
Computational Visual Media
https://doi.org/10.1007/s41095-021-0208-x

Research Article

Flow-aware synthesis: A generic motion model for video frame
interpolation

Jinbo Xing1,2,∗, Wenbo Hu1,2,∗, Yuechen Zhang1, and Tien-Tsin Wong1,2 (�)

c© The Author(s) 2021.

Abstract A popular and challenging task in video
research, frame interpolation aims to increase the
frame rate of video. Most existing methods employ a
fixed motion model, e.g., linear, quadratic, or cubic,
to estimate the intermediate warping field. However,
such fixed motion models cannot well represent the
complicated non-linear motions in the real world or
rendered animations. Instead, we present an adaptive
flow prediction module to better approximate the
complex motions in video. Furthermore, interpolating
just one intermediate frame between consecutive input
frames may be insufficient for complicated non-linear
motions. To enable multi-frame interpolation, we introduce
the time as a control variable when interpolating
frames between original ones in our generic adaptive
flow prediction module. Qualitative and quantitative
experimental results show that our method can produce
high-quality results and outperforms the existing state-
of-the-art methods on popular public datasets.

Keywords flow-aware; generic motion model; video
frame interpolation

1 Introduction
Video frame interpolation aims to synthesize one or
more intermediate frames between original frames.
It is a fundamental yet important task, especially
in the fields of video research and film production.

∗ Jinbo Xing and Wenbo Hu contributed equally to this work.
1 Department of Computer Science and Engineering, the

Chinese University of Hong Kong, Hong Kong SAR,
China. E-mail: J. Xing, jbxing@cse.cuhk.edu.hk; W. Hu,
wbhu@cse.cuhk.edu.hk; Y.Zhang, zhangyc@link.cuhk.edu.hk;
T.-T. Wong, ttwong@cse.cuhk.edu.hk (�).

2 Shenzhen Key Laboratory of Virtual Reality and Human
Interaction Technology, Shenzhen Institutes of Advanced
Technology, Chinese Academy of Sciences, China.

Manuscript received: 2020-12-31; accepted: 2021-01-27

Due to restrictions of camera sensors and network
bandwidth, many videos on the Internet have low
frame rate, especially old films and sports videos,
and frame interpolation methods can greatly enhance
their temporal quality. In addition, interpolation is
also widely used in many other applications, including
video compression [1, 2], medical imaging [3], and
view synthesis [4].

Thanks to deep neural networks, we have witnessed
remarkable improvements on the video frame
interpolation [5–15]. However, it is still very
challenging due to diverse factors, e.g., variations
in lighting conditions, occlusion, and non-linear
motion. Most state-of-the-art frame interpolation
methods explicitly assume motions of objects or
the background between consecutive frames to be
linear [5, 6, 15–17], i.e., the velocity of each object
moving from one frame to another is constant in
screen space. Nevertheless, many motions in the real
world observed in video frames complex non-linear
behaviour, leading to the problem we illustrate with a
simple example, the 2D path of a ball, in Fig. 1. Given
the positions of the ball at four time t = 0, . . . , t = 3,
a linear predictive model would wrongly estimate
the location of the ball at time t = 1.5, due to the
constant velocity assumption in the linear motion
model. Recently, some higher order motion models
have been employed, such as a quadratic [14] or even
a cubic motion model [8], to help overcome this issue.
In general, the motions of camera and objects in
the scene are irregular, due to variations in forces
in the real world. This means that quadratic and
cubic models still cannot well represent the complex
motion patterns in the real world, which are beyond
any fixed model. Similar examples to the one in Fig. 1
can also be found showing the limitations of these
fixed motion models.

1



2 J. Xing, W. Hu, Y. Zhang, et al.

Fig. 1 Simple example of difference between actual and linearly
estimated positions. Light gray: a ball’s position at four time t =
0, . . . , 3. Purple ball, green ball: linearly estimated position and
ground truth position at time t = 1.5, respectively.

In this paper, we present a flow-aware video
frame interpolation (FAI) method to address
generic non-linear motions. Without making any
physical assumptions about the motion, we propose
an adaptive flow prediction module which can
dynamically estimate the motions for each frame
sequence from the input optical flows between
successive frames. By doing so, we can bypass the
limitations of fixed motion models and allow the
network to learn complex motion patterns in a data-
driven manner.

As a further issue, interpolating only one
intermediate frame between the two adjacent frames
is usually insufficient for a good representation of
non-linear motion—multiple intermediate frames are
needed to better represent details of non-linear
motions. It is straightforward for methods with
fixed physical motion models to interpolate multiple
intermediate frames. The basic idea is that, a time-
dependent physical equation of motion time can
be used to calculate the required optical flow, so
intermediate frames can be synthesized by warping
the reference frame or features accordingly. In
contrast, it is harder for interpolation methods
without a physical motion model to interpolate frames
at arbitrary time. To address this problem, we use
time as the control variable for our adaptive flow
prediction module to allow it to learn the motion
parameterized by time. By doing so, the model can
predict the required flow at arbitrary time t ∈ [0, 1]
and thus support interpolating multiple intermediate
frames.

The proposed method is a generic motion model for
video frame interpolation. We use four consecutive
frames as the input to estimate complex motions in
this paper, but it is scalable to more complex motions
by using more input frames. The contributions in
this paper can be summarized as
• an adaptive flow prediction module which can

overcome the limitation of linear motion models
and better represent the complex motions in real
world scenarios;

• temporal intervals are used as a control variable
to predict motion, enabling our network to
synthesize intermediate frames at arbitrary time
between the two input frames, and

• our method covers generic motion modeling in
video interpolation, and can be further extended
to support more complex motions with slight
modification.

2 Related work
2.1 Flow-based methods

Flow-based methods are intuitive and have attracted
much attention in recent years. The basic idea is to
estimate the optical flow between consecutive original
frames, and then warp the original frames or features
using the required flow, which is computed from the
estimated optical flow, to synthesize the intermediate
frames. Our method belongs to this type of method.

As a pioneer of flow-based methods, Liu et al. [17]
proposed use of a fully-convolutional network, called
deep voxel flow (DVF), to predict 3D optical flow
vectors across space and time for each pixel, and then
synthesize the target frame by trilinear interpolation.
To address inaccurate optical flows and occlusion
issues, Super Slomo [16] employed two U-Nets to
refine the required flow and learn soft visibility maps
for blending occluded regions. CyclicGen [18] further
made use of edge information and designed a novel
cycle consistency loss to produce better details with
less training data.

Recently, rather than implicitly training a optical
flow network within the framework, more and more
methods have directly employed an estimator that
is well-trained with ground truth optical flow from
other large-scale datasets, to get more accurate
optical flow. For example, Bao et al. [5] integrated
FlowNet [19] within the proposed MEMC-Net, and



Flow-aware synthesis: A generic motion model for video frame interpolation 3

Xue et al. [15] adopted SpyNet [20] in their proposed
ToFlow and DAIN [6] utilized PWC-Net [21] as
its flow estimator. To further enhance details and
address challenging scenarios, e.g., occlusion and large
motions, Niklaus and Liu [11] and Yuan et al. [22]
proposed to not only warp the input frames but
also the contextual features extracted by ResNet [23].
To address blending of occluded regions, DAIN [6]
leveraged depth information, while SoftSplat [12]
learned blending weights for each overlapped pixel
from a depth-related importance mask. Park et al.
[24] proposed the BMBC method to estimate the
bilateral motions using a bilateral cost volume to
obtain more accurate optical flow.

All of the above methods explicitly or implicitly
assume the motions of objects or the background in
the input frames are linear. A linear model can well
approximate simple motions, but it is insufficient for
more complex motions, as noted. To represent more
complex motions, Xu et al. [14] used a quadratic
motion model, and Chi et al. [8] presented a cubic
motion model. However, the movements of objects
and background are irregular in the real world, due
to variations in forces. No matter whether linear or
quadratic or cubic motion models are used, all are
still fixed physical motion models that cannot well
represent the extremely complex motion patterns in
the real world. Unlike the above methods, our method
can dynamically estimate the motion model for each
frame sequence from the input optical flows between
successive frames.

2.2 Kernel-based methods

Unlike flow-based methods that explicitly estimate
motions, kernel-based methods deal with motions in
an implicit way. They directly estimate kernels for
convolving with input frames to produce intermediate
frames. As a pioneer, Long et al. [25] proposed
to regress the target frame from the two input
frames using a CNN, but the results always tended
to be blurry. To produce more visually pleasing
frames, Niklaus et al. [13] proposed to estimate a
2D convolution kernel for each pixel to capture the
motion. The output frame can be synthesized by
locally convolving the two input frames with the
estimated kernels. It can produce intermediate frames
with sharper edges, but it is extremely memory-
consuming, as it estimates an independent large
kernel (41×41) for every output pixel. To improve

memory efficiency, Niklaus et al. [26] proposed use
of 1D separable convolution kernels instead of 2D
kernels, but it still fails to synthesize plausible results
for motion larger than the kernel size. Recently,
AdaCoF [9] proposed to estimate not only the kernel
weights but also offsets for each pixel to support
larger motions. DSepConv [7] adopted deformable
separable convolution [27, 28] to replace conventional
convolution to address large motions with a smaller
kernel size.

Since all the kernel-based methods use convolution
kernels to implicitly model the motion between
frames, they cannot directly interpolate multiple
intermediate frames between the two input frames.
Although we can recursively feed the interpolated
frames back into their model to produce multiple
intermediate frames, this approach leads to error
accumulation. Also, this solution implicitly assumes a
linear motion model, so cannot well represent complex
motions in the real world, as discussed above.

2.3 Other methods

Besides flow-based and kernel-based methods, several
other novel methods have been proposed to interpolate
frames. Meyer et al. [29] proposed a phase-based
method that combines phase information across the
levels of a multi-scale pyramid. It provides an efficient
alternative to optical flow, but large motions of high
frequency components cannot be well represented
by the estimated phase. In order to alleviate
this issue, Meyer et al. [10] proposed PhaseNet to
combine the phase-based motion representation with
a neural network decoder, to improve robustness.
Recently, FeFlow [30] was devised to synthesize
intermediate frames in a structure-to-texture manner.
It divides the video frame interpolation task into two
steps: structure-guided interpolation and texture-
refinement; an attention mechanism is employed in
their method to better handle occlusions. CAIN [31]
adopted channel attention to spread the information
in feature maps into multiple channels and extracted
motion clues from them.

Like kernel-based methods, these methods also
have to adopt recursive processing to interpolate
multiple intermediate frames, again leading to error
accumulation and implicitly assuming a linear motion
model, while our method can dynamically estimate
non-linear motion models for each frame sequence
and directly interpolate multiple intermediate frames.



4 J. Xing, W. Hu, Y. Zhang, et al.

3 Approach
3.1 Overview

The target of frame interpolation is to increase the
frame rate of video. Given four consecutive video
frames I−1, I0, I1, and I2, our goal is to interpolate a
frame It that is temporally between I0 and I1. The
overall pipeline of our method is shown in Fig. 2. Our
method can be divided into two stages, adaptive flow
prediction and frame synthesis.

To better use the input information, we regard
both I0 and I1 as reference frames. As shown in
Fig. 2, for each reference frame, we estimate a group
of basic optical flows from it to the other three
input frames, denoted by {f0→−1, f0→1, f0→2} for
I0, and {f1→2, f1→0, f1→−1} for I1. To model the
complicated non-linear motion, each group of basic
flows and the time t are then fed into the proposed
adaptive flow prediction (AFP) module to predict
the optical flow from the reference frame to the
target frame, that is represented as f0→t and f1→t

for the two reference frame, respectively. Here, the
input time t is used to control the time at which
the required flow is predicted, so our method can
interpolate multiple intermediate frames as needed.

If we directly warp the reference frames (I0 and I1)
with the required flows to produce the warped frames
(Î0 and Î1) and fuse them to give the final results,
the results tend to be blurred. Therefore, we further
use a pyramid context extractor to extract multi-

scale contextual features for the reference frames (I0
and I1), denoted {F 1

0 , F 2
0 , F 3

0 } and {F 1
1 , F 2

1 , F 3
1 } for

I0 and I1, respectively. We then employ a forward
warping layer [12] to warp not only the reference
frames (I0 and I1) but also their multi-scale contextual
features ({F 1

0 , F 2
0 , F 3

0 } and {F 1
1 , F 2

1 , F 3
1 }). Finally,

the warped reference frames (Î0, Î1) and warped
pyramid contextual features are fed into the frame
synthesis network to produce a residual map between
the ground truth and the average blending of frame
Î0 and Î1. Our final prediction of the interpolated
frame is obtained by summing the residual map and
the average blending of frame Î0 and Î1. We provide
the details of each component of our approach in the
following sections.

3.2 Adaptive flow prediction

The goal of the adaptive flow prediction (AFP)
module is to dynamically estimate the motions for
each frame sequence from the basic optical flows
between successive input frames, to better represent
complex motions than traditional linear, quadratic,
or cubic motion models. We employ the off-the-shelf
method PWC-Net [21] to produce the basic flows, as
it is a state-of-the-art optical flow estimation method
widely used in recent research. For each reference
frame (I0 and I1), we estimate three different basic
optical flows. Note that to support interpolating
multiple intermediate frames, we need to control the
target time of the required flow. Therefore, we also

Fig. 2 Overview of our FAI approach. Given four consecutive input frames (I−1, I0, I1, and I2), an off-the-shelf flow estimator first estimates
two basic optical flow groups, {f0→−1, f0→1, f0→2}, and {f1→2, f1→0, f1→−1}. These groups are concatenated with corresponding time and
fed into the adaptive flow prediction (AFP) module to produce flows f0→t and f1→t. These are used to warp the reference frames (I0 and I1)
and their contextual features extracted by a pyramid context extraction module, which are then fed to the frame synthesis network to produce
the final target frame.



Flow-aware synthesis: A generic motion model for video frame interpolation 5

expand the target time t into a tensor of shape of
H × W × 1, where H and W are the height and
width of input frames, and concatenate it with the
three optical flows as the input to the AFP module
to generate the flows f0→t and f1→t. Mathematically,
this procedure can be represented as

f0→t = AFP(f0→−1, f0→1, f0→2, t) (1)

f1→t = AFP(f1→2, f1→0, f1→−1, 1 − t) (2)
By analyzing the motion patterns within the input

basic flows, the AFP module estimates the respective
required bi-directional optical flows from reference
frames I0 and I1 to the intermediate target frame
It. Since multilayer perceptrons (MLP) are known to
powerfully approximate functions, we employ them
to approximate the complex non-linear motions of the
input consecutive frames. As shown in Eq. (1), the
input basic flow group {f0→−1, f0→1, f0→2} and the
output required flow f0→t are spatially aligned with
the same reference frame I0; a similar observation
holds for Eq. (2). Therefore, we can use a 1 × 1
convolution to realize the temporal MLP. Without
any spatially resampling, the AFP module only needs
to learn the motion patterns from the input basic
flow group and to estimate the required flow values.

The architecture of our AFP module is shown in
Fig. 3; it consists of six convolution layers. The
first five layers have Leaky Rectified Linear Units
(LeakyReLU) [32] as activation function; the last layer
acts as the output layer, so no activation function

Fig. 3 Network architecture of the adaptive flow prediction (AFP)
module. Its input is the basic flow group and the target time, while
the output is the required optical flow at the target time. Numbers
inside each convolution layer indicate the number of input and output
channels, respectively.

is applied. The kernel size in each convolution layer
is set to one, as discussed above. The shape of the
feature map in each layer is H ×W ×C, and the shape
of feature maps within the AFP module remains
unchanged, while the number of channels C increases
at the beginning and decreases to two at the end,
as the predicted flow for each pixel should be a 2D
vector. The AFP module can learn and predict f0→t

from the stacked flows and time t, so we refer to
the proposed method (FAI) as a flow-aware synthesis
method.

Note that our method is scalable to addressing
more complex motions. With slight modification,
further basic flows can be fed into our AFP module
to extend its capability to approximate more complex
motions. It can be described as

f0→t = AFP(f0→t1 , . . . , f0→tn
, t) (3)

where t1 to tn denote a sequence of time, assuming
frames at those time steps can be used as inputs.
f1→t can be determined in a similar way.

3.3 Frame synthesis

Having predicted the required optical flow using
the AFP module, we need to warp the reference
frames (I0 and I1) to the target time step. To better
use the information inside the reference frames, we
not only warp them directly but also their multi-
scale contextual features to the target time step.
We employ the pyramid feature extraction network
proposed by Niklaus and Liu [12] to extract multi-
scale contextual features of the reference frames
at three scales F 1, F 2, and F 3. The multi-scale
contextual features for I0 and I1 are denoted by
{F 1

0 , F 2
0 , F 3

0 } and {F 1
1 , F 2

1 , F 3
1 }, respectively.

Our AFP module generates flows f0→t and
f1→t aligned with the reference frames I0 and I1,
respectively. Therefore, forward warping is a more
suitable way to get the warped frames and contextual
features, rather than backward warping. We adopt
the differentiable forward warping layer proposed by
softmax splatting [12], so the whole framework can
be trained jointly. Note that we resize the predicted
flows (f0→t and f1→t) to each scale in the pyramids
of multi-scale contextual features, and rescale the
flow vector values accordingly, to allow us to warp
the pyramidal contextual features.

Forward warping can leave holes due to occlusion.
To fill in the missing information and enhance the
details in the final synthesized frame, we employ



6 J. Xing, W. Hu, Y. Zhang, et al.

GridNet [33] as our frame synthesis network. GridNet
contains three rows and six columns. Inspired by
Niklaus and Liu [11], we adopt bilinear upsampling
in GridNet to avoid checkerboard artifacts, and
incorporate parametric rectified linear units to
stabilize training. Specifically, we concatenate the
warped input frames (Î0, Î1) and the first level of
contextual features (F̂ 1) as input to the first row
of GridNet, and feed the second (F̂ 2) and third
(F̂ 3) level contextual features into the second and
third rows of GridNet, respectively. To encourage
convergence, we let the frame synthesis network learn
the residual map between the ground truth target
frame and the average blending of warped reference
frames (Î0 and Î1).

3.4 Loss functions

Inspired by Refs. [9, 26], we consider two different
types of loss functions in our method, color loss
L1 and combination loss Lcom. The color loss and
combination loss make our network focus on quantita-
tive quality and visual quality, respectively.
3.4.1 Color loss
The color loss L1 is defined as the L1 norm of the pixel-
wise color difference. Alternatively, following recent
works [6, 24], we optimize the L1 norm using the
Charbonnier penalty function [34]. Mathematically,
it can be written:

L1 = ‖ρ(Iout − Igt)‖1 (4)

ρ(x) =
√

x2 + ε2 (5)

where ε is set to 10−6 in our experiments.
3.4.2 Combination loss
It has been shown that introducing perceptual loss
into image generation tasks can produce more visually
pleasing results and sharper edges [35, 36]. The basic
idea is to supervise the synthesized results in the
feature domain. Various feature extractors φ can be
utilized to map the synthesized frame into feature
space to compute the perceptual loss. We empirically
adopt relu4 4 layer of the VGG-19 network here.
However, using perceptual loss by itself may lead to
color distortion. Thus, we combine the L1 loss and
perceptual loss together to form a combination loss:

Lcom = ‖ρ(Iout−Igt)‖1 +λ ‖φ(Iout)−φ(Igt)‖2
(6)

where λ is set to 2 × 10−5 in our experiments.

4 Experiments
In this section, we provide implementation details
and a comparison with other state-of-the-art methods
on widely used datasets. We also conduct several
ablation study experiments to evaluate the
effectiveness of the modules in our method.

4.1 Implementation details

Our training dataset consisted of two parts. The
first contained 25 video clips with a frame rate of
240 fps and resolution of 720×1280, collected from
YouTube. These video clips were diverse in terms
of action and scene type. However, the cameras in
these videos were mostly still. Thus we randomly
selected some consecutive frames from GOPRO [37]
and Adobe240 [38] datasets as our another part of
the training dataset. These were recorded with hand-
held cameras and therefore contain more complex
motions. Consequently, the final training dataset
consisted of 14,819 training samples, each sample
with 25 consecutive frames following QVI [14]. Our
model took the 1st, 9th, 17th, and 25th frames as
inputs (I−1, I0, I1, and I2) to synthesize 7 frames
It from 10th to 16th as ground-truth Igt at time
steps t = 0.125, 0.25, 0.5, . . . , 0.875. During the
training phase, we resized the frames to 360×640
and randomly cropped them to 256×256. We also
performed data augmentation by randomly flipping
frames vertically and horizontally. In order to increase
the diversity of our dataset, we randomly changed the
temporal order with probability 0.5. Our experiments
were performed on a single NVIDIA TITAN RTX
GPU.

Since we adopt forward warping, there are some
gaps in Î0 and Î1. We experienced a degradation
in performance and hard convergence of the model
when jointly training the whole network. In order
to preserve the functionality of our AFP module, we
chose to train AFP first supervised by weak ground
truth optical flow f0→t and f1→t. The training loss
for AFP was L1. Next, we trained the whole network
with the AFP module fixed. To train our network,
we used AdaMax [39] with β = (0.9, 0.999) and mini-
batch size of 8 samples. The initial learning rate
was set to 2 × 10−4 and reduced by a factor of 0.5
for every 30 epochs. We trained our network with
flow estimation and AFP module fixed for 70 epochs
and then fine tuned the flow estimation for another



Flow-aware synthesis: A generic motion model for video frame interpolation 7

10 epochs. We will release our source code upon
publication.

4.2 Evaluation datasets and metrics.

4.2.1 Overview
We evaluated our approach on four widely used
datasets, including two multi-frame interpolation
datasets: GOPRO and Adobe240, and two single-
frame interpolation datasets: DAVIS [40] and
Vimeo90K septuplet [15].

For quantitative evaluation, we used peak signal-to-
noise ratio (PSNR), structural similarity index (SSIM)
[41], and interpolation error (IE) [42] between It and
Igt on the evaluation datasets, adopting root-mean-
squared (RMS) difference for IE in our experiments.
4.2.2 Multi-frame interpolation datasets
The GOPRO dataset consists of 33 high-quality
videos while Adobe240 consists of 133 videos, both
recorded by high-speed hand-held cameras and
designed for benchmarking deblurring tasks. The
frame rate is 240 fps and resolution is 720×1280. We
extracted 4275 samples of 25 consecutive frames from
GOPRO and 8702 from Adobe240 as set following
QVI and randomly separated the samples into
training and testing parts: for GOPRO, 2775:1500;
for Adobe240, an equal split. Following the test
settings in QVI [14], we kept the resolution to
720×1280 for GOPRO and resized frames for Adobe
to 360×640 during testing. For each sample, the 1st,
9th, 17th, 25th frames(I−1, I0, I1, and I2) are used
to synthesize the frames It from 10th to 16th.
4.2.3 Single-frame interpolation datasets
DAVIS is a video dataset originally designed for
segmentation tasks, with a frame rate of 30 fps.
Xu et al. [14] previously extracted 2849 quintuples
(I−1, I0, I1 I2 as inputs and I0.5 as the target) from

DAVIS. We used this data and resized the frames to
480×856 for our evaluation. Vimeo90K septuplet
data was originally designed for video denoising,
deblocking, and super-resolution, and contains 7824
samples of 7 consecutive frames with a resolution of
256 × 448. We took the 1st, 3rd, 5th, and 7th frames
as inputs (I−1, I0, I1, and I2) to synthesize the 4th
frame, corresponding to I0.5 in our experiments.

4.3 Comparisons with state-of-the-arts

4.3.1 Overview
We compared our method with five state-of-the-art
interpolation methods, including SepConv-L1[26],
Super SloMo [16], QVI [14], DAIN [6], and AdaCoF
[9]. We used the authors’ released codes for Super
SloMo, QVI, DAIN, and AdaCoF and corresponding
retrained versions on our training dataset. Since the
training code of SepConv is not publicly available,
we could not retrain it and directly used the released
model in our experiments. Note that our model
interpolates frames at arbitrary input time. We
compared the above methods on both the multi-frame
and single-frame interpolation datasets.
4.3.2 Quantitative evaluation
A quantitative comparison for the multi-frame
interpolation datasets is shown in Table 1. Following
QVI [14], we evaluated different methods in two
settings. Evaluation metrics for the 4th frame
are denoted “center”, while the average over all
7 interpolated frames is denoted “whole”. We
can see that on GOPRO and Adobe240 datasets,
the proposed method consistently and significantly
outperforms all the other methods which use a linear
physical motion model assumption. Moreover, our
method achieves 0.3 dB and 0.8 dB PSNR gains
respectively compared with QVI which assumes

Table 1 Quantitative comparison to state-of-the-art methods on GOPRO and Adobe240 multi-frame interpolation datasets. Numbers in
bold and underlined represent the first and the second best performances, respectively

Method

GOPRO Adobe240

Whole Center Whole Center

PSNR SSIM IE PSNR SSIM IE PSNR SSIM IE PSNR SSIM IE
SepConv-L1 29.36 0.9193 10.08 27.40 0.8898 12.38 32.25 0.9542 7.42 30.88 0.9398 8.77
Super SloMo 28.67 0.9180 10.41 27.61 0.8953 11.94 30.63 0.9461 8.32 30.72 0.9412 8.57
AdaCoF 28.49 0.9058 10.93 26.96 0.8824 12.78 31.05 0.9380 8.47 30.11 0.9274 9.47
DAIN 29.35 0.9221 9.93 27.66 0.8956 11.98 32.01 0.9537 7.50 30.86 0.9412 8.64
QVI 30.29 0.9415 8.59 28.70 0.9190 10.32 32.43 0.9649 6.74 31.73 0.9579 7.40
Ours-Lcom 30.40 0.9394 8.60 28.86 0.9192 10.26 33.24 0.9655 6.42 32.57 0.9597 7.01
Ours-L1 30.38 0.9401 8.58 29.00 0.9215 10.11 33.17 0.9658 6.45 32.70 0.9608 6.90



8 J. Xing, W. Hu, Y. Zhang, et al.

a quadratic model for the motions. Similarly,
our method also performs favorably against the
other methods except for QVI on the single-frame
interpolation datasets, as shown in Table 2.
4.3.3 Properties of methods
Following the analysis method in DSepConv [7], we
analyse the properties of different methods in the
following ways:
• number of parameters (Param.), in millions;
• number of input frames (Input);
• sub-networks used, including flow, kernel, context,

mask.
The results are shown in Table 3. Enc-Dec denotes
the self-trained flow estimation module with Encoder–
Decoder network architecture. LH denotes the
learned hierarchical feature extraction module defined
in DAIN. In addition, the kernel in flow-based
methods with bilinear interpolation operations is
denoted bilinear(k), where k is the kernel size. In
particular, we can see that our method uses the fewest
parameters, only about half of the number used in
other methods.
4.3.4 Qualitative evaluation
A qualitative evaluation can better show the visual
differences in results of different methods. A com-

Table 2 Quantitative comparison to state-of-the-art methods on the
DAVIS and Vimeo90K single-frame interpolation datasets. Numbers
marked in bold and underlined represent the first and the second best
performances, respectively

Method
DAVIS Vimeo90K

PSNR SSIM IE PSNR SSIM IE

SepConv-L1 26.20 0.8567 15.66 33.72 0.9678 6.16
Super SloMo 26.05 0.8534 15.77 33.04 0.964 6.53
AdaCoF 25.95 0.8493 15.86 33.01 0.9619 6.62
DAIN 27.30 0.8834 13.55 33.63 0.9681 6.16
QVI 27.60 0.8927 12.85 34.39 0.9725 5.60
Ours-Lcom 27.25 0.8828 13.66 33.43 0.9692 6.21
Ours-L1 27.44 0.8870 13.39 33.69 0.9703 6.03

Table 3 Properties of different video frame interpolation methods

Method
Param.

(M) Input
Sub-networks

Flow Kernel Context Mask

SepConv-L1 21.60 2 × Learned(51) × ×
Super SloMo 39.61 2 Enc-Dec Bilinear(2) × �
AdaCoF 21.84 2 × Learned(5) × �
DAIN 24.03 2 PWC-Net Learned(4) LH ×
QVI 29.23 4 PWC-Net Bilinear(2) × ×
Ours 12.83 4 PWC-Net Bilinear(2) Pyramid ×

parison of our method with other state-of-the-art
methods on some challenging scenarios is shown in
Fig. 4. These scenarios contain complex motions
with both translational and rotational motion; our
adaptive flow prediction module can effectively
address such complicated non-linear motions.

We can see that the results of our methods are
more visually pleasing in Fig. 4, e.g., in the top
row, our method synthesizes the flamingo legs more
clearly than other methods. In the 3rd row, the
frame generated by our method contains the whole
wheel and less distortion in the crosswalk compared to
results generated by other methods. Also, our method
can better address occlusions, as shown in the bottom
row, where our synthesized frame contains a clear
background and fewer artifacts near edges compared
to results of other methods.

Moreover, as intended, combination loss Lcom
produces better visual results than color loss L1,
as shown in Fig. 4, while L1 outperforms the Lcom
quantitatively as shown in Table 1.
4.3.5 Quality consistency evaluation
Besides average frame quality, quality consistency of
frames along the time axis is also important to video
quality. If the frame quality varies too much over
time, people will experience the video to be flickering,
leading to discomfort. To evaluate consistency of
quality, we computed PSNR values at each time step
of the results from different methods on the Adobe240
dataset: see Fig. 5. For all methods, the PSNR values
at the center time (t = 4) tend to be lower than at
the marginal time (t = 1, t = 7). This is because
the time difference between the input frames and the
target frames at the marginal time is lower than that
at the center time. The PSNR curve for our method
is consistently above the curves of other methods,
and it is also smoother, indicating that our method
can produce both better frame quality and more
consistent results.
4.4 Ablation study

To evaluate the effectiveness of the individual
components of our model, we conducted ablation
studies using the multi-frame interpolation datasets.
We considered the following variants of our method:

(1) Linear w/o t: without the adaptive flow pre-
diction module;

(2) Linear w/ t: without the adaptive flow pre-
diction module but with time t as input;



Flow-aware synthesis: A generic motion model for video frame interpolation 9

Fig. 4 Visual comparison of results of our method and other state-of-the-art frame interpolation methods on the DAVIS dataset.

Fig. 5 Quality consistency evaluation. PSNR values for synthesized
frames over time, for different methods, on the Adobe240 dataset.

(3) Ours w/o t: without t as input;
(4) Ours: the full proposed model.
In (1) and (2), since there is no adaptive flow

prediction module to predict the required flow f0→t

and f1→t from reference frames to target frames, we
just apply the linear flow combination method, to
produce intermediate flows as tf0→1 and (1 − t)f1→0.
In (1) and (3), the network cannot synthesize the
frame at an arbitrary time, it can only generate a
single in-between frame I0.5, but we can recursively
interpolate 7 frames for (1). Note that all the variants
are trained with L1 loss.

The performance of the above variants was
evaluated on the GOPRO, Adobe240, DAVIS, and
Vimeo90K datasets, with results as shown in Table 4.
We can see that the linear variants of our methods
(Linear w/o t and Linear w/ t) cannot compete
with our full methods, as they cannot well represent
the complex motions in the dataset. Moreover, the
performance of Ours w/o t for center frame is slightly
better than Ours, because the network can pay more
attention to the quality of the center frame if we do
not require it to interpolate other intermediate frames.

Table 4 Ablation study results for both multi-frame interpolation datasets (GOPRO and Adobe240) and single-frame interpolation datasets
(DAVIS and Vimeo90K). Numbers in bold and underlined represent the first and the second best performances, respectively.

Method
GOPRO Adobe240 DAVIS Vimeo90K

Whole Center Whole Center Center Center

PSNR SSIM IE PSNR SSIM IE PSNR SSIM IE PSNR SSIM IE PSNR SSIM IE PSNR SSIM IE
Linear w/o t 29.48 0.9222 9.81 27.72 0.8950 11.97 31.62 0.9503 7.67 30.93 0.9414 8.56 27.25 0.8834 13.54 33.09 0.9659 6.45
Linear w/ t 29.35 0.9208 9.98 27.68 0.8941 12.03 31.99 0.9537 7.50 30.97 0.9417 8.55 27.28 0.8836 13.57 33.14 0.9665 6.44
Ours w/o t — — — 29.52 0.9282 9.52 — — — 33.05 0.9637 6.57 27.98 0.8977 12.56 33.99 0.9716 5.82
Ours 30.38 0.9401 8.58 29.00 0.9215 10.11 33.16 0.9658 6.45 32.70 0.9608 6.90 27.44 0.8870 13.39 33.69 0.9703 6.03



10 J. Xing, W. Hu, Y. Zhang, et al.

Therefore, Ours w/o t would be a better choice if one
only want to interpolate the center frame.

Besides the average frame quality, the quality
consistency of frames is also important as mentioned
above. Therefore, we also evaluate the quality
consistency of our method and its variants. We use
them to interpolate the intermediate seven frames,
and compute the PSNR value for each frame on the
Adobe240 dataset, and plot the PSNR values against
the time index in Fig. 6. We can see that no matter
with L1 or Lcom loss, our method can always produce
more consistent results for all the consecutive frames
compared with the linear variants of our method.

To visualize the difference of estimated flows from
the linear model and our proposed AFP module,
we show two examples in Fig. 7 from the DAVIS
dataset that contain non-linear motions. The top
row shows the optical flow f0→0.5, while the second
row shows f1→0.5. We estimate flows between the
input frames, e.g., {I0, I0.5} and {I1, I0.5}, as the

Fig. 6 Quality consistency evaluation. PSNR for synthesized frames
versus time for our method and its variants on the Adobe240 dataset.

Fig. 7 Visualization of optical flows from different methods on two
examples from the DAVIS dataset. Above: optical flow f0→0.5. Below:
f1→0.5.

approximate ground truth (first column). The optical
flows in the second and last columns are produced
by the linear model and our proposed AFP module,
respectively. We visualize the optical flow in HSV
color space, where hue indicates direction. We can
see that the hue of the visualization predicted by
AFP is closer to the ground truth, indicating that
AFP can better address non-linear motions than a
conventional linear motion model.

5 Conclusions
We have presented a flow-aware multi-frame
interpolation method to address the complicated
non-linear motions in the real world by dynamically
learning the motions for each frame sequence with
our proposed adaptive flow prediction module. By
introducing time as a control variable for the adaptive
flow prediction module, our method can interpolate
multiple intermediate frames from consecutive input
frames. Such that the frame interpolated videos
can better present the complex non-linear motions.
Our generic motion model is scalable and can be
extended to support more complicated motions with
more input frames. Extensive experiments show
the quality of our results. Both qualitative and
quantitative experimental results indicate that our
methods outperform existing state-of-the-art methods
on widely used datasets.

Acknowledgements

This project was supported by the Research Grants
Council of the Hong Kong Special Administrative
Region, under RGC General Research Fund (Project
No. CUHK 14201017), Shenzhen Science and
Technology Program (No. JCYJ20180507182410327),
and the Science and Technology Plan Project of
Guangzhou (No. 201704020141).

Electronic Supplementary Material Supplementary
material is available in the online version of this article
at https://doi.org/10.1007/s41095-021-028-x.

References

[1] Lu, G.; Zhang, X. Y.; Chen, L.; Gao, Z. Y. Novel
integration of frame rate up conversion and HEVC
coding based on rate-distortion optimization. IEEE
Transactions on Image Processing Vol. 27, No. 2, 678–
691, 2018.



Flow-aware synthesis: A generic motion model for video frame interpolation 11

[2] Wu, C.-Y.; Singhal, N.; Krähenbühl, P. Video
compression through image interpolation. In: Computer
Vision – ECCV 2018. Lecture Notes in Computer Science,
Vol. 11212. Ferrari, V.; Hebert, M.; Sminchisescu, C.;
Weiss, Y. Eds. Springer Cham, 425–440, 2018.

[3] Karargyris, A.; Bourbakis, N. Three-dimensional
reconstruction of the digestive wall in capsule
endoscopy videos using elastic video interpolation. IEEE
Transactions on Medical Imaging Vol. 30, No. 4, 957–
971, 2011.

[4] Flynn, J.; Neulander, I.; Philbin, J.; Snavely, N. Deep
stereo: Learning to predict new views from the world’s
imagery. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 5515–5524,
2016.

[5] Bao, W. B.; Lai, W. S.; Zhang, X. Y.; Gao, Z.
Y.; Yang, M. H. MEMC-net: Motion estimation and
motion compensation driven neural network for video
interpolation and enhancement. IEEE Transactions on
Pattern Analysis and Machine Intelligence Vol. 43, No.
3, 933–948, 2021.

[6] Bao, W. B.; Lai, W. S.; Ma, C.; Zhang, X. Y.; Gao, Z.
Y.; Yang, M. H. Depth-aware video frame interpolation.
In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 3698–3707,
2019.

[7] Cheng, X. H.; Chen, Z. Z. Video frame interpolation
via deformable separable convolution. In: Proceedings
of the AAAI Conference on Artificial Intelligence, Vol.
34, No. 7, 10607–10614, 2020.

[8] Chi, Z. X.; Mohammadi Nasiri, R.; Liu, Z.; Lu,
J. W.; Tang, J.; Plataniotis, K. N. All at once:
Temporally adaptive multi-frame interpolation with
advanced motion modeling. In: Computer Vision –
ECCV 2020. Lecture Notes in Computer Science, Vol.
12372. Vedaldi, A.; Bischof, H.; Brox, T.; Frahm, J. M.
Eds. Springer Cham, 107–123, 2020.

[9] Lee, H.; Kim, T.; Chung, T. Y.; Pak, D.; Ban,
Y.; Lee, S. AdaCoF: Adaptive collaboration of flows
for video frame interpolation. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 5315–5324, 2020.

[10] Meyer, S.; Djelouah, A.; McWilliams, B.; Sorkine-
Hornung, A.; Gross, M.; Schroers, C. PhaseNet
for video frame interpolation. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 498–507, 2018.

[11] Niklaus, S.; Liu, F. Context-aware synthesis for
video frame interpolation. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 1701–1710, 2018.

[12] Niklaus, S.; Liu, F. Softmax splatting for video frame
interpolation. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern
Recognition, 5436–5445, 2020.

[13] Niklaus, S.; Mai, L.; Liu, F. Video frame interpolation
via adaptive convolution. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern
Recognition, 2270–2279, 2017.

[14] Xu, X.; Siyao, L.; Sun, W.; Yin, Q.; Yang, M.-H.
Quadratic video interpolation. In: Proceedings of the
Advances in Neural Information Processing Systems,
2019.

[15] Xue, T. F.; Chen, B. A.; Wu, J. J.; Wei, D. L.;
Freeman, W. T. Video enhancement with task-oriented
flow. International Journal of Computer Vision Vol.
127, No. 8, 1106–1125, 2019.

[16] Jiang, H.; Sun, D.; Jampani, V.; Yang, M.-H.;
Learned-Miller, E.; Kautz, J. Super SloMo: High
quality estimation of multiple intermediate frames
for video interpolation. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 9000–9008, 2018.

[17] Liu, Z. W.; Yeh, R. A.; Tang, X. O.; Liu, Y.
M.; Agarwala, A. Video frame synthesis using deep
voxel flow. In: Proceedings of the IEEE International
Conference on Computer Vision, 4473–4481, 2017.

[18] Liu, Y.-L.; Liao, Y.-T.; Lin, yen-yu; Chuang, Y.-
Y. Deep video frame interpolation using cyclic frame
generation. In: Proceedings of the AAAI Conference on
Artificial Intelligence, Vol. 33, 8794–8802, 2019.

[19] Dosovitskiy, A.; Fischer, P.; Ilg, E.; Häusser, P.;
Hazirbas, C.; Golkov, V.; van Der Smagt, P.; Cremers,
D.; Brox, T. FlowNet: Learning optical flow with
convolutional networks. In: Proceeedings of the IEEE
International Conference on Computer Vision, 2758–
2766, 2015.

[20] Ranjan, A.; Black, M. J. Optical flow estimation using
a spatial pyramid network. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern
Recognition, 2720–2729, 2017.

[21] Sun, D.; Yang, X.; Liu, M.-Y.; Kautz, J. PWC-Net:
CNNs for optical flow using pyramid, warping, and cost
volume. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 8934–
8943, 2018.

[22] Yuan, L. Z.; Chen, Y. B.; Liu, H. T.; Kong, T.; Shi,
J. B. Zoom-in-to-check: Boosting video interpolation
via instance-level discrimination. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 12175–12183, 2019.



12 J. Xing, W. Hu, Y. Zhang, et al.

[23] He, K. M.; Zhang, X. Y.; Ren, S. Q.; Sun, J. Deep
residual learning for image recognition. In: Proceedings
of the IEEE Conference on Computer Vision and
Pattern Recognition, 770–778, 2016.

[24] Park, J.; Ko, K.; Lee, C.; Kim, C. S. BMBC: Bilateral
motion estimation with bilateral cost volume for video
interpolation. In: Computer Vision – ECCV 2020.
Lecture Notes in Computer Science, Vol. 12359. Vedaldi,
A.; Bischof, H.; Brox, T.; Frahm, J. M. Eds. Springer
Cham, 109–125, 2020.

[25] Long, G. C.; Kneip, L.; Alvarez, J. M.; Li, H. D.; Zhang,
X. H.; Yu, Q. F. Learning image matching by simply
watching video. In: Computer Vision – ECCV 2016.
Lecture Notes in Computer Science, Vol. 9910. Leibe,
B.; Matas, J.; Sebe, N.; Welling, M. Eds. Springer
Cham, 434–450, 2016.

[26] Niklaus, S.; Mai, L.; Liu, F. Video frame interpolation
via adaptive separable convolution. In: Proceedings of
the IEEE International Conference on Computer Vision,
261–270, 2017.

[27] Dai, J. F.; Qi, H. Z.; Xiong, Y. W.; Li, Y.; Zhang, G. D.;
Hu, H.; Wei, Y. C. Deformable convolutional networks.
In: Proceedings of the IEEE International Conference
on Computer Vision, 764–773, 2017.

[28] Zhu, X. Z.; Hu, H.; Lin, S.; Dai, J. F. Deformable
ConvNets V2: More deformable, better results. In:
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 9300–9308, 2019.

[29] Meyer, S.; Wang, O.; Zimmer, H.; Grosse, M.; Sorkine-
Hornung, A. Phase-based frame interpolation for video.
In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 1410–1418, 2015.

[30] Gui, S. R.; Wang, C. Y.; Chen, Q. H.; Tao,
D. C. FeatureFlow: Robust video interpolation via
structure-to-texture generation. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 14001–14010, 2020.

[31] Choi, M.; Kim, H.; Han, B.; Xu, N.; Lee, K. M. Channel
attention is all you need for video frame interpolation.
In: Proceedings of the AAAI Conference on Artificial
Intelligence, Vol. 34, No. 7, 10663–10671, 2020.

[32] Maas, A. L.; Hannun, A. Y.; Ng, A. Y. Rectifier
nonlinearities improve neural network acoustic models.
In: Proceedings of the 30th International Conference
on Machine Learning, 2013.

[33] Fourure, D.; Emonet, R.; Fromont, E.; Muselet, D.;
Tremeau, A.; Wolf, C. Residual conv-deconv grid network
for semantic segmentation. In: Proceedings of the
British Machine Vision Conference, 181.1–181.13, 2017.

[34] Charbonnier, P.; Blanc-Feraud, L.; Aubert, G.; Barlaud,
M. Two deterministic half-quadratic regularization
algorithms for computed imaging. In: Proceedings of
the International Conference on Image Processing, 168–
172, 1994.

[35] Dosovitskiy, A.; Brox, T. Generating images with
perceptual similarity metrics based on deep networks.
In: Proceedings of the 30th Conference on Neural
Information Processing Systems, 2016.

[36] Johnson, J.; Alahi, A.; Li, F. F. Perceptual losses
for real-time style transfer and super-resolution. In:
Computer Vision – ECCV 2016. Lecture Notes in
Computer Science, Vol. 9906. Leibe, B.; Matas, J.; Sebe,
N.; Welling, M. Eds. Springer Cham, 694–711, 2016.

[37] Nah, S.; Kim, T. H.; Lee, K. M. Deep multi-scale
convolutional neural network for dynamic scene
deblurring. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 257–265, 2017.

[38] Su, S. C.; Delbracio, M.; Wang, J.; Sapiro, G.; Heidrich,
W.; Wang, O. Deep video deblurring for hand-held
cameras. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 237–246,
2017.

[39] Kingma, D. P.; Ba, J. Adam: A method for stochastic
optimization. In: Proceedings of the 3rd International
Conference on Learning Representations, 2015.

[40] Perazzi, F.; Pont-Tuset, J.; McWilliams, B.; van Gool,
L.; Gross, M.; Sorkine-Hornung, A. A benchmark
dataset and evaluation methodology for video object
segmentation. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 724–732,
2016.

[41] Wang, Z.; Bovik, A. C.; Sheikh, H. R.; Simoncelli,
E. P. Image quality assessment: From error visibility
to structural similarity. IEEE Transactions on Image
Processing Vol. 13, No. 4, 600–612, 2004.

[42] Baker, S.; Scharstein, D.; Lewis, J. P.; Roth, S.;
Black, M. J.; Szeliski, R. A database and evaluation
methodology for optical flow. International Journal
Computer Vision Vol. 92, No. 1, 1–31, 2011.

Jinbo Xing received his B.Sc. degree
in computer science from the Chinese
University of Hong Kong in 2020. He
is currently an M.Sc. student in the
Department of Computer Science and
Engineering, the Chinese University
of Hong Kong. His research interests
include computer vision and computer

graphics.



Flow-aware synthesis: A generic motion model for video frame interpolation 13

Wenbo Hu is currently a Ph.D.
student in the Department of Computer
Science and Engineering, the Chinese
University of Hong Kong. He received
his B.Sc. degree in computer science
and technology from Dalian University
of Technology, China, in 2018. His
research interests include computer

vision, computer graphics, and deep learning.

Yuechen Zhang is currently a final-
year undergraduate student majoring
in computer science at the Chinese
University of Hong Kong. His research
interests include semantic segmentation,
video frame interpolation, and neural
style transfer.

Tien-Tsin Wong received his B.Sc.,
M.Phil., and Ph.D. degrees in computer
science from the Chinese University
of Hong Kong in 1992, 1994, and
1998, respectively, where he is currently
a professor in the Department of
Computer Science and Engineering. His
main research interests include computer

graphics, computational manga, precomputed lighting, image
based rendering, GPU techniques, medical visualization,
multimedia compression, and computer vision. He received
an IEEE Transactions on Multimedia Prize Paper Award
2005 and a Young Researcher Award 2004.

Open Access This article is licensed under a Creative
Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduc-
tion in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link
to the Creative Commons licence, and indicate if changes
were made.

The images or other third party material in this article are
included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and
your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission
directly from the copyright holder.

To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/.

Other papers from this open access journal are available
free of charge from http://www.springer.com/journal/41095.
To submit a manuscript, please go to https://www.
editorialmanager.com/cvmj.


