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Abstract

Garment transfer from a source mannequin to a shape-varying individual is a vital

technique in computer graphics. Existing garment transfer methods are either time

consuming or lack designed details especially for clothing with complex styles. In this

paper, we propose a data-driven approach to efficiently transfer garments between two

distinctive bodies while preserving the source design. Given two sets of simulated gar-

ments on a source body and a target body, we utilize the deformation gradients as the

representation. Since garments in our dataset are with various topologies, we embed

cloth deformation to the body. For garment transfer, the deformation is decomposed

into two aspects, typically style and shape. An encoder-decoder network is proposed to

learn a shared space which is invariant to garment style but related to the deformation

of human bodies. For a new garment in a different style worn by the source human, our

method can efficiently transfer it to the target body with the shared shape deformation,

meanwhile preserving the designed details. We qualitatively and quantitatively evalu-

ate our method on a diverse set of 3D garments that showcase rich wrinkling patterns.

Experiments show that the transferred garments can preserve the source design even if

the target body is quite different from the source one.

Keywords: Garment Transfer, Cloth Deformation, Shape Analysis

1. Introduction

A garment usually has different sizes to fit customers of various body shapes. Most

ready-to-wear garments are designed with reference to mannequins with standard body

shapes. However, for customers with body shapes of different proportions, especially
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Figure 1: Given a base-size sewing pattern and an instance of its corresponding physics-simulated garment,

our efficient solution can transfer the garment from a standard body to mannequins with distinctive body

shapes, preserving the original garment design. Each pair of garments shows the transfer result from the

source (left) to the target (right) body.

those who have distinctive somatotype characteristics, a base-size garment fails to pro-5

vide superior fit and cannot preserve the original design. When choosing which gar-

ment to buy, the customer’s decision largely depends on the design of sample (source)

garment, and the customers expect the draped garments onto their bodies keep exactly

the same design as the source garment. Generating 3D virtual garments according to

the target body shape and then perform virtual try-on not only enables customers to10

preview the fitting effect before the garments are produced but also assist in the de-

velopment of garments suitable for customers with distinctive body shapes, which can

reduce the design cost but increase customer satisfaction. In addition, virtual fitting

technology has attracted the interest of the entertainment industry [1, 2], since it is a

significant part of movies, video games, virtual- and augmented-reality applications,15

etc.

A few techniques [3, 4] have been proposed to automatically perform design-

preserving garment transfer from source to target body. However, [3] is sensitive to

modeling setup and [4] will struggle in a case when the target body is very different

from the source. Furthermore, both of them are computationally expensive, making20

them not suitable for online applications. Other established workflows[5, 6, 7, 8, 9, 10]

mainly focus on how to dress a given garment onto target body with a fixed pose or

shape, regardless of whether the source design is preserved. Moreover, existing meth-

ods either support garment retargeting for a garment with a fixed style [5, 7, 8] which

has limited use, or implement garment remeshing using body topology [9, 10] which25

is hard to be used for representing garments with complex styles or garments that are

different from body topology. What is lacking is a garment transfer workflow that is

design-preserving, capable of distinctive body-shapes and new garment type, efficient

in time performance, and supports garment meshes with different topologies.

To that end, we address the problem of efficient design-preserving garment trans-30

fer for mannequins with distinctive body shapes (see Fig. 1). In this paper, we select

banana-shaped body as source body and pear-shaped body as target body to perform

garment transfer. We first stitch sewing patterns onto the source and target body using
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a physical simulator, and we use deformation gradients to build cloth deformation from

the source to target garment. Then, we define garment transfer as a decomposition of35

style-dependent term and shape-dependent term from cloth deformation (see Sect. 3).

To handle garments with different topologies, we propose embedding deformation gra-

dients into the body (see Sect. 4). By learning a shared deformation space using an

encoder-decoder network, we separate shape-dependent deformation from embedded

cloth deformation (see Sect. 5). Finally, by simply applying the learned shape-related40

cloth deformation to the source garment, our transfer method can deform the garment

from the source to the target body within a short time period, while preserving source

design. We qualitatively and quantitatively evaluate our method from different aspects

in Sect. 6. In summary, the key contributions of our approach are as follows:

· Problem Formulation. We propose factoring cloth deformation into shape-dependent45

deformation and style-dependent deformation. Then, we define garment transfer as de-

forming source garment using shape-dependent deformation to generate garment on

target body shape. Once the shape-related cloth deformation is learned, we can use it

to deform new garments with arbitrary topology.

· Feature Description. By learning a shared deformation space, we separate shape-50

dependent deformation from embedded cloth deformation. Our simple but efficient

garment transfer workflow is suitable for characters with distinctive body shapes and

garments that showcase very rich wrinkle details.

· Data Representation. A network usually takes fixed-size data as input, and un-

aligned 3D mesh would most probably struggle in this case. Remeshing garments with55

different topologies is difficult. We propose embedding deformation gradients into the

body, providing a dimensional consistent deformation representation, which enables

unaligned 3D mesh data for learning tasks (e.g. shape analysis, learning latent repre-

sentation).

2. Related work60

2.1. Physics-based cloth simulation

Although various professional cloth simulation software is available [11, 12], physics-

based cloth simulation is still a popular research topic in the field of computer graphics.

To simulate the movement of real cloth as well as possible, physics-based simulation

(PBS) models different types of clothing deformation. Based on force analysis of parti-65

cles, the mass-spring model [13, 14] resolved cloth deformation with a low calculation

complexity. The yarn-based method [15, 16] was used to simulate woven clothes.

Considering that the simulation of high-precision clothes would bring a heavy com-

putational burden, adaptive cloth simulation [17, 18] dynamically adjusts the accuracy

of cloth to increase the calculation speed. In addition, many researchers have aimed70

to replace elastic forces using position-based constraints [19]. To eliminate collisions

during cloth simulation, many collision handling strategies [20, 21] have been pro-

posed. As the most traditional method in clothing animation, PBS can obtain realistic

and physics-compliant cloth dynamics, but it requires intensive computation [22, 23],

making it difficult for it to guarantee real-time performance.75
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2.2. Data-driven cloth deformation

Data-driven cloth deformation methods are designed to reuse cloth deformation

statistics. Compared with the physics-based method, a data-driven approach better en-

sures efficiency. By determining potential collision areas between garments and bodies,

Cordier et al. [24] produced cloth deformation effect that is visually satisfactory. The80

technique DrivenShape [25] exploits the known correspondence between two sets of

shape deformations to drive the deformation of the secondary object. Zhou et al. [26]

proposed an image-based virtual fitting method that can synthesize the motion and de-

formation of a garment model by capturing the skeletal structure of the character. As a

garment generation method for various body shapes and postures, the DRAPE model85

[5] can quickly put a garment onto mannequins with specified body shapes and pos-

tures with the help of the SCAPE [27] model. Given a specified pose and precomputed

garment shape examples as input, Xu et al. [28] presented a sensitivity-based method

to construct a pose-dependent rigging solution, which can synthesize real-time cloth

deformation. The learning-based garment animation pipeline with deep neural net-90

works [8] enables virtual fitting for characters with different body shapes and poses,

producing realistic dynamics and wrinkle details. By learning a motion-invariant en-

coding network, Wang et al. [29] learned intrinsic properties that are independent of

body motion, providing a semi-automatic solution for authoring garment animation.

Recently, with the rise of geometric deep learning [30], data-driven cloth deformation95

technology will usher in a new opportunity. ACAP [31] enables large-scale mesh de-

formation representation with both accuracy and efficiency. Tan et al. [32] proposed

mesh-based autoencoder for localized deformation component analysis. Mesh varia-

tional autoencoder [33, 34] provides a new tool for analyzing deforming 3D meshes,

which is widely used for tasks such as deformation transfer [35], shape generation [36],100

etc.

2.3. Garment retargeting

The easiest way to retarget a garment from a source body to a target body is to

simply apply PBS (middle in Fig. 2) or perform direct deformation transfer using de-

formation gradients between source and target body (right in Fig. 2). However, these105

solutions usually fail to preserve the garment design and wrinkle details, making it

look like a person wearing a wrong size garment. For this reason, many researchers

[37, 38, 39] have focused on how to automatically adjust garment patterns. Design-

preserving garment transfer [3] can transfer garment models onto mannequins whose

body shapes and proportions are obviously different, but this approach needs to set110

parameters according to the garment types and body shapes. Direct garment editing

[40] enables users who have no experience in garment design to mix existing garment

patterns in an interactive 3D editor, and then, automatically computed 2D sewing pat-

terns that match the desired 3D form are generated. In addition, image-based virtual

try-on networks [41, 42, 43] have absorbed the attention of many researchers because115

they allow garment recovery and transfer from 2D images. Wang [4] regarded garment

pattern adjustment as a nonlinear optimization problem and directly minimized the ob-

ject function that evaluates the fitting quality. Although the system performed sewing

pattern adjustment with efficiency and precision, it could not modify garment patterns

properly if the difference between the body shapes was significant.120
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Figure 2: Basic fitting strategies. Left: simulated garment on the source body; middle: simulated garment on

the target body; right: direct deformation transfer from the source to target body using deformation gradients

between source and target body.

3. Overview

3.1. Problem formulation

Considering that the garment style of different sewing patterns varies markedly,

when stitched onto the human body, garments will present folds or wrinkles details

of various forms. In addition, garments will also present the overall drape commonly125

caused by variations in body shape. Fig. 3 illustrates the cloth deformation of garment

instances from the source to the target body. Regarding the four garments shown in

Fig. 3, due to the change in body shape, the abdomen and hip of each garment un-

dergoes significant deformation (encoded in hot colors), while the other parts remain

largely in the original shape. Our method starts from an assumption: cloth deforma-130

tion is composed of two components: high-frequency details (e.g. folds and wrinkles),

which varies with different type of garments, is called style-dependent deformation;

low-frequency characteristics (e.g. the overall drape of the garment), which is shared

by different kind of garments, is called shape-dependent deformation.

Following the formulation and the notion proposed in DRAPE, we use deformation135

gradients [44, 27, 5] to represent deformations between garment meshes. This allows

our model to decouple deformations due to body shape and deformations induced by

garment style.

Deformation gradients are linear transformations that align triangular faces be-

tween a source garment GSrc and its simulated mesh under the target body G̃Tar shar-140

ing the same topology. Suppose that GSrc is a mesh with T triangles, (GSrc, G̃Tar)
can be written as:

{

GSrc =
⋃T

t=1(~xt,1, ~xt,2, ~xt,3)

G̃Tar =
⋃T

t=1(~yt,1, ~yt,2, ~yt,3),
(1)
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Figure 3: Visualizing cloth deformation from the source to the target body. First row: simulated garment on

the source body (noted as GSrc). Second row: simulated garment on the target body (noted as G̃Tar). Last

two rows: front and back view of the garment examples. Per-vertex deformation are illustrated with hot/cold

colors, representing large/small distance variations.

where (~xt,1, ~xt,2, ~xt,3) represents the face of a given triangle t in GSrc, ~xt,k(k =
1, 2, 3) are the vertices of triangle t, (~yt,1, ~yt,2, ~yt,3) represents the face of triangle t

in G̃Tar and ~yt,k(k = 1, 2, 3) are the corresponding vertices. Our goal is to solve the145

following equation:

[∆~yt,2,∆~yt,3,∆~yt,4] = Qt[∆~xt,2,∆~xt,3,∆~xt,4], (2)

where Qt is a 3× 3 linear transformation of triangle t and ∆~xt,k(k = 2, 3, 4) is:

{

∆~xt,k = ~xt,k − ~xt,1, k = 2, 3

∆~xt,4 =
(~xt,2−~xt,1)×(~xt,3−~xt,1)√
|~xt,2−~xt,1|×|~xt,3−~xt,1|

. (3)

The fact that Qt is applied to the edge vectors makes it translation-invariant and

each linear transformation encodes the change in orientation, scale and skew of triangle
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t. The introduced virtual edge [44], ∆~xt,4 adds the directional information of the150

triangular faces, making the problem well constrained.

The key idea of our method is to learn a common deformation space that is indepen-

dent of the garment style but shared by different type of garments. To do so, we define

Qt as combination of linear transformations, each corresponding to different aspects

of the model. We factor Qt into style-dependent deformation and shape-dependent155

deformation:

Qt = Wt · St, (4)

Wt is the style-dependent term, which is garment type specific. St is the shape-

dependent term, which is shared by different garments.

Our goal is to separate shape-dependent deformation from cloth deformation, soWt

is identity and for a given mesh we can use Qt = St to generate a 3D draped garment160

that fits the target body but retains the original wrinkles. Since the deformation is

represented as per-triangle transformations, triangles may separate after applying cloth

deformation onto the GSrc. We solve for the vertex coordinates that best match the

deformed triangles in a least squares sense to assure a consistent mesh:

argmin
~y1,...,~yV

T
∑

t=1

∑

k=2,3

||Wt · St ·∆~xt,k −∆~yt,k||2. (5)

3.2. Technical framework165

Fig. 4 demonstrates our technical architecture, and each part is explained as fol-

lows:

a) Data Generation: We select banana-shaped body as source body and pear-shaped

body as target body to perform garment transfer (see source and target body in Fig. 4).

Taking the source body as the base size, we make various garment patterns following170

the industrial garment-making process and we use a physical simulator to stitch the gar-

ment patterns onto the source and target bodies, obtaining draped garment instances for

the source and target body (see source and target garment in Fig. 4). Fig. 6 shows our

constructed garment data set. Then, we use deformation gradients to represent cloth

deformation from GSrc to G̃Tar. Since different garments do not share the same topol-175

ogy, we propose embedding cloth deformation into the body to obtain a dimensional

consistent deformation representation, which is achieved by matching the shortest dis-

tance between garment triangles and body triangles. The embedded cloth deformation

is then fed into the garment transfer network for learning. For more details please refer

to Sect. 4180

b) Garment Transfer Network: We separate the shape-dependent deformation from

embedded cloth deformation using an encoder-decoder network. Given the embedded

cloth deformation as input, the encoder tries to generate a compressed representation

of the cloth deformation. In this process, we expect the network to encode shape-

dependent deformation only. Then, the decoder reconstruct cloth deformation from the185
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Figure 4: Given a source body and its corresponding simulated garment, we present a method to transfer

source garment to target body with distinctive body shape, preserving source design. To handle garments

with different topologies, we propose embedding cloth deformation into the body. At the heart of our method

is a decomposition of style-dependent term and shape-dependent term from embedded cloth deformation

using an encoder-decoder network. By learning a shared deformation space, we eliminate style-dependent

deformation from embedded cloth deformation so that the reconstructed cloth deformation is shape-related

only. At the garment transfer phase, we use the learned shape-related cloth deformation to generate garment

that fits the target body but still preserves source design. Once our shape-related deformation is learned, our

method can transfer new garments with arbitrary topologies.

shared deformation space to obtain shape-related cloth deformation. For details about

how this is achieved please refer to Sect. 5. Once the shape-related cloth deformation

is learned, we can use it to deform a new source garment with arbitrary topology. The

transferred garment both fits the target body shape and preserves the source design. In

Sect. 6, we qualitatively and quantitatively evaluated our method.190

4. Deformation gradient embedding

In Sect. 3.1 we use deformation gradients to represent deformation from GSrc to

G̃Tar. Let the number of garment patterns in the training set be N ; then, the training

set GSample can be written as:

GSample =

N
⋃

i=1

(G
(i)
Src, G̃

(i)
Tar), (6)

where (G
(i)
Src, G̃

(i)
Tar) represents the i-th group of garment instances sharing the same

topology. Suppose that (G
(i)
Src, G̃

(i)
Tar) has Ti triangles, the corresponding cloth defor-

mation is a 3 × 3 × Ti-dimensional matrix, making it not suitable for learning tasks

because the network usually takes a fixed-size data as input. One possible solution is195

to use aligned 3D garment meshes to get a dimensional-consistent data space, but this
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approach will limit the versatility of model because most of garment meshes are not

homogeneous in an actual application scenarios.

To handle garments with different topologies, we propose embedding deformation

gradients into the body. This is achieved by matching the shortest distance between

body triangles and garment triangles. Let |M | be the number of triangles of body, then,

for a given garment G, we build two maps of triangle indices from cloth to body and

body to cloth respectively:

BodyToCloth =

|M|
⋃

α=1

argmin
α,β

|−−−−−−→PM,αPG,β |

ClothToBody =

T
⋃

β=1

argmin
β,α

|−−−−−−→PG,βPM,α|
, (7)

where BodyToCloth records the triangle indices from body to cloth for garment in-

stance group (GSrc, G̃Tar), and it is used for building embedded cloth deformation;200

ClothToBody records the triangle indices from cloth to body for garment instance

group (GSrc, G̃Tar), and it is used for building the recovered cloth deformation; PM,α

is the centroid coordinates of triangle α in M ; PG,β is the centroid coordinates of

triangle β in G. Algorithm 1 introduces the steps of deformation gradient embedding.

Algorithm 1: Deformation Gradient Embedding

Input: source body M , a garment instance group (GSrc, G̃Tar).
Output: embedded cloth deformation, noted as B.

Compute cloth deformation matrix C ∈ R
T×3×3 from GSrc to G̃Tar ;

Initialize an |M | × 3× 3 dimensional matrix B as the embedded cloth

deformation ;

Compute BodyToCloth using M and GSrc ;

foreach body triangle in M do

Search (body triangle, cloth triangle) from BodyToCloth ;

Update B[body triangle] with C[cloth triangle] ;

end

For each garment type in GSample, we perform deformation gradient embedding.205

The embedded cloth deformationB is a |M |×3×3-dimensionalmatrix for all triangles,

which is then concatenated into a single column vector γi ∈ R
|M|·3·3×1. Finally, all

γi(i = 1, ..., n) are collected into a matrix Γ = [γ1, ..., γN ] as the network input.

5. Shape feature encoding

5.1. Feature representation210

In Sect. 3.1 we factor cloth deformation into style-dependent deformation term Wt

(considered as high-frequency deformations), and shape-dependent deformation term
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Algorithm 2: Inverse Embedding

Input: source body M , learned cloth deformation B̃ ∈ R
|M|×3×3, an

arbitrary source garment with T triangles.

Output: deformed garment mesh, noted as GTar.

Initialize a T × 3× 3 dimensional matrix C̃ as the recovered cloth

deformation ;

Compute ClothToBody using M and GSrc;

foreach cloth triangle in T do

Search (cloth triangle, body triangle) from ClothToBody ;

Update C̃[cloth triangle] with B̃[body triangle] ;

end

Make linear transformations using C̃ and solve for the vertex coordinates with

Eq.5.

St (considered as low-frequency deformations). The key idea of our model is that high-

frequency deformations are garment type-specific but low-frequency deformations are

shared by different garments, and we expect the reconstructed cloth deformation to215

contain low-frequency deformations only. We implicitly eliminate Wt from Qt =
Wt ·St so that Qt = St. This is achieved by learning a shared deformation space using

a encoder-decoder network.

The network aims to learn a function set fW,b(Γ) = Γ̃ ≈ Γ so that Γ̃ constantly

approximates Γ, where Γ is the original cloth deformation and Γ̃ is the shape-related220

cloth deformation. The task of the encoder is to learn a compressed representation

of the cloth deformation, building a shared feature space of body shapes. Then, the

decoder is trained to replicate the original cloth deformation from the latent space. We

impose constraints on the size of latent space so that the autoencoder cannot reconstruct

all the deformation, more specifically, we expect it to lose high-frequency details. The225

loss function of our network is a simple mean-squared error (MSE) term:

||Γ− Γ̃||2F , (8)

where Γ̃ is the learned shape-related cloth deformation.

As mentioned above, by learning fW,b(Γ) = Γ̃ ≈ Γ, our garment transfer network

tries to reconstruct cloth deformation with low-frequency deformations only. The re-

constructed cloth deformation, Γ̃, is a |M | · 3 · 3 × N -dimensional matrix. At the230

garment transfer phase, each γ̃i(i = 1, ..., N) in Γ̃ is reshaped back to a |M | × 3 × 3-

dimensional matrix B̃i , which is then applied onto GSrc to generate a new garment

GTar that fits the target body but remains original high-frequency details. This step

involves transmitting embedded cloth deformation back to a garment-specific space.

Algorithm 2 describes the inverse embedding process.235

5.2. Extension to multiple target bodies

Though our workflow supports garment transfer for different body shapes, the

learned shared deformation space has to be retrained per body shape. When performing
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garment transfer, it is often desirable to control the types of body shape to be generated.

To handle a situation when there are multiple target bodies, we impose conditional con-240

straints on input data. Since the shape types are discrete by nature, so we represent them

using one-hot labels. More specifically, shape conditions are incorporated as additional

input with Γ. More details are provided in Sect. 6.4.

Figure 5: We construct (a) banana-shaped body as source and (b) pear-shaped body as target for evaluation.

The body is shown from a front view and a side view. Compared with the source body, the local shape

(abdomen and hip) of target body has changed significantly.

Figure 6: Composition of garment dataset. Left: garments used for training; right: garments used for testing.

6. Evaluation

We propose embedding deformation gradients into the body to represent per-triangle245

deformation from GSrc to G̃Tar using M in Sect. 4. Then, by decoupling shape-

dependent deformation and style-dependent deformation from embedded cloth defor-

mation, our method learns a shared deformation space that is invariant to garment style

in Sect. 5. We now qualitatively and quantitatively evaluate the effectiveness of our

method. We performed experiments on a consumer laptop with an Intel Core i7-8750H250

2.2 GHz processor, 16 GB of RAM and an NVIDIA GeForce RTX 2070 with Max-Q

Design Graphics Card.

6.1. Experimental settings

We first provide the details of how the data are generated and of the network struc-

ture:255
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Data generation. We used DAZ Studio software [45] to generate A-pose man-

nequins of different body shapes. We built banana-shaped ((a) in Fig. 5) and pear-

shaped ((b) in Fig. 5) as source and target body respectively. Our garment data set

consists of 15 basic-style garments (left in Fig. 6) for training and 5 complex-style gar-

ments (right in Fig. 6) for evaluation. We selected different types of sewing patterns to260

make the training examples, which aims to cover various kinds of clothing commonly

seen in daily life. All garment patterns are designed and simulated using the Marvelous

Designer software [11]. The garment meshes in garment data set do not share the same

topology (e.g., the number of triangles is 10 628 in a sweater and 28 044 in a shift

dress).265

Network architecture. We implemented deformation gradient embedding in C++,

and the cloth deformation of each garment was aligned to a |M | · 9-dimensional vector

(|M | = 37744 in our experiment). Our shape feature encoding network is composed

of linear layers with sigmoid activation function. The encoder takes an |M | · 9 × N -

dimensional matrix as input and translates it to a 30 × N -dimensional latent space to270

represent shape feature descriptor. Then, the decoder tries to replicate the original cloth

deformation from the shared deformation space. We use scaled conjugate gradient

descent for the network back-propagation. It takes about 35 minutes for our network

to finish training with the setting of 1000 epochs.

Figure 7: Garment transfer on the training set. Top row: simulated garment on the source body (GSrc);

second row: our transfer result from the source to target body (GTar); third row: simulated garment on

the target body (G̃Tar); bottom row: transferred garment using decomposed high-frequency deformation

term. In contrast to GSrc, G̃Tar revealed the outline of the target body while losing the original garment

design. Our transferred results GTar not only have the somatotype characteristics of the target body but also

preserve the source design.
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6.2. Qualitative evaluation275

Each column in Γ̃ represents the reconstructed cloth deformation of a specified

garment. By simply applying the reconstructed shape-related cloth deformation to its

corresponding garment mesh using Algorithm 2, our workflow can generate garments

that fit the target body but preserve source design. Fig. 7 demonstrates the garment

transfer result on the training set. Our method successfully decoupled style-dependent280

deformation and shape-dependent deformation.

One possible application of our garment transfer workflow is virtual fitting. As

mentioned above, basic-style garments are used for learning the shape-related cloth

deformation. Once the training process for a given body shape is finished, we can apply

the learned cloth deformation to a complex-style garment to perform garment transfer.285

Fig. 8 shows the garment transfer results on the testing set. From top to bottom: Shift

Dress, Formal Dress, Wrap Dress, Conjoined Shorts, T-shirt.

Figure 8: Garment transfer on the testing set. (a) simulated garment on the source body (GSrc), which

showcase very rich wrinkling patterns; (b) our transfer result from the source to target body (GTar); (c)

simulated garment on the target body (G̃Tar). With our garment transfer workflow, all wrinkles on GSrc

are correctly transferred to the target body shape without noticeable artifacts.

Now, we evaluate our shape feature encoding network. We can deform a specified

source garment (see (a) in Fig. 9) onto the target body (see (b) in Fig. 9) using its
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corresponding cloth deformation, and we can also deform garments of other designs290

(see (c)-(d) in Fig. 9). However, since the source design of different garments varies

markedly, it is difficult to obtain the desired appearance by directly applying the cloth

deformation of one garment onto other garments (see (c) in Fig. 9). Our deformation

feature encoding network learns a shared deformation space from cloth deformation,

which enables garment transfer among garments of different designs (see (d) in Fig. 9).295

Figure 9: Validation of the shape feature encoding network. (a) simulated garment on the source body;

(b) transferred garment on the target body; (c) garment transfer before shape feature encoding; (d) garment

transfer after shape feature encoding. Details in (c) and (d) are enlarged to show the difference.

We also invited a professional fashion design studio to manually transfer a garment

from the source to the target body. Taking the wrap dress as reference, the pattern

grader took more than ten hours to make 2D graded sewing patterns and restore the

wrinkle details of the 3D garment on the target body (right in Fig. 10). We ask the

pattern grader to do this because customers usually want the transferred garment to300

keep exactly the same design as source garment. According to the survey, most of

the time was spent on handling the wrinkle elements, because the designer needed

to repeatedly adjust the sewing pattern until the draped garment accorded with the

desired shape. Comparatively, it took less than ten seconds for our garment transfer

workflow to generate the draped garment (middle in Fig. 10). With the help of our305

garment transfer workflow, customers can quickly preview the fitting effects before

real garments are designed and manufactured, thus saving time and design cost.
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Figure 10: Manual vs. automatic. Left: simulated garment on the source body; middle: our transferred

result; right: manually graded garment produced by a garment designer.

6.3. Quantitative evaluation

To quantitatively measure the difference in wrinkle details before and after garment

transfer, we computed the mean discrete curvature of our transferred garments GTar

and simulated garment G̃Tar for the target body. The mean discrete curvature is a

tool for measuring the variation between the source and target mesh. The lower the

mean discrete curvature is, the less the garment details has changed. The mean discrete

curvature between GSrc and GTar is :

MDC(GSrc, GTar) =
1

T

T
∑

s=1

|rGSrc
(s)− rGTar

(s)|, (9)

in which rGSrc
(s) represents the discrete curvature of the s-th vertex in GSrc and

rGTar
(s) represents the discrete curvature of the s-th vertex in GTar. rG(s) can be

expressed as:

rG(s) = argmin
i,j

~ni · ~nj

i, j ∈ p(s), 1 ≤ i < j ≤ |p(s)|,
(10)

where p(s) is the triangle set adjacent to the s-th vertex. ~ni and ~nj represent the unit

normal of the i-th and j-th triangles in p(s). |p(s)| is the number of triangles in p(s).310

Since our ultimate goal is to make the transferred garment looks similar to the

source, we also made user study on visual similarity between source and transferred

/ simulated garment. 18 subjects were asked to score the degree of visual similarity

(0-9) between source and deformed / simulated garment. Taking GSrc as reference, 0

represents the wrinkle details on the G̃Tar (or GTar) looks completely different from315

the reference, and 9 represents the wrinkle details on the G̃Tar (or GTar) looks exactly

the same as the reference.

Tab. 1 summarizes the statistics of the garment examples in the test set. The mean

discrete curvature of the simulated garments on the target body is much greater than

ours, and our garment transfer can be finished within a short time period even on a320

consumer laptop, which indicates that our garment transfer workflow can deform gar-

ments onto the target body both with efficiency and can preserve the source design. In
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the visual similarity study, ScoreTrans for each garment is much higher than that in

ScoreSim, which indicates that GTar looks more similar to GSrc.

Example Name #Vert #Tri ScoreTrans ↑ MDCTrans ↓ ScoreSim ↑ MDCSim ↓ T (s)

Shift Dress 14 149 28 004 6.0 0.020 3 2.6 0.054 1 0.764

Formal Dress 23 262 46 081 6.3 0.022 3 4.0 0.064 0 1.301

Wrap Dress 78 169 15 605 4 6.8 0.010 8 2.7 0.115 6 5.928

Conjoined Shorts 13 289 26 288 6.2 0.022 4 1.4 0.193 9 0.711

T-shirt 41 970 83 814 6.5 0.011 9 2.3 0.079 7 2.822

Table 1: Statistics of the examples. #Vert: Number of vertices in the example. #Tri: Number of triangles

in the example. ScoreTrans:Score of visual similarity between GSrc and GTar . MDCTrans: Mean

discrete curvature between GSrc and GTar . ScoreSim: Score of visual similarity between GSrc and

G̃Tar . MDCSim: Mean discrete curvature between GSrc and G̃Tar . T : Total time for deforming GSrc

to GTar .

Previous works like [3, 4] formulated garment transfer as a constrained optimiza-325

tion problem and solved it through iterative quadratic minimization, which takes hun-

dreds of seconds. Comparatively, our learning-based garment transfer workflow only

takes seconds to finish even for a complex-style garment with 156K faces (the Wrap

Dress in our experiment). Besides, [3] is sensitive to the setting of tight region toler-

ance, which varies with input body and garment model. Once our shared deformation330

is learned, we can use it to generate transferred garments that fit the target body but still

preserve source design without additional modeling setup. [4] is developed for human

bodies with limited differences from the source body, which will struggle in a case

when the target body is very different from the source body. Our workflow enables

design-preserving garment transfer even for mannequins with distinctive body shapes.335

6.4. Multiple target shapes

Given a sewing pattern and its corresponding simulated garment on a source body,

our workflow can perform garment transfer from the source body to mannequins with

distinctive body shapes. The experiment results show that our pipeline works well

on a single body-shape case. Now we evaluate our method on bodies with more340

shape variations. The body is represented using SMPL [46]. SMPL is a generative

model that factors the body into shape (noted as β) and pose (noted as θ) param-

eters. We obtained A-pose θ from BMLmovi [47, 48] dataset. Then, we sampled

β1, ..., β−4 from range [-4,1] to generate bodies with 6 different shape variations (noted

as M(θ, β1), ...,M(θ, β−4)). Shape conditions are encoded as one-hot labels from345

000000 to 100000. The generated body meshes share the same topology (|M |=13776).

We take M(θ, β1) as source body and others as target to perform garment transfer. We

trained network using the method proposed in Sect.5.2. Since the deformed garment re-

flects only the general outline of the target body, it is difficult to guarantee that the trans-

ferred garment is always collision-free. To eliminate the penetration between the gar-350

ment mesh and body surface, we iteratively update the vertex position until the garment

vertices lie completely outside the target body with the Marvelous Designer software

[11]. Fig. 11 demonstrates fitting effect from M(θ, β1) to M(θ, β0), ...,M(θ, β−4).
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Figure 11: Retargeting a source garment to mannequins with different body shapes, the blue dress is simu-

lated garment on source body (M(θ, β1)) and the yellow dresses are transferred garments on different target

bodies (from left to right: M(θ, β0), ...,M(θ, β−4)). Even if the target body is very different compared

with the source body, our solution can still preserve the source design and wrinkle details.

7. Limitation and future work

In this paper, we presented an automatic, design-preserving, efficient garment trans-355

fer workflow that enables unaligned garment retargeting between characters with sig-

nificant differences in body shape. This is achieved by learning a shared deformation

space from the embedded cloth deformation. Unlike existing methods, our method can

generate design-preserving garments that showcase very rich wrinkle details with both

accuracy and efficiency. However, our system has several limitations:360

(i). We embed cloth deformation into the body by matching triangles with short-

est distance, which depends on the mesh quality. If the garment or body has a low-

resolution, the deformation of some triangles would be lost. While we use a very

high-resolution garment and body mesh, the garment transfer can be done in seconds

on a consumer laptop.365

(ii). Our goal is to generate design-preserving 3D draped garments for distinctive

body shapes before garments are made. We do not consider inverse pattern design

problem. How to accurately translate these draped garments into graded sewing pat-

terns needs to be further studied.
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