapolygon will be constructed

and modified to satisfy the seamless condition of each

piece. The construction of the cone metric is explicit

combinatorial, and numerical optimization is taken

into account only for non-crucial decisions. Finally,

the parametrization over the cut surface can then be

obtained by existing techniques. Their method is

reliable to generate the validity, seamlessness, and local

injectivity parametrization with the expense of more

time cost on the process of padding.

Most of the metric-based methods are based on

conformal mapping so that these methods may be with

large area distortion. Recent popular distortion metrics

are considered in [75] to achieve low metric distortion

directly.

Field-based methods The field-based methods are

often computing the guiding field firstly. Then

the parametrizations are from the field. The

first field-based approach in [48] is also based

on the conformal map. Their method computes

seamless parametrizations of nonzero genus surfaces

with boundaries. Since all conformal gradient fields

(holomorphic 1-forms) form a linear space, the gradient

field of the mapping can be got by solving a linear

system with some constraints on the field. However, the

final parametrization is not guaranteed to be injective,

and the conformal mapping will also bring a large area

distortion.

The methods based on two-direction field are more

common than one-direction field. Based on cross-fields

[11] and conformal map ideas [98], [100] proposes a

feature-aligned method to reduce the metric distortion

of parametrization. The seamless cone metric describes

the seamless condition. In [97], a quad patch partition

of the mesh is constructed by tracing the cross-field,

and then the partition is modified to satisfy the

global parametrization constraints, including seamless.

With the partition, the problem to find a final

parametrization is reduced to linear programs, i.e.,

an optimization problem with convex constraints, so

the existence of a solution is always guaranteed.

This method enforces a local bijective and feature-

aligned, but singularities should be added during the

modification of partition. These methods allow the

feature-alignment, but the generation of the fields is

also a complex problem.

In [15], the author presents a novel method to

perform the quantization that satisfies the seamless

condition. The quantization is performed efficiently

by formulating the problem in alternative degrees of

freedom. [98] describes a method to produce seamless

parametrizations with low distortion. They prove that

the parametrization f with a cone metric g is seamless

if and only if the metric is also seamless, so the seamless

condition is transformed into the seamless condition

of cone metric g. Then, by evolving the surface’s

metric and finding a new metric g with zero Gaussian

curvature almost everywhere. The method produces

low-distortion, locally injective parametrization for

surfaces of arbitrary topology, but the intrinsic method

does not allow for feature alignment.

Harmonic-based methods Given desired cone points

and rational holonomy angles, [13] propose a method,

which called HGP (harmonic global parametrization),

to compute seamless parametrization of surfaces with

arbitrary topology. It is stated that if the cone

and boundary triangles are positively oriented and

achieve the correct cone and turning angles, the final

parametrization is locally injective. By this result, the

parametrization can be generated by solving the linear

system, and the seamless condition is converted into

the linear complex equations. In [52], an algorithm

based on [13] is presented for low-distortion locally

injective harmonic mappings. They construct a linear

subspace from the solutions of the HGP system [13].

Then, the mapping is obtained by a nonlinear non-

convex optimization from the reduced subspace. Their

method achieves significant acceleration over HGP. The

above two methods are fast and robust, but the local

injectivity through convexification [13] will exclude the

valid solutions. Also, [52] can only deal with the

surfaces with genus zero.

19



20 X. Fu et al.

Fig. 11 Conformal parameterizations with large area

distortion.

7 Combinatorial problems

7.1 Cone singularity detection

Conformal parameterizations are easily computed.

The main advantage of conformal parameterizations

is free of angle distortion and inversions. However,

conformal parameterizations suffer from severe area

distortion (Figure 11). Cone singularities [67] provide

a way to mitigate area distortion.

Problem overview In fact, the area distortion can

always be reduced by adding more cones; however,

too many cones usually result in a long cut for final

parametrization. Thus, the goal of the cone singularity

detection algorithm is to achieve a desired tradeoff

between cone number, cone position and the area

distortion. The number and placement of cones are

discrete, thus this problem is combinatorial. Therefore,

computing the best configuration (number, placement,

and size) of cones is notoriously difficult. Many

methods have been proposed to solve this challenging

problem [9, 98, 127, 129].

Greedy methods Cones are detected via a simple

greedy algorithm [129]. In each iteration, it

iteratively computes a conformal parameterization and

places a new cone at the point with the greatest

area distortion. The subsequent iterations treat

cone points as punctures in the domain and can

automatically determine cone angles by the conformal

parameterization process. In [9], a parameterization

algorithm is devised and cone locations are determined

by the same greedy strategy. Different from [129],

it develops a diffusion process involving Gaussian

curvature to compute the cone angles.

Incremental methods Cones are determined by

incrementally flattening the surface [98]. Starting

with the original metric, a fraction of the surface

is incrementally constrained to have zero Gaussian

Fig. 12 Cut construction for parameterizations. In general,

the longer the cut seam, the smaller the distortion.

curvature. Then, only a small set of vertices, i.e., cones,

have non-zero curvature. However, there is no direct

or explicit relationship between curvatures and cone

configurations, as shown in [127].

Optimization methods Below a fixed total cone

angle bound, the method in [127] computes the cone

configuration with the least total area distortion.

However, the bound is not explicitly given in the

optimization, whereas it is implicitly controlled by a

weight for balancing its two energy terms. There is no

intuitive nor direct mapping between the controlling

parameter and the total cone angle bound. Judging

from the results in [127], some important cones are not

captured with default parameters, leading to high area

distortion.

7.2 Cut construction for parameterizations

Parameterized 2D meshes are commonly used to

store surface signals, such as colors, normals, and

displacements. Before being parameterized to the

plane, a closed mesh needs to be cut to a disk topology.

The feasibility and practicality of parameterizations

are affected by two major factors: (1) distortion

and (2) cut length. Short cuts and low isometric

distortion are both required for high-quality inversion-

free parameterizations. Usually, these two requirements

are contradictory (Figure 12). Besides, cut generation

can be used for more applications, such as peeling art

design [84].

Combinatorial problem Solving this problem is

very challenging. First, since a cut is discretely

represented as mesh edges, it is a combinatorial

problem. It is highly complex to reduce the length

using combinatorial optimization techniques. Second,

cut construction and parameterization generation are

coupled. Parameterizations are usually computed after

cuts are determined, and the distortion heavily depends

on the cut location.
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Method classification Three types of methods are

mainly proposed:

� Segmentation-based methods partition an input

mesh into multiple charts [66, 77, 113, 161].

� Optimization-based methods simultaneously

optimize the parameterization distortion and the

cut length [79, 108].

� Point-to-cut methods first detect feature points

where the distortion is usually concentrated and

then connect these feature points to construct

cuts [18, 19, 119, 121, 162].
Since the segmentation-based methods do not explicitly

minimize cut lengths, we discuss other two methods

in details. In addition, some greedy methods are

developed. Gu et al. [47] alternately parameterize the

mesh and connect the maximum distortion vertex to the

existing cut via the shortest path. As observed by [18],

this algorithm often terminates early, resulting in large

isometric distortion. Triangles are parameterized one-

by-one in [128] without violating the user-provided

distortion bound. In general, the one-by-one way is too

local to produce a shorter cut than the cut required to

achieve a given bound, as observed by [57, 108].

7.2.1 Optimization-based methods

AutoCuts [108] The energy function of AutoCuts

is the weighted sum of the cut-penalty energy and

the symmetric-Dirichlet distortion energy. During

optimization, the parameterized mesh is treated as

a fixed topology triangle soup, and the cut-penalty

energy is optimized to pull separate triangles together.

A balancing weight between the cut-penalty energy and

the symmetric-Dirichlet distortion energy is required.

However, it is non-trivial to determine the weight

so that the desired tradeoff between cut length and

parameterization distortion is obtained.

OptCuts [79] OptCuts directly optimizes the cut

length under bounded distortion constraint. Since the

optimization problem is combinatorial, they propose

local topological operations, including boundary vertex

split, interior vertex split, and corner merge. The

local operations lead to early entrapment by local

minimum, thereby resulting in long cuts, as shown

in [162]. Besides, local operations also cause a high

computational cost.

Discussions Simultaneous optimization of the

parameterization distortion and the cut length [79, 108]

is a combinatorial problem. Since the nonlinear and

non-convex optimization problem is very complicated,

these methods are time-consuming and usually

generate long cuts. Besides, they heavily rely on the

initializations.

7.2.2 Point-to-cut methods

Detecting points Since parameterizations are not

determined during the feature point detection process,

proxy metrics, such as the Gaussian curvature [119, 121]

and distortion from spherical parameterizations [18],

are used as predictors of anticipated parameterization

distortion.

High curvature vertices have a high probability

of producing high isometric distortion. However as

observed by [127], the relationship between curvatures

and distortions is not direct or clear.

A hierarchical clustering method uses distortion

metrics from spherical parameterizations [18]. Since the

spherical parameterization method [58] used in [18] may

fail to generate bijective spherical parameterizations,

distortion metrics from planar parameterizations are

used [19]. However, the voting strategy requires ten

times of planar parameterization. Similar to [19],

Zhu et al. [162] also use planar parameterizations to

generate proxy metrics. To detect necessary feature

points to achieve low isometric distortion and prevent

too many feature points, a greedy filtering process is

proposed [162].

Conformal cone singularities [9, 98, 127, 129] can also

be treated as feature points.

Connecting points Given a graph and a set of

terminal vertices in the graph, the Steiner tree problem

seeks to find the minimum cost tree connecting all the

terminal vertices. This is an NP-hard problem [61].

Algorithms for computing an exact solution to the

Steiner tree problem have been proposed [8, 37, 50].

However, they cannot generate the exact solution in

a reasonable amount of time for large-scale graphs or

when there are many terminal vertices. In this problem,

if the number of feature points is small and the size

of the input mesh is moderate, the exact solution for

the Steiner tree problem can be achieved within an

acceptable time.

On this account, some approximation methods have

been proposed [10, 14, 105, 111]. Two commonly

used approaches are based on the minimal spanning

tree (MST) [68] and the shortest paths heuristic

(SPH) [134]. The algorithm in [68] is used by [18, 119,

121]. A greedy algorithm [162] is proposed to compute

an approximate solution driven by auxiliary points. As

shown in [162], the greedy algorithm outperforms MST

and SPH, and approximate the optimal solution better
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in the sense of relative error.

Discussions In practice, the relationship between

proxy metrics and parameterization distortion is not

clear and direct, and the configuration (number and

locations) of generated feature points is not always

appropriate. For example, large distortions can occur

if feature points are missing, whereas too many points

produce long cuts.

7.3 Hex mesh simplification

Remehsing Given a 3D mesh, the remeshing process

computes another mesh so that its elements satisfy

some quality requirements and approximate the input

acceptably [7]. The mesh topology and vertex

positions are the variables. Since the topology

is discrete, the remeshing can be regarded as a

combinatorial problem. In general, the inversion-

free constraint is not explicitly enforced during the

remeshing process. However, to improve the robustness

and reality of FEM, the generated elements should not

be inverted. For triangular and tetrahedral meshes,

the Delaunay triangulation theoretically guarantees no

inverted elements (triangles or tetrahedrons). For

quad and hex meshes, it is challenging to achieve an

inversion-free result.

Hex mesh simplification Here we focus on the hex

mesh simplification. A high-quality hex mesh should

satisfy the following properties:

� Local regularity : each hex element approaches a

cuboid and is free of negative scaled Jacobian.

� Singularity complexity : the singularity graph is

simple and the number of patches in the hex layout

is small.
The input of hex mesh simplification is an inversion-free

hex mesh that contains no negative scaled Jacobian.

The goal is to reduce the number of patches in

the hex layout while avoiding any inverted hex and

maintaining the input surface shape. Obviously,

this is a combinatorial problem with inversion-free

constraints.

Two robust collapse operations Gao et al. [43]

propose a robust structure simplification algorithm.

The main idea is to greedily perform simplification

operations, inducing sheet collapse and chord collapse,

to reduce the complexity of the base complex of the

input mesh. To keep the inversion-free property, they

formulate the simplification operation as a deformation

process that uses explicit checks in combination with

line search to avoid inversions. In addition, the

topological validity and geometrical fidelity are also

guaranteed by explicit checks. In practice, these

explicit checks limit the simplification operation space,

thereby leaving room in reducing the singularity

complexity.

8 Conclusion

We have presented the state-of-the-art in inversion-

free geometric mapping construction. In this section,

we discuss possible generalizations of existing methods,

and interesting unsolved problems.

Theoretical guarantee If the initial mapping is not

inversion-free, no method has a theoretical guarantee

that the result is always inversion-free. This is the

most fundamental problem in studying and computing

inversion-free mappings. More theoretical studies

should be provided to achieve the inversion-free goal.

Bijective mappings in 3D Bijective mappings in

3D are essential for many geometric processing tasks.

In the future, it is worthwhile to study how to

reduce computational costs in computing 3D bijective

mappings. However, the cases of boundary collision in

3D are more complicated than 2D cases.

Time sequence data Most geometric data in the

aforementioned applications are single and static. One

interesting future work is to explore optimization

algorithms on the time sequence data, which is

widely used in the reconstruction of the dynamic

scene. Combined with the semantic information, the

collaborative optimization for time sequence models is

a possible research direction.

Generalization Many methods or thoughts

mentioned above can be generalized into a unified

framework. For example, the parameter α used in

TLC (Total Lifted Content) is fixed; but it can be

modified to be a changing parameter α→ 0, similar to

the idea of homotopy optimization. Moreover, similar

to the local-global method, these methods can be

generalized into a framework that can be used in more

applications.

Mesh cutting The distortion in the mesh cutting

algorithm [79] bounded; however, it usually generates

long cuts to achieve this goal. The greedy method [162]

often produces short cuts; but the distortion is not
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explicitly bounded. It is interesting to study the cut

generation problem to achieve as short cut as possible

while bounding the distortion.

Feature-preserving PolyCube construction

Although most features are aligned in [49], there

are still some features that are not aligned. As shown

in [148], a PolyCube corner, whose valence is equal to

five, is always non-manifold. Thus, to match a feature

point where five feature lines converge, a PolyCube

corner with the valence of six is required. Preserving

sharp features in the PolyCube construction is an

intriguing direction for future research.

Quasi-Conformal mappings in 3D Conformal and

Quasi-conformal mappings are powerful tools for

parameterizations or flattening of Riemann surfaces.

Meanwhile, there is very little work to study

3D cases. According to Liouville’s theorem, the

conformal mappings in Rn(n ≥ 3) are only Möbius

transformations which is not flexible at all. Quasi-

conformal mappings are sufficiently flexiable and still

close to conformal in a suitable sense. To study 3D

quasi-Conformal mappings, [23] decouples the scaling

and rotation in conformal deformation to generate

a close-to-conformal mapping. However, generally

measuring and optimizing the conformal quality of 3D

quasi-conformal mappings are still open problem and

need more research.

Poor triangulations for intrinsic flows The

computation process for intrinsic flows is affected by

the triangulations. Poor triangulation will severely slow

the convergence or even result in non-convergence of

the discrete intrinsic flow. Even if an edge flip strategy

is applied to improve the quality of triangulation, the

process may terminate when extreme poor triangular

meshes are used as inputs.

Hex mesh improvement Improving the quality of a

hex mesh requires optimizing the structure and vertex

positions at the same time. There are several problems

worth studying. First, if the input mesh contains

inverted hex elements, how to effectively and efficiently

eliminate them? Second, how to robustly compute a

coarser structure while satisfying the geometric fidelity

constraint and the topological constraint? Third, can

we use the structure optimization technique to help us

to eliminate inversion?
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