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Abstract Image deblurring in dynamic scene, since

the blurring factors are formed by a combination of

many reasons, it is a challenging task. In recent

years, the use of multi-scale pyramid methods to

recover potential high-resolution sharp images has

been extensively studied. But because the cascade

structure is insufficient in the recovery details, we

have improved this. In this work, our network uses

a progressive way to integrate data streams. We

propose a new multi-scale structure and edge feature

perception design. It is used to deal with blur changes

in different spatial scales and enhance the sensitivity

of network blur edges. The architecture is from

coarse to fine in restoring the image structure, first

performing global adjustment operations, and then

performing local refinement operations. In this way,

not only the global correlation is considered, but also

the residual information is used to significantly improve

the image restoration performance and enhance the

texture details. Experimental results show that both

quantitative and qualitative aspects can get better

results than existing methods.
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1 Introduction

Due to the relative displacement of the object during

the exposure process of the sensor, the image structure

and texture are blurred and high-frequency details are

degraded. It is not conducive to image processing tasks

such as target detection and text recognition. Blind

deblurring in dynamic scenes is a basic and low-level

ill-posed inverse task in computer vision, and it is

also a basic component of many practical applications.

Its purpose is to recover the problem of potentially

sharp images from blurred images with or without

estimation of the unknown non-uniform blur kernel.

To solve this problem, people propose methods based

on traditional image processing and neural networks.

One of the methods is to simplify the blur factor, by

approximating the non-uniform blur to a uniform blur,

and restoring the potential ground truth image and blur

kernel. However, due to the irregular motion offset

trajectory in space, it cannot be generalized to true

blur. Therefore, people have done a lot of research

on non-uniform blur[9–11, 22, 34], and extended the

degree of freedom of the blur model from uniform to

non-uniform. In order to limit the solution space of

non-uniform blur, many natural image priors [2, 3, 21]

are proposed for regularization, which promotes the

research of deblurring. But it still stays at dealing with

non-uniform blur caused by simple camera rotation and

in-plane translation, which is certainly not enough to

express sharp images and blur kernels. The image

quality degradation caused by blur can be represented

by a mathematical model.

B = KS + n, (1)

where B and S are the blurred image and the potentially

sharpened image respectively. K is an unknown or

known blur kernel, that is, a blur matrix. Each row

is a local blur kernel, which is combined with a sharp

image to generate blurred pixels. n is additive noise.

Since deblurring has a large solution space, K or B are

generally constrained to simplify the solution of S.
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In the past, traditional dynamic scene deblurring

was generally done by using additional accurate image

segmentation [4, 12] or motion estimation [12]. Among

them, Kim et al. proposed joint segmentation of

non-uniform blurred images based on energy model.

Estimate the nonlinear blur kernel within the segment

and realize parameter sharing. A groundbreaking

addition of a non-static background, the dynamic scene

blur is turned into a local deblurring problem. However,

by introducing other additional data processing, the

blur kernel that was originally estimated to be

inaccurate will deviate further from the true blur kernel.

Once the estimation of the blur kernel is in error,

undesirable ringing artifacts will be produced. In

order not to add redundant information, Kim and Lee

approximated the blur kernel as locally linear, so that

the motion flow and latent image can be estimated at

the same time. Therefore, a non-segmented method is

proposed to deal with this problem.

With the rapid development of deep learning, neural

networks have been widely used in the field of

computer vision. For the problem of image deblurring,

they were first proposed for non-blind deconvolution

[25]. Xu et al.[33] remove the blur by restoring the

sharp image with a given blur kernel. They use

separable kernels that can be decomposed into filters

to form a deconvolution CNN. In [26], stack multiple

CNNs in a coarse-to-fine manner to simulate iterative

optimization. Because there is no pair of real blurred

images and corresponding sharp images, a blurred

image synthesized by a uniform blur core is used for

training. In [28], a classification convolutional neural

network is used to estimate the local linear blur kernel.

In recent years, people have proposed parameter

models based on deep convolutional neural networks

(CNN) to replace image formation models. In

order to obtain a pair of blurred images and sharp

images for network training, Schuler et al. [26] used

Gaussian blurring to blur the sharp images collected

in the ImageNet dataset [5], and proposed a blind

deblurring algorithm based on CNN. The steps of

feature extraction, kernel estimation and latent image

estimation are carried out in a coarse-to-fine iterative

manner. The method[1] predicts the deconvolution

kernel in the frequency domain. In the mode where

both blur kernel prediction and image prior are based

on early learning methods. However, the models

generated by these methods can be trained to simulate

the nonlinear relationship between blurred images

and ground truth, effectively overcoming the limited

representative ability of traditional image processing

methods to describe dynamic scenes.

Generative Adversarial Nets (GANs) are also used

for deblurring due to their advantages in preserving

detailed edges and generating approximate images.

Kupyn et al. [15] used CNN as a generator and

discriminator, and calculated the loss through content

loss and adversarial loss. On this basis, they

improved the network [16], and proposed a generative

confrontation network based on a feature pyramid

network and a relativistic discriminator with least

square loss.

In order to use the fine image information as a

feature aid, a multi-scale network structure is used for

blind image deblurring, extending the ”coarse-to-fine”

scheme to deep CNN scenes. This method first restores

the potentially sharp image at the coarse scale, and

then performs the coarse-scale output at the fine scale.

In addition to the recent use of independent feature

extraction layers on network structures of different

scales [20], there have been some works on sharing

network parameters in multi-scale pyramids [29] or

other effective sharing parameters [7]. However, the

use of deep network deblurring still has great challenges

before it is promoted and applied. In order to inherit

the traditional coarse-to-fine optimization methods,

most multi-scale networks use a large number of

training parameters. Even if the number of parameters

is reduced by parameter sharing, skip connection and

other methods, the multi-scale-based method has two

main limitations:

1. In order to maintain the integrity of the blurred

edge of the object and the sensitivity to large-scale

blur, the network generally selects a larger size filter

and excessively stacked convolutional layers. But this

comes at the cost of the number of parameters and the

speed of inference. Therefore, the calculation cost and

memory consumption are greatly increased

2. Past experiments have shown that on multi-

scale modules, the introduction of coarser or finer scale

space inputs to further train model parameters cannot

improve the overall deblurring performance of known

models. Therefore, simply increasing the spatial scale

cannot achieve better results.

According to the development status of deep learning

deblurring technology, this paper proposes a progressive

dynamic scene deblurring method. We first combine

the multi-scale architecture and the encoder/decoder

structure to construct a nonlinear function, and then

use the residual information in the image to further

optimize to break the above limitations. Multi-scale

methods are widely used in image deblurring tasks
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because it is a task from coarse to fine to recover

sharp images from blurred images. It is difficult for

a single deep network to directly generate sharp images

from severely blurred images. We speculate that it is

much easier to recover a sharp latent image from a

light blur than from a heavy blur. Recently, Park et

al. [23] verified our guess from the benchmark dataset

and iterative thinking. Therefore, the task is a gradual

process, usually including two stages: the first step is

to use a larger filter to generate a larger receptive field,

restore the area with a larger blur range, and generate a

rougher initial deblurred image. The second step refines

the texture structure in the image as the final output.

Taking this feature into account, a progressive

multi-scale edge-sensing residual network (PMERN) is

specially designed. It consists of two corresponding

units: Information Integration Unit (IIU) and

Detail Optimization Unit (DOU). In the information

integration unit, the entire network uses a modified

encoder/decoder architecture. We spliced the saliency

edge of the blurred image into the encoder as an

auxiliary branch to help the network accurately locate

the blurred area and degree. In the decoder, we try to

change the single operation mode of deconvolution in

the network, and then use multi-scale blurred images

to be fused into the decoder to simulate the process of

restoring potentially sharp images at different scales.

The weight is automatically adjusted according to the

blur features contained in the blurred image. Therefore,

in the deep convolution, the shallow feature information

will not be lost due to the excessive number of encoder

layers. In order to significantly simplify the training

process and bring obvious stability gains. In the detail

optimization unit, the edge structure is further refined

by learning the residual image. By using multiple blur

features of different dimensions for residual learning,

the network deblurring effect is improved.

There are two advantages of this network: 1) Since

we merge images of different resolutions into the

deconvolution network, the training time is much less

than the scale cascade structure. 2) Compared with the

scale recursive structure, no special parameter sharing

method is used.

Our contributions are mainly:

1. Aiming at the limitation of the current depth

deblurring model stacking depth and loop iteration,

a new solution is proposed. Compared with the

previous fixed-level architecture, our network is more

flexible. 2. Change the traditional multi-scale method.

There is no need to explicitly train the network

with images of different scales as input to the scale

cascade, and it perfectly combines the multi-scale

architecture and the network structure. 3. Through

the comprehensive evaluation of the benchmark dataset

and the real dataset and the comparison with the

most advanced deblurring methods, the performance

of this method is better than the existing dynamic

scene deblurring methods in both qualitative and

quantitative evaluation, which proves our method It

achieves better results with the fewest parameters.

2 Related work

In this section, we will briefly review the main

applications of multi-scale concatenation and encoder-

decoder methods in image deblurring. In the blind

deblurring method, both the blur kernel and the

image have certain a priori assumptions. However,

these methods have little effect on large-scale blur

nuclei. The method proposed by Fergus et al. [6]

completely abandons the constraints on image prior

hypotheses. The method in the article is mainly

divided into two steps: estimation of the convolution

kernel and deblurring. In-depth study of the gradient

distribution of blurred images and non-blurred images,

and proposed a deblurring algorithm based on the

gradient distribution model. This method introduces

a strategy from coarse to fine in the traditional

deblurring. On this basis, almost all traditional

methods based on energy optimization repeatedly deal

with the problem of dynamic deblurring. Optimize

from a low sampling scale and gradually expand

upwards between iterations until it reaches the normal

scale.

2.1 Multiscale

The multi-scale structure is designed to imitate

the traditional coarse-to-fine optimization method.

Because it does not participate in the estimation of

the blur kernel, the artifacts caused by the kernel

estimation error are avoided. Nah et al. [20] proposed

a ”from coarse to fine” neural network to eliminate

ambiguity. After the Gaussian pyramid structure, the

coarse-scale features are used to deblur the fine-scale

images. At the same time, to speed up the model

convergence, multi-scale loss and adversarial loss are

added to each scale. This method establishes a deep

neural network with independent parameters, which

leads to the problem of excessive network parameters.

To improve the network, simplify the network layer and

parameters. Tao et al. [29] proposed a scale recursive

network with long and short-term memory, using a

codec structure with skip connections of different scales

3
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Fig. 1 Our proposed progressive multi-scale edge-sensing residual network.

and parameter sharing. Due to the large filter size,

a large number of training parameters are used in

the network, and adding low-resolution input to the

multi-scale method does not improve the deblurring

performance. Zhang et al. [36] proposed a deeply

stacked multi-scale patch network, which takes a multi-

scale patch structure as input and refines the entire

image through a continuous upper layer. And it is

proposed that the spatial recurrent neural network can

be used to simulate the blur of spatial changes, in

which the pixel-level weights of RNN are learned from

CNN. In order to obtain a large receptive field and fuse

features from different filtering directions, they used

four RNNs and added a convolutional layer after each

RNN. Then use the pre-trained VGG16 sub-network

to predict the spatial variation weight of the RNN.

However, because RNN cannot be calculated in parallel

along the spatial dimension, the reasoning time of this

method is still not reduced, and VGG16 is used as

the weight generation network, which increases the

network parameters and calculation amount. In order

to further reduce the network parameters, [7] replaced

the residual blocks in the subnets of each scale with

the nested skip connection structure of the nonlinear

transformation module. The network components

are composed of three modules: feature extraction,

nonlinear transformation and feature reconstruction.

2.2 Encoder-decoder

Codec structure [19] is a neural network design

pattern. It is often used in natural language

processing or other sequence-to-sequence prediction

tasks. Specifically, the task of the encoder is to obtain a

feature map of the input image through neural network

learning after a given input image, and to classify and

analyze the pixel values of the low-level regions of the

image; The decoder then takes this feature map as

input and maps it to the output image. The codec

structure has also been successfully applied to various

image processing problems. They use a symmetrical

structure to first compile the input data into a small-

size, multi-channel feature map, and then decode the

feature map into an output with the same shape as the

input. Among them, Ronneberger et al. [24] added

skip connections between the corresponding feature

maps in the encoder and decoder to improve their

regression capabilities. First apply the structure[29] to

image deblurring. Because the number of layers of the

original codec is small, the perception field is small. If

the number of layers is increased blindly, the size of

the feature map will be too small to fully retain the

spatial information, and parameters will be increased.

Therefore, the author improved the codec, enlarged the

field of perception, and had a better effect on recovering

severe motion blur. Gao et al. [7] shared selective

parameters on the basis of the codec for the change

of blur image characteristics at coarse spatial scale. Ye

et al. [35] proposed a scale-iterative upscaling network.

The model is divided into two layers, and each layer

uses a different U-Net as a sub-module. The first layer

performs deblurring operations at a relatively small

image scale to help the second layer perform large-scale

deblurring operations. Similarly, we use an encoder-

decoder network to restore the image structure.
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3 Network Architecture

In this section, we first introduce the proposed deblur

network architecture in detail. In addition, the encoder

decoder and the salient edge training in the unit are

described. Finally, the details of loss function, training

and implementation are given. The purpose of the

deep learning network proposed in this paper is to

learn the end-to-end non-linear mapping between the

blurred image and the corresponding potentially sharp

image with the assistance of the sensitive information

of the salient edge image, and use the progressive

processing flow to achieve high efficiency and Precise

blind deblurring. In the task of deblurring, compared

with the real image, the blurred image has a huge

deviation in both the image content and the image

texture, so we cannot directly use the typical residual

learning structure. The key idea of the progressive

multi-scale residual network (PMRN) is to first reduce

the degree of blur. This operation generates an initial

deblurred image that is roughly the same structure as

ground truth. Then extract the subtle information by

learning the initial result and the residual image of the

sharp image. In this way, richer details can be restored

on the finally reconstructed potentially sharp image.

Therefore, the entire network can be divided into two

stages, as shown in Figure 1.

The first stage IIU consists of three parts, namely,

the backbone, the prominent edge pyramid branch, and

the blur image multi-layer guide branch. The backbone

is composed of an optimized encoder/decoder, which

takes a blurred image as input, extracts content

features and blur features and maps them to the

output image. The Significant Edge Pyramid Branch

(SEPB) takes the significant edge map corresponding

to the blurred image as input for convolutional down-

sampling, and stitches the feature map to the encoder

for feature extraction. The image multi-layer guided

branch (IMGB) takes the blurred image as input for

convolutional down-sampling, and stitches the feature

map to the decoder for deconvolution. As the first stage

of image deblurring, this output generates an initial set

of sharp latent images.

The output of the IIU is fed back to the second stage

DOU and used as the input of the DOU together with

the blurred image. We extract structural details by

stacking residual blocks and let the network learn the

residual information between the numerically similar

blur images and sharp images. At the same time,

removing batch normalization after the convolutional

layer of the classic residual block structure helps to

improve the convergence speed and maintain the higher

flexibility of CNN [18, 20]. Although the operation of

the second stage is larger and more ambiguous, with the

help of the first stage, the increase in complexity is not

beneficial but gradual. Through the collaborative work

of these two stages, a sharp image can be obtained.

3.1 Information Integration Unit

3.1.1 Encoder-decoder architecture

Recently, various computer vision tasks have also

been inspired by the success of the encoder-decoder

structure. For the classic encoder-decoder structure

is not suitable for deblurring tasks. On the contrary,

our fusion encoder-decoder network amplifies the

advantages of various CNN structures and generates

feasibility in training.

First of all, because of the formation of motion

blur, a large receptive field is needed, and the depth

of the network needs to be increased. However,

in actual situations, this operation will introduce a

large number of parameters. In addition, there are

too many intermediate feature channels, the feature

image will be convolved very small, it is difficult to

extract the features. Secondly, the spatial scale of

Fig. 2 Saliency edge.
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the feature map in the decoder gradually increases,

which will lose the original image detail information,

which is not conducive to image reconstruction. So

we have improved the encoder-decoder structure to

adapt to the deblurring task. In order to prevent the

disappearance of the gradient, we add a skip connection

in the encoding part and the symmetrical decoding

part, the purpose is to transfer the corresponding

features from the encoder branch to the decoder branch.

skip connection can solve the problem of gradient

disappearance in the case of a deep network layer, and

at the same time help the back propagation of the

gradient and speed up the training process.

3.1.2 Significant edge pyramid branch

Motion blur in dynamic scenes often occurs at the

edges of moving objects or at the edges of background

objects due to camera shake. Blur edge features carry a

lot of positioning information for the network to quickly

extract feature maps, and better locate the blur area.

Considering the fact that strong edge information is

important for reliable deblurring, we use the Sobel

operator to extract the salient edges in the image, and

the result is shown in Figure 2.

We use a 2*2 convolution kernel and a maximum

pooling layer with a step size of 2 to gradually

obtain the down-sampled significant edge map. For

the salient edge pyramid, we extract the hierarchical

representation through the convolutional layer. Finally,

the multi-scale spatial features are spliced to the

encoder path.

E1
ed = max pool(Eup

e ), (2)

F1
ed = σ(W 1

ed ∗ E1
ed + b1ed), (3)

Ei+1
ed = maxpool(E

i
ed), (4)

Fi+1
ed = σ(W i+1

ed ∗ E
i+1
ed + bi+1

ed ). (5)

Where i ∈ {1, 2, 3}, E1
edis the salient edge map obtained

by down-sampling E1
e ,F 1

ed is the feature extracted

from E1
ed ,* represents the convolution operation, and

maxpool is the maximum pooling operation. W 1
ed and

b1ed represent the weight and bias of the first convolution

operation in the significant edge pyramid branch, σ is

the activation function of the modified linear unit, Ei+1
ed

is the significant edge map obtained by downsampling

Ei
ed ,F i+1

ed is the feature extracted from Ei+1
ed , W i+1

ed

and bi+1
ed represent the weight and bias in the i+1 th

convolution operation.

Advantages of significant edge branching: (1)

Strengthen the network’s sensitivity to blurred areas of

blurred images. (2) The encoder extracts more detailed

information for easy analysis.

3.1.3 Image multi-layer guided branch

Different from the multi-scale in previous methods,

we down-sample the original blurred images of different

spatial scales and stitch them into the decoder to guide

image reconstruction. The multi-layer branch of the

blurred image can be expressed as:

F 1
ms = σ(W 1

ms ∗B + b1ms), (6)

Bj
ms = max pool(F j

ms), (7)

F j+1
ms = σ(W j+1

ms ∗Bj
ms + bj+1

ms ). (8)

Wherej ∈ {1, 2, 3} , F 1
ms is the feature extracted from

the blurred image B, Bj
ms is the blur image in the

coarse-scale space obtained by the down-sampling of

F j
ms , F j+1

ms is the feature extracted from Bj
ms . Among

them, the convolutional layer with a step size of 2

reduces the feature map size to half of the original

size and doubles the number of channels. In contrast,

the deconvolution layer with a step size of 2 halves the

number of feature channels and doubles the size of the

feature map.

The multi-scale guidance branch has the following

advantages: (1) Multi-scale images are incorporated

into the network structure, which reduces the number

of training parameter updates and saves training time.

(2) Increase the network width of the decoder branch.

3.2 Detail optimization unit

Due to the large gap between the blurred image

and the corresponding potentially sharp image, if the

normal network learning structure is used directly to

deblur, the blurred edge of the image will have serious

ringing artifacts. So like the method[20, 29, 36], the

problem needs to be broken down into several sub-

problems and completed step by step. Our key idea is

to first generate an initial result with a sharp structure,

and then concentrate on extracting subtle information

by learning the initial result and the residual image of

the sharp image.

4 Loss function

In deep learning, if it is a classification problem, you

can use loss functions such as cross-entropy, softmax,

or SVM. If it is a regression problem, the loss function

6



Progressive edge sensing dynamic scene deblurring 7

generally adopts L1 or L2. With the development of

network architecture, people have made many attempts

to find a loss function to replace the widely used L1

loss and L2 loss. However, the trade-off of perceptual

distortion has recently been demonstrated. Advanced

loss functions (such as the adversarial loss of generative

adversarial networks [8]) improve the perceptual image

quality at the cost of distortion. Moreover, L2 is

only very sensitive to large errors, but very tolerant

of small errors. Most importantly, L2 loss does not

consider human visual perception, which is different

from the human visual system. Because in the subject

of image deblurring, we not only need to restore the

blur edges in the image to a potentially clear structure,

but also need to retain the color information and

detail information of the original image. In order to

take human visual perception into consideration, the

SSIM loss function [31] fully considers the brightness,

contrast, and structural indicators, which can restore

the texture details of the image well. At the same time,

it also benefits from the progressive network structure,

so the use of negative SSIM to train dynamic recursive

fast multi-scale residual network will get good results.

Image illumination comparison part:

lx, y =
2µxµy + C1

µ2
x + µ2

y + C1
, (9)

Image contrast comparison part:

cx, y =
2γxγy + C2

γ2x + γ2y + C2
, (10)

Image structure comparison part:

s(x, y) =
γxy + C3

γxγy + C3
, (11)

among them:

γxy =
1

N − 1

N∑
i=1

(xi − γx) (yi − γy). (12)

In the formula, C1 C2 C3 are constant terms to avoid

instability when the denominator is close to zero. xi(yi)

and N are the image signal and the number of signals.

µ acts on the average intensity of the discrete signals of

x and y.

The SSIM loss function formula can be obtained by

multiplying the product of the three comparison parts:

SSIM(x, y) =
(2µxµy + C1)(2γxy + C2)

(µ2
x + µ2

y + C1)(γ2x + γ2y + C2)
. (13)

5 Experiment

5.1 Dataset

Artificially synthesized blurred images are not

enough to express the complexity of real blurred

images. The camera movement has 6 degrees of

freedom (6D), including 3 translational freedoms and

3 rotational freedoms. The method of using the

sharp image convolution blur kernel only considers two

translational degrees of freedom on the two-dimensional

plane [17, 27]. In addition, there are factors such

as lens distortion, sensor saturation, camera nonlinear

transformation, noise, compression, and depth of field

that cannot be simulated by synthetic images.

GOPRO is a large-scale deblurring dataset proposed

by Nah, taken by GOPRO Hero Black camera. Unlike

the previous dataset that uses blur kernel and sharp

image convolution to synthesize blurred images, it

uses high-speed cameras to continuously short exposure

sharp frames, and integrates and averages them to

simulate long exposure blurred frames. The image

formed in this way is closer to reality, and can simulate

complex camera shake and non-uniform blur caused by

multiple target movements in the scene. The GOPRO

dataset contains a total of 3214 pairs of sharp and

blurred images with an image size of 720*1280, of which

2103 pairs of images are used for training and the

remaining 1111 pairs of images are used for testing.

The Kohler dataset [14] is a benchmark dataset for

evaluating and comparing blind deblurring algorithms.

The author records and analyzes the real camera

movement over time, and then replays it with a robot

carrier, and forms a dataset by leaving a series of sharp

images on the movement track of the 6D camera. The

Kohler dataset consists of 4 pictures, each picture is

blurred with 12 different blur checks, and finally 48

blurred images are formed.

5.2 The experimental details

Our experiments are conducted on a PC equipped

with eight TITAN RTX GPUs. Implement our

framework on the pytorch platform. In addition, pixel

filling is used to keep the output and input scales of

the feature map unchanged. The adam[13] algorithm

is used to train the initial learning rate at 0.0001

exponential decay to at 30 epoch using power 0.3,

batchsize is set to 1 in the experiment. In experiments

involving iterative model structure, the network shares

the same training environment.

Our evaluation is comprehensive to verify different

network structures and various network parameters. To

7
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Fig. 3 From left to right are the blurred image, IIU output, complete network output and sharp image.

be fair, all experiments were performed on the same

dataset with the same training configuration unless

otherwise stated. In order to evaluate the performance

of our proposed method, we use peak signal-to-noise

ratio (PSNR) and structural similarity (SSIM) as

our objective evaluation indicators(Our method also

performs well on color-based evaluation indicators.[30]).

5.3 Ablation study

5.3.1 Progressive deblurring

In order to verify our progressive defuzzification

conjecture, we analyzed the influence of the DOU unit

on the performance of the deblurring network, that is,

the GoPro dataset test set is used in the IIU unit to

perform the defuzzification operation. As shown in

Figure 3, in the subjective sense, the output of the

Method blur IIU DOU + IIU

PSNR 20.54 29.32 32.65

SSIM 0.7998 0.9132 0.9512

Tab. 1 Quantitative results of progressive units.

Fig. 4 From left to right, the blurred image is shown, the

output of the edge branch is removed, and the complete network

is output.

IIU is less blurred than the original blurred image, the

blurred area gradually tends to be sharp, and some

edges are restored. But there are still undesirable white

8
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spots and small areas of blur. Observing the detailed

area of the image from left to right, the edges of the

object gradually become sharper and closer to the GT.

From the experimental results, it can be concluded

that the image deblurring task gradually shifts from

the input to the light blur, and finally approaches

the sharp image. Although in terms of quantitative

indicators(Tab 1), the output with fine details is only

slightly better than the original deblurred image, but

those further enhanced structure and texture details

also play a very important role in achieving more

realistic photo effects.

5.3.2 Edge perception

When predicting blur images, in order to verify the

positive effect of edge information on the network, we

remove the significant edge pyramid branch from the

structure to observe the deblurring effect of the test set.

It can be seen from the visual subjective that with the

assistance of edge information, the image edge recovery

is very obvious.

5.4 Compare with other methods

5.4.1 Results of the benchmark dataset

We compare our method with the existing image

deblurring methods quantitatively on the benchmark

evaluation GOPRO dataset. Then we put the Kohler

dataset on our training model for testing. This dataset

is widely used by traditional methods and learning-

based methods for further performance evaluation.

Finally, we use the blur images in the real scene in

the Lai dataset to test the generalization ability of

our network. Since our method deals with motion

blur, it is unfair compared with the traditional uniform

deblurring method. So we choose Whyte et al. [32]

method as the representative traditional method of

non-uniform blur processing. At the same time,

we also choose the same de-motion blur method as

ours for comparison. Both Nah et al. and Tao et

al. use multi-scale architectures, but use parameter

independence and parameter sharing to construct their

deep networks. On this basis, Zhang et al. [36] used

different depth stacking and layering methods to adapt

to different images. We all use the author’s official

publicly available default parameters.

Figure 5 shows our deblurring results on the

benchmark dataset(Unless otherwise stated, all images

evaluated in our experiments are in RGB mode). For

a fair experiment, we use the Nah method to test

the code on the pytorch platform, which is different

from the original lua code. For a fair experiment,

we use the Nah method to test the code on the

pytorch platform, which is different from the original

lua code: The range of RGB has been changed to

[0, 255]; the loss function only uses L1 loss, not

adversarial loss; use Mixed-precision training; SSIM

function is converted from MATLAB to python. This

unifies the framework platform of each method and

contributes to the objectivity of experimental results.

The author provides 5 different models on the two

datasets. Because we are all training and testing on the

GOPRO dataset, we choose the best GOPRO L1 amp

as the test model for comparison. Three models are

provided in the code provided by Tao. According to

the author’s description, the LSTM model works best,

so it is also used as a test model for our comparison. It

released models with different hierarchical structures,

and we also chose their best DMPHN 1 2 4 8 model.

Kupyn improved the deblurring effect and quality on

the basis of the original GAN network implementation,

and proposed a new version (DeblurGanv2). As a

representative of the GAN network, we chose them to

use Inception-ResNet-v2 to implement the best model

for testing.

The PSNR and SSIM metrics of the deblurred image

on the GOPRO dataset are quantitatively evaluated by

the python code. The PSNR and MSSIM metrics on

the Kohler dataset are calculated by the executable file

provided by [14].

Synthesize the results in the chart. The structural

similarity of PMERN in the gopro test is better than

other methods. Especially in restoring the image edge

texture details, the effect is particularly obvious. In

the deblurring result of Nah et al.’s method, there are

undesirable black patches; In the deblurring result of

SRN, there are obvious artifacts and faults in the blur;

DMPTH has achieved good results, but there is still

room for improvement in detail and texture; GAN-v2

is too smooth, lacks texture details, and even erythema

noise appears in some areas. In contrast, PMERN has a

good effect on both the restoration of handwriting and

the restoration of the edge structure of the image, and

the edge texture and structural details of the object are

retained to a large extent.

5.4.2 Results of the real blurred images

Although the GOPRO dataset simulates real blur by

averaging continuous frame synthesis, it is synthesized

by a high-speed camera, and the ground truth sharp

image has severe noise and varying degrees of blur.

Although the Kohler dataset is a real database, it only

contains four different scenarios. Therefore, we further

test our model on the real scene dataset of Lai et al.

9



10 First A. Author et al.

Wh

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Fig. 5 Visual comparisons on testing dataset. In the top-down order, we show input, results of Whyte et al, Nah et al, Tao

et al, Zhang et al, Kupyn et al,and our results, and sharp images.

Method Whyte et al. Nah et al. Tao et al. Zhang et al Kupun et al. Ours

PSNR 20.54 28.49 30.25 30.45 30.51 31.16

SSIM 0.7998 0.8543 0.9030 0.9057 0.9121 0.9225

Tab. 2 Quantitative results on test dataset (in terms of PSNR/SSIM).

The deblurring effect of the real scene can better

reflect the adaptability of a network in the application

field. As shown in Figure 8. Our method can generate

sharp images for different scenes, and the texture

details recovered by other methods are clearer. It

has also made great progress in text processing. This

10
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Fig. 6 Results on real data

Method Whyte et al. Nah et al. Kupyn et al. Zhang et al. Ours

PSNR 24.68 26.48 27.76 25.56 28.28

MSSIM 0.7937 0.8079 0.8183 0.7867 0.8307

Tab. 3 Quality evaluations on Kohler dataset.

shows the wide compatibility of our network to different

scenarios.

As shown in Figures 6, we show a qualitative

comparison between Kohler datasets. Obviously, the

restored images get high-quality visual effects, and our

network can adapt to different scenarios.

6 Conclusion

In this article, we break through the limitations

of current image deblurring tasks and describe a

network structure of a multi-scale variant of blur edge

perception. This structure effectively integrates edge

features and scale information cues. We also propose a

11
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progressive network mode for single image deblurring in

dynamic scenes. Outstanding performance in restoring

image edge details. Our work provides new ideas for

the follow-up of effective multi-scale deblurring deep

networks. Experimental results show that, compared

with traditional methods and learning-based methods,

this method has better results on both benchmark

datasets and real blurred images.
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