
Journal of computer science and technology: Instruction for authors. JOURNAL OF COMPUTER SCIENCE AND TECH-
NOLOGY

Multi-Feature Super-Resolution Network for Cloth Wrinkle Synthesis
Abstract Existing physical cloth simulators suffer f rom e xpensive c omputation a nd d ifficulties in tun ing mechanical
parameters to get desired wrinkling behaviors. Data-driven methods provide an alternative solution. They typically syn-
thesize cloth animation at a much lower computational cost, and also create wrinkling effects t hat h ighly r esemble the
much controllable training data. In this paper we propose a deep learning based method for synthesizing cloth animation
with high resolution meshes. To do this we first c reate a d ataset f or t raining: a p air o f l ow a nd h igh r esolution meshes
are simulated and their motions are synchronized. As a result the two meshes exhibit similar large-scale deformation but
different small wrinkles. Each simulated mesh pair are then converted into a pair of low and high resolution “images” (a 2D
array of samples), with each image pixel being interpreted as any of three descriptors: the displacement, the normal and the
velocity. With these image pairs, we design a multi-feature super-resolution (MFSR) network that jointly train an upsampling
synthesizer for the three descriptors. The MFSR architecture consists of shared and task-specific layers to learn multi-level
features when super-resolving three descriptors simultaneously. Frame-to-frame consistency is well maintained thanks to the
proposed kinematics-based loss function. Our method achieves realistic results at high frame rates: 12 ∼ 14 times faster than
traditional physical simulation. We demonstrate the performance of our method with various experimental scenes, including a
dressed character with sophisticated collisions.

Keywords cloth animation, deep learning, wrinkle synthesis, multi-feature, super-resolution

1 Introduction

Cloth animation plays an important role in many

applications, such as movies, video games, virtual try-

on [1, 2]. With the rapid development of physics-

based simulation techniques [3, 4, 5, 6], garment ani-

mations with remarkably realistic and detailed folding

patterns can be achieved. However, these techniques

require high resolution meshes to represent fine details,

therefore need much computation to solve velocity-

updating equations and resolve collisions. Moreover it

is labor-intensive to tune simulation parameters for a

desired wrinkling behavior. Recently data-driven meth-

ods [7, 8, 9] provide alternative solutions for these prob-

lems, as they offer fast production and also create wrin-

kling effects that highly resemble the training data.

Relying on precomputed data and data-driven tech-

niques, a high resolution (HR) mesh is either directly

synthesized, or super-resolved from a physically simu-

lated low resolution (LR) mesh. Nevertheless, exist-

ing data-driven methods either depend on human body

poses [7, 10, 11, 9] thus are not suitable for loose gar-

ments, or lack of dynamic modeling of wrinkle behav-

iors [12, 8, 13, 14, 15] for general case of free-flowing

cloth.

To tackle these challenges, we propose a framework,

synthesizing cloth wrinkles with a deep learning based

method. We create datasets, from physics-based simu-

lation, as the training data. The simulation is assumed

to be independent of human bodies and not limited to

tight garments. This dataset is generated by a pair

of LR and HR meshes with synchronized simulations.

Given the simulated mesh pairs, we aim to map the

LR meshes to the HR domain by a detail enhancement

method, which is essentially a super-resolution (SR) op-

eration. Deep SR networks have proven to be powerful

and fast machine learning tools for image detail en-

hancement [16, 17]. Yet for surface meshes which usu-

ally have irregular structures, it is not straightforward

to apply traditional convolutional operations as for im-

ages. Chen et al.[13] proposed a method, converting

manifold meshes into geometry images [18], to solve

Regular Paper

Journal of Computer Science and Technology http://jcst.ict.ac.cn

2 J. Comput. Sci. & Technol.

this issue. Inspired by their work, we design a multi-

feature super-resolution network (MFSR) to improve

the synthesized results and model the dynamic wrin-

kle behaviors. The LR and HR image pairs, encoding

three features: the displacement, the normal and the

velocity, are fed into the network for training. Our

MFSR jointly learns upsampling synthesizers with a

multi-task architecture, consisting of a shared network

and three task-specific networks, instead of combining

all features with a single SR network. The proposed

spatial and temporal losses also contribute to the gener-

ation of dynamic wrinkles and further maintain frame-

to-frame consistency. At runtime, with super-resolved

geometry images generated by MFSR, we convert them

back into HR meshes. As our approach is based on deep

neural networks, it reduces the computational cost sig-

nificantly. In summary, the main contributions of our

work are as follows:

• We propose a novel framework for cloth wrin-

kle synthesis, which is composed of synchronized

simulation, mesh-image conversion, and a multi-

feature super-resolution network (MFSR).

• We learn both shared and task-specific represen-

tations of garment shapes via multiple features.

• We generate dynamic wrinkles and consistent

mesh sequences thanks to the spatial and tem-

poral loss functions.

We qualitatively and quantitatively evaluate our

method for various cloth types (tablecloths and long

skirts) and motion sequences. Experimental results

show that the quality of synthesized garments is compa-

rable with that from a physics-based simulation, yet sig-

nificantly reducing the computation cost. To the best

of our knowledge, this is the first approach to employ

a multi-feature learning model on 3D dynamic wrinkle

synthesis.

2 Related work

2.1 Cloth animation

A physics-based simulation for realistic fabrics in-

cludes velocity updating by physical energies [3, 6], time

integration [5], collision detection and collision response

[4]. These modules are solved separately and time con-

suming. To improve the efficiency of this system, re-

searchers have exploited many algorithms such as im-

plicit time integration [5], adaptive remeshing [19] and

iterative optimization [20]. Nevertheless, these algo-

rithms still cost the expensive computation to produce

rich wrinkles and are labor consuming to tune mechan-

ical parameters for desired wrinkling behaviors. Re-

cently data-driven methods have drawn much attention

as they offer faster cloth animations than the physics-

based methods. Based on precomputed data and data-

driven techniques, an HR mesh is either directly synthe-

sized, or super-resolved from a physically simulated LR

mesh. In the first stream of work, with precomputed

data, researchers have investigated many techniques to

accelerate the process for new animations, such as a lin-

ear conditional model [11, 21] and a secondary motion

graph [22]. Additionally, deep learning-based methods

[23, 24, 25] are also used to generate garments on hu-

man bodies. In the another line of work, researchers

have proposed to combine coarse mesh simulations with

learned geometric details from paired mesh databases,

to generalize the performance to complicated testing

scenes. This stream of methods includes wrinkle syn-

thesis depending on bone clusters [10] or human poses

[7] for fitted clothes, and linear upsampling operators

[12] or low-dimensional subspace with bases [8, 26] for

general case of free-flowing cloth. Inspired by these

data-driven methods, we propose a deep learning based

approach to synthesize wrinkles on coarse simulated

meshes, while our approach is independent with poses

Journal of Computer Science and Technology http://jcst.ict.ac.cn

MFSR Network for Cloth Wrinkle Synthesis 3

or skeletons and not limited with tight garments.

2.2 Representation in 3D learning

To process 3D models for deep learning, there are

various representations [27], e.g. , voxels, images, point

clouds, meshes. Wang et al.[28] use voxel grids with

octree-based convolutional neural networks (CNNs) for

3D shape analysis. Su et al.[29] learn to recognize 3D

shapes from multi-view images with 2D-CNNs. Rep-

resentations based on voxels or multi-view images are

extrinsic to the shapes, which are sensitive to isometric

deformations, like rotation or translation. Instead of

rendered images, recent works [30, 13] use a technique

called geometry images [18] encoding features of 3D

meshes into 2D domain for 3D object recognition and

generation . With a patch-based approach, this tech-

nique is easily coped with deep CNNs thus suitable for

our mesh super-resolution task. Geometry images re-

quire parameterization for non-rectangular meshes, we

use a padding scheme to avoid mesh distortion. Re-

cently, some researches [31, 32] directly encode triangle

meshes with deformation-based features [33, 34] into la-

tent space with applications to shape embedding and

synthesis. These methods focus on the deformation

of overall meshes, however, our patch-based algorithm

aims at learning local details and is independent of the

underlying mesh connectivity.

Feature-based methods aim for proper descriptions

of irregular 3D meshes, for synthesizing detailed and

realistic objects. Conventional data-driven methods

[8] simplify the calculation of wrinkle features, by for-

mulating the strain or stress in an LR mesh. As for

deep learning, several algorithms have also investigated

robust descriptors for wrinkle deformation. Chen et

al.[13] and Oh et al.[14] use 3D coordinates to aug-

ment coarse meshes with synthesized wrinkles. Wang

et al.[25] learn an autoencoder network for cloth using

3D positions. Instead, Santesteban et al.[9] decompose

the cloth deformation into two displacements, a global

fit displacement and the wrinkle displacements. In ad-

dition to the position or the displacement, Lähner et

al.[15] and Zhang et al.[35] learn high frequency details

from normal maps. In our approach, we cascade mul-

tiple geometric features as shape descriptors embedded

in geometry images, including spatial information of the

displacement, the normal and temporal information of

the velocity.

2.3 Deep CNN-based Super-resolution

In the area of single image super-resolution (SISR),

deep learning-based techniques have achieved signifi-

cant breakthroughs in recent years. Convolutional lay-

ers [36] are proposed to be more efficient instead of

fully-connected structures in SISR, and later on are

extended to deep networks using various upsampling

layers, e.g. transposed layers [37] and sub-pixel lay-

ers [38]. For deep networks, residual learning [16] or

dense connections [39] are employed to solve the van-

ishing gradient problem. Our method likewise uses a

deep network with residual dense architecture [17] for

its performance and efficiency.

In video super-resolution tasks, how to generate

temporal consist results is a vital problem. One way

is using consecutive frames as inputs [40] or recurrently

using previously predicted outputs [41]. More recently,

the recurrent mechanism has influenced the field of

cloth animations. E.g. , Santesteban et al.[9] use recur-

rent networks based on gated recurrent units to regress

garment wrinkles. Recurrent modules need to predict

results sequentially, while our technique processes im-

ages individually and parallelly, even in arbitrary order.

An alternative solution is to synthesize single output

with specialized loss terms to constrain the consistency

over time. Loss functions using nearby frames help to

Journal of Computer Science and Technology http://jcst.ict.ac.cn

4 J. Comput. Sci. & Technol.

Fig.1. Pipeline of our Multi-Feature Super-Resolution (MFSR) network for cloth wrinkle synthesis. We generate low-resolution (LR)
and high-resolution (HR) mesh sequences via synchronized simulation. In the training stage, LR and HR meshes are converted into
LR and HR geometry images, respectively, encoding multiple features: the displacement, the normal and the velocity of the sampled
points. Then these features are fed into our MFSR network for training. At runtime stage, LR geometry images (converted from the
input LR mesh) are super-resolved into HR geometry images, which are converted to a detailed mesh.

alleviate temporal discontinuities in video [42]. In fluid

generation, Xie et al.[43] utilize a discriminator loss to

preserve temporal coherence. For cloth wrinkle syn-

thesis, Lähner et al.[15] propose a L1 loss between the

generated normal map and the ground truth at the pre-

vious frame. In our work, the cloth meshes are created

by physics-based simulation, thus ground truth motion

is available. A kinematic-based loss constraining the

estimated velocity and position enables our network to

generate realistic wrinkles while keeping the predictions

coherent from frame to frame.

3 Overview

Our method takes physical simulated LR meshes as

input, to infer realistic and consistent HR cloth ani-

mations. The pipeline of our approach is illustrated

in Fig. 1. To generate training data, a pair of LR

and HR meshes are simulated synchronously by vir-

tual spring constraints and multi-resolution dynamic

models (§ 4.2). Thus, the LR and HR meshes are well

aligned at the level of large-scale deformation and dif-

fer in the wrinkles. Then the simulated mesh pairs are

converted into dual-resolution geometry images (§ 4.1),

with each sample encoding three features: the displace-

ment, the normal and the velocity. A multi-feature

super-resolution network (MFSR) with shared layers

and task-specific modules is proposed to super-resolve

LR images with details (§ 5). Based on these features,

we design the spatial and temporal loss functions (§ 5.2)

to train our MFSR for detailed and consistent results.

At runtime, the testing LR geometry images (converted

from the input LR mesh) are upsampled into HR ge-

ometry images, which are then converted to a detailed

HR mesh with a refinement step to solve collisions.

4 Data preparation

4.1 Data representation and conversion

Dual-resolution meshes. Before executing cloth

simulation for data preparation, we need to set the ini-

tial rest state of LR and HR meshes. We obtain the

HR mesh by subdividing the edges of the LR one pro-

gressively till the desired resolution. In this work, the

number of faces in the HR mesh is 16 times as many

as the LR mesh. With the rest state LR/HR meshes,

we create two sets of dual-resolution frame data via

physics-based simulation. The correspondence between

them is maintained during the simulation, so that they

Journal of Computer Science and Technology http://jcst.ict.ac.cn

MFSR Network for Cloth Wrinkle Synthesis 5

exhibit similar large-scale folding behaviors but differ

in the fine-level wrinkles. More details about the syn-

chronized simulation are given in § 4.2.

Dual-resolution geometry images. We convert

the paired meshes to dual-resolution geometry images

of 9 channels. The embedded descriptors in our images

include the displacement d, the normal n and the veloc-

ity v. Different from the original geometry image paper

[18], we encode the displacements instead of positions,

since we are only interested in the intrinsic shape of the

mesh, not its absolute spatial locations. The displace-

ment is defined as the difference between its position

in current frame and that in its starting position. The

vertex normal is computed by the area-weighted aver-

age normals of the faces adjacent to this vertex. Due

to the physics-based simulation with fixed time step,

the velocity is naturally calculated using the positions

between two frames (The complete calculation of our

feature descriptors is provided in the supplemental ma-

terials). Since these features are not rotation invariant,

we calculate a rigid motion transformation [44] with ro-

tation R and translation t. Then, we apply (R, t) to

displacement, R applied to normal and velocity. To re-

duce the computation cost, we only compute the rigid

motion of LR meshes and apply the same (R, t) to the

HR meshes. To release the internal covariate shift [45],

these features are normalized into a range of [0, 1].

Fig.2. Mesh-image conversion. The HR skirt is converted to ge-
ometry images with three descriptors: the displacement d, the
normal n and the velocity v. For irregular garments, the feature
values of sample points outside the mesh but inside the bounding
box are zero (black pixels in the 2nd column), then are padded
with the nearest non-zero values (the 3rd column). The right one
is the reconstructed mesh via geometry image of displacement.

Mesh-to-image conversion. For a mesh in its

rest state, we find its bounding box in the 2D mate-

rial space. Inside the bounding box, we then sample

an array of m × n points uniformly. For each sample

point inside the mesh, we find the triangle it is located

in, and compute its barycentric coordinate (BC) w.r.t.

three triangle vertices. BC is unchanged even though a

triangle deforms during simulation. When computing

features for sample points, BCs are used as weights for

interpolating feature values (d,n,v) from triangle ver-

tices. For a mesh whose boundary coincides with the

bounding box edge, we do the padding operation along

boundaries. Otherwise, for sample points outside the

mesh but inside the bounding box, their feature val-

ues are filled with the nearest non-zero pixels similar to

replicate padding. A long skirt example is given in Fig.

2.

Image-to-mesh conversion. After an HR im-

age is synthesized, values in the displacement channels

are used to reconstruct the positions of the detailed

mesh, while the original topology of that mesh is re-

tained. Due to the padding operation, every vertex

in 2D material space has four nearest non-zero sample

points. We reconstruct the displacements of vertices by

Journal of Computer Science and Technology http://jcst.ict.ac.cn

6 J. Comput. Sci. & Technol.

Shared Layers
Unshared

Layers

1×1

Global residual learning

Residual dense network

HR
Geometry Images

LR
Geometry Images

Element-wise
sum

Concat

Residual
dense
block

Upscale
module

Conv

RDB - 1 RDB - i RDB - N

Fig.4. The architecture of MFSR. The input and the output are LR/HR images where each pixel is represented as a 9-dimensional
feature vector enclosing the displacement, the normal and the velocity in order. Conv and Concat refer to convolutional and concate-
nation layers, respectively. The MFSR upscales the LR features with shared and unshared layers to recover HR features with detailed
information.

bilinear interpolation. These computed displacements

are added to the positions of subdivided mesh vertices

in the rest state to obtain wrinkle-enhanced positions.

In the end we apply the inverse of the rigid transfor-

mation, computed in the mesh-to-image phase, to new

positions. As shown in the right of Fig. 2, almost no

visual differences can be seen. In our quantitative ex-

periments, the geometric reconstruction error is smaller

than 1e-4 meter, measured by the vertex mean square

error (VMSE).

4.2 Synchronized simulation

Fig. 3. The multi-resolution dynamic model for tracking.
Forces of stretching (left) and bending (right).

The high-quality training dataset is equally impor-

tant for data-driven approaches. In our case, we need

to generate corresponding LR/HR mesh pairs in ani-

mation sequences by physics-based simulation. In im-

age super-resolution tasks [16, 36], one way to gener-

ate training dataset is down-sampling HR images to

obtain their corresponding LR ones. However, down-

sampling an HR cloth mesh could cause collisions, even

though the HR mesh is collision-free. Therefore, it is

preferred that two meshes are simulated individually,

with all collisions being properly resolved. However, as

mentioned in previous works [12, 8], if there is no con-

straints between two simulations, they will bifurcate to

different b ehaviors b ecause o f a ccumulated h igher fre-

quencies generated by finer meshes and numerical er-

rors. There are several ways to formulate synchronized

constraints such as testing functions [46, 12]. And our

implementation enforces virtual spring constraints and

uses multi-resolution dynamic models to construct syn-

chronized simulation for HR meshes.

Our dual-resolution meshes are well aligned in the

initial state, because we only add vertices on the edges

without changing the mesh shape. The vertices in an

LR mesh, called feature vertices, show up in an HR

mesh and are used as constraints for synchronized sim-

ulation. We first run coarse cloth simulation and record

the positions of all feature vertices at total N frames

as pl
k, k = 1, · · · , N , where the superscript l stands for

the LR. While simulating an HR mesh at the frame k,

virtual springs are added to connect pairs (pl
k,p

h
k−1) of

feature vertices between LR mesh at the frame k and

HR mesh at the frame k− 1. To pull ph
k−1 towards pl

k,

Journal of Computer Science and Technology http://jcst.ict.ac.cn

MFSR Network for Cloth Wrinkle Synthesis 7

we define an internal force following Hooke’s law as

fspring = −c(pl
k − ph

k−1). (1)

where c is a spring stiffness constant that can be ad-

justed depending on how tight the tracking is desired

by the user. A large c results in tight tracking of the fea-

ture vertices, but not for other vertices. As a side effect

the simulated HR mesh has many annoying “spikes”.

Thus, we add a multi-resolution dynamic model to

cooperate with virtual springs. Given an HR mesh at

level H0 (shown as the solid lines in Fig. 3), we con-

struct an LR triangle mesh at level H1 (the dashed

triangle in Fig. 3). The mesh in H1 connects the

feature vertices by retaining the topology of the LR

mesh. In finite-element simulations, the constitutive

model includes internal cloth forces supporting behav-

iors such as anisotropic stretch or compression [47] and

surface bends [6] with damping [19]. For a triangle

in the coarse mesh at level H1, the in-plane stretch-

ing forces fs1 = (fs11, f
s
12, f

s
13) at three vertices are mea-

sured by a corotational finite-element approach [47].

While the bending forces for two adjacent triangles are

added using a discrete hinge model based on dihedral

angles, denoted as f b1 = (f b11, f
b
12, f

b
13, f

b
14). The trian-

gles in the fine level H0 have the same force patterns

fs0 and f b0 imposed on all particles (including feature

vertices). All stretching and bending forces are added

accompanying damping forces. In addition, our two-

level dynamic models are independent of the force im-

plementations, and would also work with other trian-

gular finite-element methods. As a result, the feature

vertices in multi-resolution dynamic models receive the

stretch forces from both fs0 and fs1 , while the same for

bending forces. The rest vertices are only imposed on

the forces at level H1. With the two-hierarchy dynamics

model, modest virtual spring coefficients can make the

HR mesh keep pace with the LR mesh in simulation.

5 Multi-feature super-resolution network

In this section, we introduce our MFSR architecture

based on the RDN, as well as the loss functions taking

spatial and temporal features into account to improve

wrinkle synthesis capability.

5.1 MFSR architecture

We now introduce our MFSR architecture for the

image SR tasks of multiple features. With LR/HR im-

ages of the form (d,n,v)l and (d,n,v)h, our MFSR

learns the mappings of different features by image SR

networks. One standard methodology is single task

learning, which means learning one task at a time.

However it ignores a potentially rich source of infor-

mation available in other tasks. Another option is

multi-task learning, which achieves inductive transfer

between tasks, with the goal to leverage additional

sources to improve the performance of the target task

[48]. Our MFSR is a multi-task architecture, consists

of two components: a single shared network, and three

task-specific networks. The shared network is designed

based on the SR task, whilst each task-specific network

consists of a set of convolutional modules, which link

with the shared network. Therefore, the features in the

shared network, and the task-specific networks, can be

learned jointly to maximise the generalisation of the

shared representation across multiple SR tasks, simul-

taneously maximising the task-specific performance.
Fig. 4 shows a detailed visualisation of our MFSR

based on residual dense blocks (RDB) [17]. In the

shared network, the image SR model consists of four

parts: shallow feature extraction, basic blocks, dense

feature fusion, and finally upsampling. We use two con-

volutional layers to extract shallow features, followed

by the RDB [17] as the basic blocks, then dense fea-

ture fusion to extract hierarchical features, and lastly

one bilinear upsampling layer to upscale the height and

Journal of Computer Science and Technology http://jcst.ict.ac.cn

8 J. Comput. Sci. & Technol.

width of the LR feature maps by 4 times. Different

from general SR tasks, we find that pixel shuffle and

deconvolution methods cause apparent checkboard ar-

tifacts so we use bilinear method. For basic blocks in

our SR network, we employ RDB instead of residual

blocks used in [13]. As shown in the left of Fig. 5,

a residual block learns a mapping function with refer-

ence to its input, therefore can be used to build deep

networks to address the problem of vanishing gradi-

ents. However, in the residual block a convolutional

layer only has direct connection to its precedent layer,

neglecting to make full use of all preceding layers. To

exploit all the hierarchical features, we choose RDB (see

in the right of Fig. 5) that consist of densely connected

layers for global feature combination and local feature

fusion with local residual learning. More details about

RDB are given in [17]. In each task-specific network,

we utilize one convolutional layer to map the extracted

local and global features to each upsampled descriptor

ds,ns, and vs, respectively.

Residual dense block

C
on

v

C
on

v

C
on

v

C
on

v

R
el

u

R
el

u

R
el

u

R
el

u

C
on

v

Residual block

C
on

ca
t

1×
1

C
on

v

Fig. 5. Two network structures used in image super-
resolution. The left is residual block in [16]. The right
is residual dense block in [17] used for our MFSR.

5.2 Spatial and temporal losses

In order to learn the spatial details and temporal

consistency of the underlying HR meshes, our MFSR is

trained by minimizing the following loss functions for

mesh features. A baseline mean square error (MSE)

reconstruction loss is defined as

Ld = ||dh − ds||2, (2)

where dh and ds stand for the ground truth HR and

the synthesized SR displacement images, respectively.

This displacement loss term is able to obtain a smooth

HR result with given low frequency information.

To extend the loss into wrinkle feature space, a novel

L2 loss for normal is introduced:

Ln = ||nh − ns||2. (3)

where nh denotes the ground truth normal image and

ns denotes the superresolved normal image. The nor-

mal feature is directly related to the bending behavior

of cloth meshes. This loss term encourages our model

to learn the fine-level wrinkle f eatures so that the out-

puts can stay as close to the ground truth as possible.

In our experiments it aids the networks in creating re-

alistic details.

The above two loss terms are utilized to reconstruct

high-frequency details exclusively from spatial statis-

tics. To improve the consistency for animation se-

quences, we should also take the temporal coherence

into account. The vertex velocities of every animation

frame contribute a velocity loss of the form

Lv = ||vh − vs||2, (4)

where vh denotes the ground truth velocity image and

vs denotes the synthesized velocity image.

In addition, we minimize a kinematics-based loss in

the training stage, to constrain the relationship between

synthesized velocities and displacements (please refer to

the supplementary material for the detail derivation) as

Lkine =

n∑
k=1

||R−1(ds
k − (ds + (

k∑
j=1

vs
k−j) ∗∆t)||2, (5)

where n is the length of frames associated to the input

frame, and ∆t represents the time step between con-

secutive frames. R is the precomputed rotation part in

the rigid motion transformation for input frame. This

kinematics-inspired loss term can improve the consis-

tency between the generated cloth animations.

Journal of Computer Science and Technology http://jcst.ict.ac.cn

MFSR Network for Cloth Wrinkle Synthesis 9

The overall loss of our MFSR is defined as

Lall = wdLd + wnLn + wvLv + wkineLkine. (6)

which is a linear combination of spatial smoothness, de-

tail similarity, temporal consistency and kinematic loss

terms with the weight factors wd, wn, wv, and wkine. As

for back propagation, each loss term propagates back-

wards through the task-specific layer independently. In

the shared layers, parameters are updated according to

the total loss Lall. As a result, the gradient of loss

functions from multiple SR tasks will pass through the

shared layers directly, and learn a common representa-

tion for all related tasks.
The reconstructed meshes converted from super-

resolved images by the above network may suffer from

penetrations with obstacles or self-collision. For inter-

actions with human or balls, we adopt a fast refine-

ment method [25] to push the cloth vertices colliding

with the obstacles outside meanwhile preserving the lo-

cal wrinkle details. As for self-collision, since the run-

time simulation of an LR mesh is collision-free, we in-

terpolate the vertices in the penetrating area between

LR meshes and the reconstructed ones to guarantee to

resolve all collisions. In implementation, we use the

bisection method [49] to search for a close-to-optimal

interpolation weight. We do the bisection several times

and then take the last collision-free state as the inter-

polation result (see Fig. 6). It is not necessary to let all

vertices of the whole mesh get involved in the position

interpolation. Instead, only the vertices involved in the

intersections are of our interests. These vertices can be

specified by a discrete collision detection process and

grouped into impact zones as done in [50]. Position

interpolations are performed per zone, and each zone

has different interpolation weights. In this way,

the synthesized meshes are least affected by the

collision handling.

Fig.6. Given a super-resolved cloth with self-collision (the
1st column), the collision solving method is utilized to un-
tangle the intersection regions after two steps (the 2nd and
the 3rd columns).

6 Implementation

We describe the details of the data generation and

the network architecture in this section.

Data generation. We construct three datasets us-

ing a tablecloth model and a skirt model with charac-

ter motions. The two models are regular and irregu-

lar garment shapes, respectively. The meshes in each

dataset are simulated from a fixed template model.

For the tablecloths, we generate two datasets, called

DRAPING and HITTING (see Fig. 7). The DRAP-

ING dataset is created by randomly handling one of

the topmost vertices of the tablecloth and letting the

fabric fall freely. It contains 13 simulation sequences,

each with 400 frames. 10 sequences are randomly se-

lected for training and remaining 3 sequences are for

testing. In addition to simulating a piece of tablecloth

in a free environment, we also construct a HITTING

dataset where a sphere interacts with the tablecloth.

Specifically, we select spheres of different sizes to hit

the tablecloth back and forth at different locations, and

obtain a total of 35 simulation sequences, with 1,000

frames for each sequence. We randomly select 27 se-

quences for training and 8 sequences for testing. The

Journal of Computer Science and Technology http://jcst.ict.ac.cn

10 J. Comput. Sci. & Technol.

SKIRT dataset is created by the long skirt garments

worn by an animated character (shown in Fig. 7). A

mannequins has rigid parts as [19] and is driven by pub-

licly available motion capture data from CMU [51]. We

select dancing motions including 7 sequences (in total

30,000 frames), in which 5 sequences are randomly se-

lected for training and 2 sequences are for testing. To

simulate cloth stably, we interpolate 8 times between

two adjacent motions from the original data.

Fig. 7. We test our algorithm on three datasets including
DRAPING (left), HITTING (middle) and SKIRT (right).
The top and bottom rows show the LR and HR cloth
meshes, respectively.

We apply the ARCSim engine [19] to produce all

simulations with remeshing disabled. A material called

the Gray Interlock is adopted for its anisotropic behav-

iors, from a library of measured cloth materials [52].

To meet a collision-free initial state for skirts, we first

manually put the skirt on a template mannequin (T

pose), then interpolate 80 frames between the T pose

and the initial poses of motion sequences. In addition,

for synchronized simulation, we set the spring stiffness

constant c = 10 in the equation (1).

Network architecture. For different datasets, we

train each model separately. Our proposed MFSR con-

sists of shared and task-specific layers. The shared net-

work has 16 identical RDB [17], where six of them are

densely connected layers for each RDB, and the growth

rate is set to 32. The basic network settings, such as the

convolutional kernel and activation function, are set ac-

cording to [17]. For the upscaling operation, i.e., from

the coarse resolution features to fine ones, we consider

several different mechanisms, e.g. , pixel shuffle mod-

ule [38], deconvolution, nearest and bilinear, and finally

choose the bilinear upscaling layer because it can pre-

vent checkerboard artifacts in the generated meshes. In

our upsampling network, the upscale factor is set to 4.

The upscale factor (in one dimension) for corresponding

meshes is set to be as close to 4 as possible. For exam-

ple, the LR and the HR tablecloth meshes have 749 and

11,393 vertices, respectively, the latter being roughly 16

times as many as the former. Converting meshes to im-

ages, we set the size of LR images in tablecloth to be

192 × 128, and HR ones 768 × 512. The image aspect

ratio is the same to the uv proportion in material space

to achieve uniform sampling.
We implement our network using PyTorch 1.0.0. In

each training batch, we randomly extract 16 LR/HR
pairs with the size of 72 × 72 and 288 × 288 as input.

Adam optimizer [53] is used to train our network, and

its β1 and β2 are both set to 0.9. The base learning

rate is initialized to 1e-4, and is divided by 10 every 20

epochs. To avoid learning rate becoming too small, we

fix it after 60 epochs. The training procedure stops after

120 epochs and takes about a day and a half. In all our

experiments, we set the length of the input frames n = 3

for the kinematics-based loss in the equation (6). Be-

sides, we set the weights wd = 0.9, wn = 0.03, wv = 0.03

and wkine = 0.03 in the equation (6).

7 Results and evaluations

In this section, we evaluate the results obtained

with our method both quantitatively and qualitatively.

The runtime performance and visual fidelity are demon-

Journal of Computer Science and Technology http://jcst.ict.ac.cn

MFSR Network for Cloth Wrinkle Synthesis 11

Table 1. Statistics and timing (sec/frm) of the tablecloth and skirt testing examples.

Benchmark #verts #verts tracked ours speedup our components
LR HR sim. coarse mesh/image synthesizing refinement

sim. conversion (GPU)
DRAPING 749 11,393 4.27 0.345 12 0.129 0.089 0.0553 0.0718
HITTING 749 11,393 4.38 0.341 13 0.135 0.109 0.0531 0.0434

SKIRT 1,303 19,798 10.23 0.709 14 0.227 0.18 0.0281 0.274

strated with various scenes: draping and hitting table-

cloths, and long skirts worn by animated character,

separately. We compare our results against simulation

methods and demonstrate the benefits of our method

for cloth wrinkle synthesis. The effectiveness of our

network components is also analyzed, for various loss

functions and network architectures.

7.1 Runtime performance

We implement our method on a 2.50GHz Core 4 In-

tel CPU for coarse simulation and mesh-image conver-

sion, and a NVIDIA GeForce® GTX 1080Ti GPU for

image synthesizing. Table 1 shows average per-frame

execution time of our method for the different garment

resolutions. The execution time contains four parts:

coarse simulation, mesh/image conversion, image syn-

thesizing, and refinement. For reference, we also statis-

tic the simulation timings of a CPU-based implementa-

tion of tracked high-resolution simulation using ARC-

Sim [19]. Our algorithm is averagely 13 times faster

than the tracked simulation. The low computational

cost of our method makes it suitable for the interactive

applications.

7.2 Wrinkle synthesis results and comparisons

Generalization to new hanging. We use the

training data in the DRAPING dataset to learn a syn-

thesizer, then evaluate the generalization to new hang-

ing vertices. Fig. 8 shows the deformations of table-

cloths of three test sequences in the DRAPING dataset.

We compare our results with the HR meshes of tracked

physics-based simulation. Our approach successfully

produces the realistic and abundant wrinkles in differ-

ent deformation sequences, in details, tablecloths ap-

pear many middle and small wrinkles when falling from

different directions.

Fig.8. The super-resolved results of our method (bottom)
is able to produce as many wrinkles as the ground-truth
tracked HR simulation (top).

Generalization to new balls. Shown in Fig. 9,

we visually evaluate the quality of our algorithm in the

HITTING dataset, which illustrates the performance

when generalizing to new crashing balls of various sizes

and initial positions. We show four test examples com-

paring the ground-truth HR of the tracked simulation

with our method. For testing, the initial positions of

balls are set to four different places which are unseen

in training data. Additionally, in the third and fourth

columns of Fig. 9, the diameter of the ball is set to 0.5

which is also a new size not used for training. When

various sizes of balls crash into the cloth in different

positions, our method can successfully predict the plau-

sible wrinkles, with 12 times faster running speed than

physics-based simulation.

Journal of Computer Science and Technology http://jcst.ict.ac.cn

12 J. Comput. Sci. & Technol.

Fig.9. Comparison between the ground-truth tracked simu-
lation (top) and our super-resolved meshes (bottom), on
testing animation sequences in HITTING dataset. Our
method succeeds to predict the small and mid-scale wrin-
kles of the garments with 12 times faster running speed than
physic-based ones.

Fig.10. Comparison between ground-truth tracked simula-
tion (top) and our super-resolved meshes (bottom), on the
test frames in SKIRT dataset. Our method succeeds to pre-
dict the dynamic wrinkles of the long skirts as realistic as
physic-based ones.

Generalization to new motions. In Fig. 10, we

show the deformed long skirt produced by our approach

on the mannequins while changing various poses over

time. The human poses are from two testing motion

sequences 05_04 in the subject of modern dance and

55_02 in the subject of lambada dance [51]. We vi-

sually compare the results of our algorithm with the

ground-truth simulation. The mid-scale wrinkles are

successfully predicted by our approach when generaliz-

ing to various dancing motions not in the training set.

For instance, in the first column of Fig. 10, the skirt

slides forward and forms plausible wrinkles due to an

extended and straight leg caused by the character pose

of sideways arabesque. As for dancing sequences, please

see the accompanying video for more animated results

and further comparisons.

Comparison with other methods. Given de-

tailed meshes simulated by the physics-based technique

as ground truth, we compare our results with our imple-

mentation of a CNN-based method [13] and a conven-

tional machine learning-based method [8]. The perfor-

mance is evaluated on the Tablecloth dataset combin-

ing DRAPING and HITTING by a single network. The

partition of the dataset for training and testing and the

training parameters of our method are the same with

the setting illustrated in § 6.

We train the network of Chen et al.[13] with the

same setting reported in their paper [13]. The peak

signal-to-noise ratio (PSNR) and vertex-wise mean

square error (VMSE) are used to evaluate the quality of

reconstructions, quantitatively. As shown in Table 2,

our MFSR gains better performance than [13] with a

higher PSNR and a lower VMSE. As shown in Fig. 11,

with the LR meshes as inputs, our MFSR successfully

produces rich and consistent wrinkles thanks to multi-

ple features, while the results of Chen et al.approximate

inaccurate wrinkles depending on the position. The

velocity and kinematics-based loss functions also con-

tribute to more stable results than Chen et al.(please

refer to the accompanying video). The differences be-

tween the result and the ground truth are highlighted

in Fig. 11 using color coding. In the results of Chen et

al., it clearly highlights the bottom left, bottom right

corners and wrinkle lines, where our results look closer

to the ground truth.

In addition, we compare our MFSR with state-

of-the-art data-driven method [8] (not deep learning

based) to generate cloth wrinkles. Our results have

lower vertex-wise error than [8] as shown in Table 2.

As mentioned in [8], their method handles quasistatic

Journal of Computer Science and Technology http://jcst.ict.ac.cn

MFSR Network for Cloth Wrinkle Synthesis 13

(a) (b) (c) (d) (e)

Fig.11. Comparison of the reconstruction results for unseen data in the Tablecloth dataset combining DRAPING and HIT-
TING. (a) the input coarse meshes, (b) the results of Chen et al.[13], (c) the results of Zurdo et al.[8], (d) our results,
(e) the ground truth. The reconstruction accuracy is qualitatively showed as a difference map. Reconstruction errors are
color-coded and warmer colors indicate larger errors. Our method leads to significantly lower reconstruction errors.

wrinkle formation without dynamic features. They use

the edge ratio between current and the rest state as

mesh descriptors, contrarily, our algorithm enhances

the LR deformation using multiple descriptors with spa-

tial and dynamic information. Fig. 11 and the accom-

panying video show that the results of [8] have small

artifacts and are lack of temporal coherence, while our

technique can realize stable and realistic cloth. Besides,

collisions are not handled in their work. Our approach

solves cloth penetrations with controllable cost (see in

Table 1).

Table 2. Comparison of pixel-wise and vertex-wise error val-
ues (PSNR/VMSE) of Zurdo et al.[8], Chen et al.[13] and our
MFSR. Our results gain better performance than them with a
higher PSNR and a lower VMSE.

Benchmark Methods Metrics
PSNR ↑ VMSE ↓

DRAPING
Chen et al. 59.07 4.19e-4
Zurdo et al. - 1.30e-4

Ours 68.91 7.09e-5

HITTING
Chen et al. 59.15 1.17e-4
Zurdo et al. - 5.78e-5

Ours 72.25 4.69e-5

7.3 Ablation study

Next, we study the effect of different components

of our proposed network, including loss function and

network architecture.

Loss function. To demonstrate the effectiveness

of our proposed loss functions, we conduct the ex-

periments with different loss combinations on three

datasets, i.e. , DRAPING, HITTING, and SKIRT,

respectively. The training and testing datasets are se-

lected as mentioned in § 6. We use the displacement

loss as the baseline and progressively add the remaining

loss terms of our mesh MFSR, to obtain the compara-

tive results.

Table 3 reports the quantitative evaluation of PSNR

between generated displacement images and ground

truth in various settings of loss functions. Red text

indicates the best performance and the blue text indi-

cates the second-best. The result shows that our al-

gorithm has either a best or second-best performance

through combining all loss terms in a multi-task learn-

ing framework. Notice that without the constraints of

velocity and kinematics-based loss, the results with Ln

gain lower PSNR although it encourages wrinkle gen-

Journal of Computer Science and Technology http://jcst.ict.ac.cn

14 J. Comput. Sci. & Technol.

(a) (b) (c) (d) (e) (f) (g)

Fig.12. The evaluation of each loss term for our mesh MFSR model. (a) input LR mesh, (b) results with Ld, (c) results with
Ld+n, (d) results with Ld+v (e) results with Ld+n+v, (f) our results, (g) ground truth.

eration in SR results.

Table 3. Comparison of PSNR of displacement images using
different training loss terms.

Benchmark Ld Ld+n Ld+v Ld+n+v Lall

DRAPING 67.90 62.83 67.92 63.47 68.68
HITTING 67.11 68.23 71.41 69.75 71.26

SKIRT 62.48 60.76 62.48 61.31 62.88

In Fig. 12, we show visual results from the DRAP-

ING dataset, to evaluate the performance of different

loss combinations. The baseline model (see Fig.12(a))

only including displacement loss generates cloth meshes

with too many unrealistic small wrinkles and inconsis-

tent thin lines. Directly combining velocity loss with

the baseline (see Fig.12(c)) is not able to solve this

problem, contrarily introducing some unexpected hor-

izontal short lines. The results including normal loss

also suffer from uneven lines and sharp triangles on the

folders and boundaries (i.e., several buckling triangles

near the handler and center wrinkle lines on the top of

Fig.12(b)(d)). Finally, the results with all our proposed

loss functions (see Fig.12(e)) are visually very close to

the ground truth (see Fig.12(f)) with the realistic and

consistent wrinkles and folders, which verifies the effec-

tiveness of our proposed four loss functions.

Fig. 13. Convergence analysis of the displacement d, the
normal n and the velocity v with RDN [17] and SRRes-
Net [16]. PSNR between the inference of super-resolution
networks and the ground truth is used for this quantitative
evaluation, where RDN achieves better performance.

Network architecture. To further investigate

the performance of different networks (SRResNet and

RDN), we conduct experiments on the DRAPING

dataset. In particular, we validate our cloth anima-

tion results on randomly selected 800 pairs of LR/HR

meshes from the DRAPING dataset, which are ex-

cluded from the training set, and cover different com-

plex hanging motions in pendulum movement. In Fig.

13, we depict the convergence curves of three different

features in the above validation dataset. The conver-

gence curves show that RDN achieves better perfor-

mance than SRResNet, and further stabilizes the train-

Journal of Computer Science and Technology http://jcst.ict.ac.cn

MFSR Network for Cloth Wrinkle Synthesis 15

ing process in all three features. The improved perfor-

mance and stabilization are benefited from contiguous

memory, local residual learning and global feature fu-

sion in RDN. In SRResNet, local convolutional layers

do not have direct access to the subsequent layers so it

neglects to fully use information of each convolutional

layer. As a result, RDN achieves better performance

than SRResNet.

8 Conclusions and future work

In this paper, we propose a multi-feature frame-

work to synthesize details for cloth animations. We

embed spatial and temporal features of 3D meshes

into multiple images and learn a super-resolution net-

work jointly. We also design a kinematics-based loss

to maintain the temporal consistency of the predicted

sequences. Quantitative and qualitative results reveal

that our method can synthesize realistic wrinkles in var-

ious scenes, such as draping cloth, garments interacting

with moving balls and human bodies. We also give de-

tails on synchronized simulation, as it contributes to

construct paired 3D meshes. These aligned coarse and

fine meshes can also be used for other applications such

as 3D shape matching of incompatible shape structures.

Limitations and Future work. Nevertheless, several

limitations remain open for the future work. In our

work, the training data is the paired LR/HR meshes

generated by a synchronized simulation. While track-

ing the LR cloth, the HR cloth cannot show dynamic

properties of a full simulation. We would like to ad-

dress this limitation by imposing unsupervised learning

or cycle/dual generative adversarial networks to learn

a mapping between the high resolution meshes and low

resolution meshes in the future. In addition, the dataset

should be further expanded including more scenes, mo-

tion sequences, and garment shapes to create more di-

verse results. Our work is not independent of physics

based simulation, but is an acceleration one. Thus the

estimated wrinkles from networks are related to the ma-

terials setting in physics-based simulation phase. It

could be an interesting future direction to generalize

our method to diverse materials thus generate different

types of wrinkles.

References

[1] J. Liang and M. C. Lin, “Machine learning for digital try-on:
Challenges and progress,” Computational Visual Media, pp.
1–9, 2020.

[2] M. Wang, X. Q. Lyu, Y. J. Li, and F. L. Zhang, “VR con-
tent creation and exploration with deep learning: A survey,”
Computational Visual Media, pp. 1–26, 2020.

[3] D. Terzopoulos, J. Platt, A. Barr, and K. Fleischer, “Elas-
tically deformable models,” in SIGGRAPH, 1987, pp. 205–
214.

[4] X. Provot, “Collision and self-collision handling in cloth
model dedicated to design garments,” in EG Workshop on
Computer Animation and Simulation, 1997, pp. 177–189.

[5] D. Baraff and A. Witkin, “Large steps in cloth simulation,”
in SIGGRAPH, 1998, pp. 43–54.

[6] R. Bridson, S. Marino, and R. Fedkiw, “Simulation of cloth-
ing with folds and wrinkles,” in Proc. Symp. Computer An-
imation, 2003, pp. 28–36.

[7] H. Wang, F. Hecht, R. Ramamoorthi, and J. O’Brien,
“Example-based wrinkle synthesis for clothing animation,”
ACM Trans. Graph., vol. 29, no. 4, pp. 107:1–107:8, 2010.

[8] J. S. Zurdo, J. P. Brito, and M. A. Otaduy, “Animating
wrinkles by example on non-skinned cloth,” IEEE Trans.
Visual. Comput. Graph., vol. 19, no. 1, pp. 149–158, 2013.

[9] I. Santesteban, M. A. Otaduy, and D. Casas, “Learning-
based animation of clothing for virtual try-on,” in Computer
Graphics Forum, vol. 38, no. 2. Wiley Online Library, 2019,
pp. 355–366.

[10] W.-W. Feng, Y. Yu, and B.-U. Kim, “A deformation trans-
former for real-time cloth animation,” ACM Trans. Graph.,
vol. 29, no. 4, pp. 108:1–108:10, 2010.

[11] E. de Aguiar, L. Sigal, A. Treuille, and J. K. Hodgins,
“Stable spaces for real-time clothing,” ACM Trans. Graph.,
vol. 29, no. 3, pp. 106:1–106:9, 2010.

[12] L. Kavan, D. Gerszewski, A. W. Bargteil, and P.-P.
Sloan, “Physics-inspired upsampling for cloth simulation in
games,” ACM Trans. Graph., vol. 30, no. 4, pp. 93:1–93:10,
2011.

Journal of Computer Science and Technology http://jcst.ict.ac.cn

16 J. Comput. Sci. & Technol.

[13] L. Chen, J. Ye, L. Jiang, C. Ma, Z. Cheng, and X. Zhang,
“Synthesizing cloth wrinkles by CNN-based geometry image
superresolution,” Computer Animation and Virtual Worlds,
vol. 29, no. 3-4, p. e1810, 2018.

[14] Y. J. Oh, T. M. Lee, and I.-K. Lee, “Hierarchical cloth simu-
lation using deep neural networks,” in Proceedings of Com-
puter Graphics International 2018, 2018, pp. 139–146.

[15] Z. Lähner, D. Cremers, and T. Tung, “Deepwrinkles: Accu-
rate and realistic clothing modeling,” in European Confer-
ence on Computer Vision. Springer, 2018, pp. 698–715.

[16] C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cun-
ningham, A. Acosta, A. Aitken, A. Tejani, J. Totz, and
Z. Wang, “Photo-realistic single image super-resolution
using a generative adversarial network,” arXiv preprint
arXiv:1609.04802, 2016.

[17] Y. Zhang, Y. Tian, Y. Kong, B. Zhong, and Y. Fu, “Residual
dense network for image super-resolution,” in IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
2018, pp. 1–10.

[18] X. Gu, S. J. Gortler, and H. Hoppe, “Geometry images,”
ACM Trans. on Graph., vol. 21, no. 3, pp. 355–361, 2002.

[19] R. Narain, A. Samii, and J. F. O’Brien, “Adaptive
anisotropic remeshing for cloth simulation,” ACM Trans.
on Graph., vol. 31, no. 6, pp. 147:1–10, 2012.

[20] T. Liu, A. W. Bargteil, J. F. O’Brien, and L. Kavan, “Fast
simulation of mass-spring systems,” ACM Trans. Graph.,
vol. 32, no. 6, pp. 1 – 7, 2013.

[21] P. Guan, L. Reiss, D. A. Hirshberg, A. Weiss, and
M. J. Black, “DRAPE: Dressing any person,” ACM Trans.
Graph., vol. 31, no. 4, pp. 35:1–35:9, 2012.

[22] D. Kim, W. Koh, R. Narain, K. Fatahalian, A. Treuille,
and J. F. O’Brien, “Near-exhaustive precomputation of sec-
ondary cloth effects,” ACM Trans. Graph., vol. 32, no. 4,
pp. 87:1–87:8, 2013.

[23] E. Gundogdu, V. Constantin, A. Seifoddini, M. Dang,
M. Salzmann, and P. Fua, “Garnet: A two-stream net-
work for fast and accurate 3d cloth draping,” arXiv preprint
arXiv:1811.10983, 2018.

[24] T. Y. Wang, D. Ceylan, J. Popovic, and N. J. Mitra, “Learn-
ing a shared shape space for multimodal garment design,”
ACM Trans. Graph., vol. 37, no. 6, pp. 1:1–1:14, 2018.

[25] T. Y. Wang, T. Shao, K. Fu, and N. J. Mitra, “Learning
an intrinsic garment space for interactive authoring of gar-
ment animation,” ACM Transactions on Graphics (TOG),
vol. 38, no. 6, p. 220, 2019.

[26] F. Hahn, B. Thomaszewski, S. Coros, R. W. Sumner,
F. Cole, M. Meyer, T. DeRose, and M. Gross, “Subspace

clothing simulation using adaptive bases,” ACM Trans.
Graph., vol. 33, no. 4, pp. 105:1–105:9, 2014.

[27] Y. P. Xiao, Y. K. Lai, F. L. Zhang, C. p. Li, and L. Gao,
“A survey on deep geometry learning: From a representation
perspective,” Computational Visual Media, vol. 6, no. 2, pp.
113–133, 2020.

[28] P.-S. Wang, Y. Liu, Y.-X. Guo, C.-Y. Sun, and X. Tong,
“O-cnn: Octree-based convolutional neural networks for 3d
shape analysis,” ACM Transactions on Graphics (TOG),
vol. 36, no. 4, pp. 1–11, 2017.

[29] H. Su, S. Maji, E. Kalogerakis, and E. G. Learned-Miller,
“Multi-view convolutional neural networks for 3D shape
recognition,” in IEEE ICCV, 2015.

[30] A. Sinha, J. Bai, and K. Ramani, “Deep learning 3D shape
surfaces using geometry images,” in European Conference
on Computer Vision (ECCV), 2016, pp. 223–240.

[31] Q. Tan, L. Gao, Y. Lai, J. Yang, and S. Xia, “Mesh-based
autoencoders for localized deformation component analysis,”
CoRR, vol. abs/1709.04304, 2017.

[32] Q. Tan, L. Gao, Y.-K. Lai, and S. Xia, “Variational au-
toencoders for deforming 3d mesh models,” arXiv preprint
arXiv:1709.04307, 2017.

[33] L. Gao, Y.-K. Lai, D. Liang, S.-Y. Chen, and S. Xia, “Effi-
cient and flexible deformation representation for data-driven
surface modeling,” ACM Transactions on Graphics (TOG),
vol. 35, no. 5, pp. 1–17, 2016.

[34] L. Gao, Y.-K. Lai, J. Yang, Z. Ling-Xiao, S. Xia, and
L. Kobbelt, “Sparse data driven mesh deformation,” IEEE
transactions on visualization and computer graphics, 2019.

[35] M. Zhang, T. Wang, D. Ceylan, and N. J. Mitra, “Deep
detail enhancement for any garment,” arXiv e-prints, pp.
arXiv–2008, 2020.

[36] C. Dong, C. C. Loy, K. He, and X. Tang, “Image super-
resolution using deep convolutional networks,” IEEE Trans.
Pattern Analysis and Machine Intelligence, vol. 38, no. 2,
pp. 295–307, 2016.

[37] C. Dong, C. C. Loy, and X. Tang, “Accelerating the super-
resolution convolutional neural network,” in European Con-
ference on Computer Vision, 2016, pp. 391–407.

[38] W. Shi, J. Caballero, F. Huszár, J. Totz, A. P. Aitken,
R. Bishop, D. Rueckert, and Z. Wang, “Real-time single im-
age and video super-resolution using an efficient sub-pixel
convolutional neural network,” in IEEE CVPR, 2016, pp.
1874–1883.

[39] M. Haris, G. Shakhnarovich, and N. Ukita, “Deep back-
projection networks for super-resolution,” in Proceedings of
the IEEE conference on computer vision and pattern recog-
nition, 2018, pp. 1664–1673.

Journal of Computer Science and Technology http://jcst.ict.ac.cn

MFSR Network for Cloth Wrinkle Synthesis 17

[40] A. Kappeler, S. Yoo, Q. Dai, and A. K. Katsaggelos, “Video
super-resolution with convolutional neural networks,” IEEE
Transactions on Computational Imaging, vol. 2, no. 2, pp.
109–122, 2016.

[41] M. Chu, Y. Xie, L. Leal-Taixé, and N. Thuerey, “Temporally
coherent gans for video super-resolution (tecogan),” arXiv
preprint arXiv:1811.09393, vol. 1, no. 2, p. 3, 2018.

[42] P. Bhattacharjee and S. Das, “Temporal coherency based
criteria for predicting video frames using deep multi-stage
generative adversarial networks,” in Advances in Neural In-
formation Processing Systems, 2017, pp. 4268–4277.

[43] Y. Xie, E. Franz, M. Chu, and N. Thuerey, “tempogan:
A temporally coherent, volumetric gan for super-resolution
fluid flow,” ACM Transactions on Graphics (TOG), vol. 37,
no. 4, pp. 1–15, 2018.

[44] W. Kabsch, “A discussion of the solution for the best ro-
tation to relate two sets of vectors,” Acta Crystallograph-
ica Section A: Crystal Physics, Diffraction, Theoretical and
General Crystallography, vol. 34, no. 5, pp. 827–828, 1978.

[45] X. Glorot and Y. Bengio, “Understanding the difficulty of
training deep feedforward neural networks,” in Proceedings
of the thirteenth international conference on artificial intel-
ligence and statistics, 2010, pp. 249–256.

[46] M. Bergou, S. Mathur, M. Wardetzky, and E. Grinspun,
“TRACKS: Toward directable thin shells,” ACM Trans.
Graph., vol. 26, no. 3, pp. 50:1–10, 2007.

[47] M. Müller and M. Gross, “Interactive virtual materials,” in
Proceedings of Graphics Interface 2004. Canadian Human-
Computer Communications Society, 2004, pp. 239–246.

[48] R. Caruana, “Multitask learning,” Machine learning,
vol. 28, no. 1, pp. 41–75, 1997.

[49] R. Burden and J. Faires, “The bisection algorithm. numeri-
cal analysis,” 1985.

[50] J. Ye, G. Ma, L. Jiang, L. Chen, J. Li, G. Xiong,
X. Zhang, and M. Tang, “A unified cloth untangling frame-
work through discrete collision detection,” Computer Graph-
ics Forum, vol. 36, no. 7, pp. 217–228, 2017.

[51] J. Hodgins, “Cmu graphics lab motion capture database,”
2015.

[52] H. Wang, J. F. O’Brien, and R. Ramamoorthi, “Data-driven
elastic models for cloth: modeling and measurement,” ACM
Trans. Graph., vol. 30, no. 4, pp. 71:1–71:12, 2011.

[53] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” arXiv preprint arXiv:1412.6980, 2014.

Journal of Computer Science and Technology http://jcst.ict.ac.cn

