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ReLoc: Indoor Visual Localization with Hierarchical Sitemap and
View Synthesis

Abstract Nowadays indoor visual localization, i.e. 6 DoF camera pose estimation for a query image with respect to a
known scene, is gaining much more attentions driven by rapid progress of applications such as robotics and augmented reality.
However, drastic visual discrepancies between an onsite query image and prerecorded indoor images cast a big challenge for
visual localization. In this paper, based on the key observation of the constant existence of planar surfaces such as floors or
walls in indoor scenes, we propose a novel system incorporating geometric information to address issues only using pixelated
images. In system implementation, we contribute a hierarchical structure consisting of pre-scanned images and point cloud
as well as a distilled representation of planar elements layout extracted from the original dataset. A view synthesis procedure
is designed for generating synthetic images as complementary to that of sparse sampled dataset. Moreover, a global image
descriptor based on the image statistic modality, called BMVC, is employed to speed up the candidate poses identification
incorporated with traditional CNN descriptor. Experimental results on a popular benchmark demonstrate that the proposed
method outperforms the state-of-the-art approaches in visual localization validity and accuracy.

Keywords visual localization, planar surface, statistic information, view synthesis

1 Introduction

Visual localization is the task of 6 degree-of-freedom

(DoF) pose estimation for a query image with respect

to a known scene. It is a key problem in robotics

and computer vision, highly relevant to Structure-

from-Motion (SfM) [1], Simultaneous Localization and

Mapping (SLAM) [2, 3], and applications such as au-

tonomous driving and Augmented Reality (AR).

State-of-the-art approaches of precise visual lo-

calization are generally divided into three cate-

gories, namely structure-based methods [4]-[7], im-

age retrieval-based methods [8]-[13] and learning-based

methods [14]-[16]. Traditional structure-based and im-

age retrieval-based methods can be boiled down to a

descriptor-matching problem. Recently learning-based

approaches have become popular, some of which aims

to regress the camera pose in the end-to-end fashion

without the need for a 3D model and others tend to

make one or more modules in the traditional pipeline

learnable. However, those methods without using 3D

models sometimes return poor accuracy of pose esti-

mation [17], while the image retrieval-based manner is

promising as it can be easily generalized to novel scenes.

The coarse-to-fine image retrieval-based localization

[12, 13, 18, 19] paradigm combines the strengths of

structure-based and learning-based approaches, and is

gaining popularity with recent advances of machine

learning. It first leverages a learning-based global

image descriptor to retrieve location hypotheses and

then performs local feature matching to estimate the

agent pose from those candidates. Usually, image de-

scriptors are extracted from Convolutional Neural Net-

works (CNNs), VGG [18] or ResNet [19], for approaches

using the hierarchical localization paradigm [20, 21].

NetVLAD [22], one of the state-of-the-art CNN-based

descriptors, is widely utilized in the task of visual local-

ization for both outdoor [9], [23]-[26] and indoor [12, 13]

environments. It performs well even under large vari-

ations in image appearance such as day-night and sea-

sonal change which commonly happened in urban envi-

ronment. However, it still needs more work especially

for indoor localization problem.

The task of visual localization for indoor environ-

ments has received considerably less attention com-

pared with that for outdoors. InLoc and its vari-

ants [12, 13] are state-of-the-art indoor localization ap-
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proaches using NetVLAD for retrieval as the first step

in the pipeline, however, the top-ranked candidates may

not include location hypotheses. Furthermore, we ob-

serve that these approaches sometimes fail to regress

the correct pose due to sparse discretization of the

database. Indoor localization is a harder problem than

urban localization [12] in many ways, e.g., 1) drastic

change in scene appearance over time as furniture move

and people walk, 2) large variation in viewpoints, and

3) common occurrence of symmetrical layout and repet-

itive elements, etc. Under such situations, the problem

of perceptual aliasing easily arises which significantly

decreases the accuracy of localization.

To handle these difficulties, we propose a two-

stage ReLoc system which includes off-line structured

sitemap construction and on-line visual localization.

In detail, our contributions are mainly three-fold. 1)

Propose hierarchical sitemap construction in the off-

line stage. We generate synthetic views from different

viewpoints on the extracted scene layout to enrich the

database, and establish a hierarchical sitemap for the

extended database to offer convenient query/track of

the image/geometry data. The constructed sitemap,

thereby, is not only a structured description of original

database, but also a distilled representation of extended

database. 2) Propose Blocked Mean, Variance and Col-

ors (BMVC), a novel global image descriptor based on

the statistic information of an image. We use BMVC to

re-rank the shortlist of image candidates that have been

retrieved via CNN-based global descriptor. 3) Propose

a novel similarity function to determine the final pose

from multiple candidate poses in the pose verification

stage. It focuses on both the image appearance and the

geometry layout, which is invariant to drastic variation

in scene appearance over time as furniture move and

people walk.

2 Related Work

2.1 Visual Localization

Structure-based approaches rely on 2D-3D matches

between 2D pixels and 3D scene points for pose estima-

tion. Matches are established by descriptor matching

[4, 5] or by regressing 3D coordinates from pixel patches

[27, 28]. 3D coordinate regression methods currently

achieve a higher pose accuracy at small scale, but have

not yet been shown to scale to larger scenes [27].

Recently, learning-based approaches have become

popular. Some approaches make certain modules in

the traditional localization pipeline learnable, e.g.,

learning-based detectors, learning-based descriptor [16],

learning-based matchers [17], or scene coordinate re-

gression [29], and others [14, 15] aim to learn in a single

network to regress the camera pose from a test image

without using a 3D model.

Image retrieval-based localization [8]-[13] is promis-

ing as it can be easily generalized to novel scenes. How-

ever, image retrieval-based localization baseline has

so far paid less attention to re-ranking. Re-ranking

and the pose-estimation step are tightly coupled for

some approaches [12, 13]. They re-rank the retrieved

database images by the count of match inliers, which is

computationally expensive. Hierarchical MNV [21] re-

rank the image candidates by clustering the locations

by co-visibility in terms of the feature point, but can

not deal with large parts of textureless scenes for in-

door environments. In contrast, we bring to attention

re-ranking by integrating additional statistic informa-

tion.

2.2 Map Representation and Visual Localiza-

tion Benchmarks

Scene map is mainly generated by two scanning

approaches, namely Panorama RGB-D scanning and
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RGB-D streaming, and the corresponding core tech-

nologies are SfM [1] and SLAM [2, 3], respectively. In

the industry, the way of panorama RGB-D scanning

has been extensively used as it directly provides visible

panorama images as well as 3D point cloud. For large

scenes such as airport terminals and museums, high-end

panorama camera scanning are almost the only choice.

After the success of Kinect Fusion [30], RGB-D stream-

ing has become popular in the field of Computer Vision.

With the maturity of the SLAM framework and the

rapid development of sensors, research about fusion of

hybrid primitive features such as points, lines, planes

and semantics has received much attention [31, 32].

Scene maps that have been constructed so far from

densely-captured RGB-D sequences fairly focus on rel-

atively small spaces ranging from room-scale to floor-

scale at largest. For the task of localization, scene

maps are further enhanced by, e.g., assigning feature

descriptors or semantic clues to individual points in the

point cloud [4]-[6], [35], or generating perspective RGB-

D images from panoramic scans with a certain sampling

stride [12].

Challenging visual localization benchmarks, e.g.,

RobotCar Seasons dataset [24] which contains lots of

challenging conditions including illumination changes,

day-night, season changes as well as weather variations,

Aachen Day-Night dataset [25] which includes large

viewpoint changes and query images taken at night

time; Extended CMU Seasons dataset [26] which fea-

tures the large variations in appearance of the scene,

especially those in the suburban and park regions; and

InLoc benchmark [12] which contains various difficult

situations to make it suitable for the task of indoor lo-

calization such as weakly textured scenes, repetitive ele-

ments and symmetrical layout, drastic changes in view-

point and large variations in appearance of the scene,

etc.

We focus on the visual localization for indoor envi-

ronments, thereby we test the proposed approach using

the InLoc benchmark.

2.3 Pose Verification

The classical approach for pose verification is to

select the pose with the largest number of inliers

[10, 39, 40]. However, inlier count is not suitable in

the scene with repetitive elements, which is usually ap-

peared in indoor scenes. Recently the state-of-the-art

approaches focus on the geometric [12, 13] or seman-

tic [13], [33]-[35] consistency of feature matches. In-

Loc [12] proposes to re-render the scene from the esti-

mated pose, and computes the similarity function using

densely extracted RootSIFT features between the query

and rendered image. However, they only consider the

3D geometry visible for a single scanned location when

generating the synthetic views, which consequently in-

creasing the number of invalid pixels (i.e. without depth

value) in rendered views. On the other hand, these ap-

proaches take almost all pixels into account when com-

puting the similarity function, which is not robust to

scenes with significant clutter or movable objects. Pre-

vious work use semantic consistency in pose estimation

[33]-[35] or pose verification [13], which is usually mea-

sured between a 3D point in the map (or a pixel in

the database image) and its 2D projection in the query

image. InLoc+N+S [13] follows the convention of In-

Loc [12], and furthermore integrates modalities in terms

of surface normals and semantic clues into the verifica-

tion stage. However, surface normals have to be further

predicted using additional approaches for query images

whose depth information is not available.

To sum up, there is still room for improvement us-

ing view synthesis for pose verification in indoor local-

ization problems. We select the final pose by taking

advantage of the explicitly structured sitemap, which
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Fig.1. Overview of the proposed system. It includes two stages, off-line structured sitemap construction and on-line visual
localization. In the off-line stage, we utilize view synthesis to enrich the original database and establish a structured sitemap.
In the on-line stage, we propose a global image descriptor for re-ranking and a novel method to determine the final pose.

makes our pose verification method more effective un-

der strong changes in viewpoint or image appearance.

3 Overview of ReLoc System

We propose an indoor visual localization system Re-

Loc based on hierarchical sitemap, which includes two

stages, i.e. off-line structured sitemap construction and

on-line visual localization, as shown in Figure 1.

The original database contains a set of perspective

images created from RGB-D panoramic scans, each of

which corresponds to a scan location in the scene. All

panoramic scans have been registered to the scene, and

the number of perspective images from each panorama

are determined by the sampling stride in yaw and pitch

directions.

The main task of the off-line stage is to construct

sitemap based on those original database. It begins

with appearance feature extraction. For a database im-

age, extract both CNN-based feature descriptors and

our BMVC descriptors. Besides, identify the planar

surfaces (i.e. walls, ceilings and floors, etc.) from

scanned point cloud, and then associate those planes

with their corresponding images that the plane appears

in. The synthetic views are generated from multiple

synthesized viewpoints to enrich the database.

We construct a scan graph to organize the original

database and extracted features as shown in Figure 1.

Furthermore, to describe the overlap between different

panoramic scans, we add links on two scan locations

with at least two common planar surfaces. To distill

the geometric features of the scene, the scene layout is

constructed by the set of reliable planar surfaces. Both

the scan graph and scene layout consist of our scene

sitemap.

In the on-line stage, we use our descriptor BMVC to

re-rank the shortlist of image candidates that have been
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retrieved via CNN-based global descriptor, and then

the bottom-ranked candidates are filtered out. Con-

sequently, multiple camera pose hypotheses are esti-

mated from top-ranked image candidates. Finally, in

the pose-verification stage, a novel similarity function

is employed to determine the final pose by taking ad-

vantage of the extracted scene layout conveniently.

4 Scene Sitemap Construction

Rather than directly using the database of RGB im-

ages and scanned point cloud, a hierarchical sitemap in

the context of planar surfaces, synthetic views, BMVC

features and CNN-based features is constructed addi-

tionally in the off-line stage.

4.1 Structured Sitemap

Our sitemap of a scene plays a key role in local-

ization. Usually, a scene model consists of large point

clouds and scanned images. The main goal of sitemap is

to associate all the points data, images and extracted

features to afford convenience to image-retrieval and

localization by attaching a very light structure on the

original data.

Our structured sitemap is constructed in off-line

stage (refer to Figure 1). We introduce how to con-

struct the scan graph at first. For building database,

many scan locations were set up to capture RGB-D

data. Therefore, we organize the RGB-D images of

database according to the scan locations of the floors.

Usually, for each individual scan location, there corre-

sponds to a panoramic scan and multiple perspective

database images. With the images and point clouds of

this scene, the scan graph is initialized by adding those

images to its corresponding scan location. For each im-

age, its point cloud is linked to it naturally, and CNN

features (we use NetVLAD here) and our BMVC fea-

tures (explained in section 4.2) are extracted and also

linked to this image.

The construction of scan graph is further strength-

ened with geometric description. We detect planar sur-

faces (explained in section 4.3) from point clouds, and

then planar surfaces are registered on corresponding im-

ages on our scan graph as a geometric feature. Syn-

thetic views (explained in section 4.4) are employed to

compensate the shortage due to sparse of scan locations.

Once a synthetic location is set up, the rendered views

with images and point clouds are added with multiple

extracted features into scan graph like a original data

capture form a scan location. Obviously, it is conve-

nient to locally add or delete synthesized viewpoints or

scan locations, without changing the structure of the

rest part of the sitemap.

We also construct scene layout to represent the ge-

ometry frame of a scene based on planar surfaces reg-

istered on images. Given two perspective images origi-

nated from different scan locations, if they see at least

one same planar surfaces according to the plane asso-

ciation, an edge is connected between the two scan lo-

cations. This connection describes the overlap between

different panoramic scans, which are thus useful for ren-

dering the synthetic views.

Our scene sitemap is constructed by the scan graph

and scene layout, which can benefit the pose verifica-

tion discussed later. Since the data is very complex,

the sitemap is actually hierarchical to present the as-

sociation between different elements in the extended

database. It should be mentioned that our sitemap

mainly consists of links, and BMVC is also compact

with low-dimension feature vector, thus the increasing

of data of our sitemap is very limited.

4.2 Image Feature Extraction

For indoor environment, movable objects therein

such as sofas, chairs and people act as noise in the task
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of visual localization. Inspired by previous work out-

lined above in the field of retrieval, we leverage the

statistic information of pixel pairs which might be in-

variant to noise like movable objects. Therefore, we

propose BMVC, a global image descriptor, by integrat-

ing the probability distribution of sampled pixel pairs

of an image as well as color histogram.

Below is how to extract BMVC descriptor from an

image, which is illustrated in Figure 2.

Fig.2. Flowchart of BMVC feature extraction.

1) Randomly sample a large number of point pairs

from a candidate image. Record the Euclidean dis-

tance between each individual pair and the correspond-

ing grayscale values and store them using a triplet, all

of which are quantified to an integer ranging from 1 to

128.

2) Generate the 3D statistical matrix that is denoted

by V (grayLevel1, grayLevel2, distanceLevel). Each

element in the matrix corresponds to the number of

point pairs with corresponding grayscale and distance

values.

3) Subdivide the matrix from 128 × 128 × 128 to

4× 4× 4, and calculate the mean and variance for each

block. Concatenate the mean and variance values of

these blocks to form a 128-dimension statistic vector

which is denoted by

MV = [m1,m2, ...,m64, v1, v2, ..., v64].

4) Extract the color histogram for the sampled

points in the HSV space. The 128-dimension color vec-

tor is denoted by

H = [h1, h2, ..., h128].

5) Concatenate the statistic and color vector to form

a 256-dimension feature vector, termed BMVC feature.

It leverages the statistical information to describe the

content of an image and is defined by

F = [m1,m2, ...,m64, v1, v2, ..., v64, h1, h2, ..., h128].

Other than BMVC, we also extract CNN-based fea-

ture for each of database images. We use NetVLAD

representation, which is extracted by a pre-trained

Pitts30K [22] VGG-16 [18] model (other model could

also be used), as a set of multi-scale features which en-

ables for on-line image retrieval and pose estimation

stages.

4.3 Plane Feature Extraction

Indoor environment is, normally, composed of pla-

nar surfaces (walls, ceilings and floors, etc.) which are

aligned to one of three orthogonal directions. And these

three orthogonal directions are referred to as the Man-

hattan Frame (MF) [41] of the scene. Based on the

observation, we extract the planar surfaces in the scene

to enrich our sitemap. Those planes improve the geo-

metric representation efficiency of the scene by taking

advantage of the plane constraints in an environment.

The scene structure can be easily explored by cre-

ating a common coordinate system for all spaces (e.g.

rooms, hallways, etc.). Specifically, we define a Carte-

sian reference coordinate system on spaces. We choose
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the z axis as the gravitational axis, with the normal

direction of the floor taken as the positive direction.

x axis and y axis are perpendicular to each other and

could be defined by the floor-plan of the scene. A plane

associated with multiple (at least two) images is re-

garded to be a planar feature.

For each RGB-D database image, we use Agglomer-

ative Hierarchical Clustering (AHC) [42] to detect pla-

nar patch. A planar surface is extracted and parame-

terized in the Hessian form if its fitted normal is aligned

to one of the global MF coordinate axes and its area is

larger than a certain threshold. We search plane corre-

spondences between adjacent images according to the

following criteria: having overlap, the difference of nor-

mal angle is below a threshold as well as the difference

of distance to origin is small (10◦ and 10 centimeters

in our experiment). Thereby, an extracted plane have

three possibilities, to be a new planar feature, to be

associated with an existed planar feature, or to be re-

moved if it is not seen by other images. In this manner,

we generate the association between planar features,

which are then registered on corresponding images on

our sitemap.

4.4 View Synthesizing

The constructed sitemap enables us to enrich the

original database by generating synthetic views, espe-

cially for places with too sparse scan locations. Below

we explain the procedure from two aspects, sitemap-

based synthetic viewpoint and synthetic view render-

ing.

First, synthetic viewpoint should be selected far

enough from the scan locations to avoid unnecessary

overlap of data. We identify the floors from the con-

structed scene layout according to the following criteria:

the normal direction of a plane is positively aligned to

the y axis of MF and the coordinate value in the z axis

is within a certain range. The synthetic viewpoints are

then sampled on the floor plane with a regular grid. If

a grid point is too close to existed scan locations, we re-

move this point to avoid repetition. For each synthetic

viewpoint, we sample 12 possible horizontal rotations

and at 3 different pitches with 30 degrees at a time to

complete a 360-degree sweep to decide a set of camera

poses.

Then, we render synthetic images by leveraging mul-

tiple corresponding scans rather than individual scans

to handle occlusions with the help of constructed scan-

graph. Given a synthesized viewpoint and a camera

pose, we find the nearest scan location in the same

floor and all associated panoramic scans according to

the sitemap. Then project the 3D points visible in these

panoramic scans in the given pose. Further taking nor-

mal directions into account could handle occlusions to

certain extent on these views. The rendered views also

output RGB-D data.

This procedure results in thousands of images which

depends on both the number of synthesized viewpoints

and sampling stride of the camera rotation. After gen-

erating these views, we discard these less-informative

images by visual inspection, and then add those images

with rendered point clouds to our sitemap.

Indoor areas mainly include rooms, lobbies, stair-

ways and hallways. We observed that the localization

failures are more likely to happen in hallways. This is

attributed to the “bottleneck” areas in some hallways

with narrow width and sparse scan locations on them.

5 Sitemap-Boosted Localization

In the on-line localization stage, for a given query

image we estimate the camera pose by taking advantage

of the constructed sitemap.
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5.1 Image Retrieval and Pose Estimation

First, retrieve a shortlist of candidate images visu-

ally similar to the query. Given a query image, ex-

tract NetVLAD (other CNN-based features could also

be used) and BMVC descriptor from it. N nearest im-

ages among the database are retrieved via NetVLAD

using normalized L2 distance (100 in our experiment).

Corresponding elements for each retrieved image are

also returned through the sitemap, i.e., the point cloud,

image features and planar features.

Then, use BMVC descriptor to re-rank the shortlist

of retrieved image candidates. Normalized Cosine dis-

tance are used to measure the dissimilarity of BMVC

descriptors of the query and retrieved database image.

Adding up the two distance values mentioned above

and re-rank the image candidates according to the dis-

tance. Filter out K candidates which have low similar-

ity in terms of both the image appearance and statistic

information (20 in our experiment).

Finally, estimate camera pose. Similar to InLoc, in-

termediate convolutional layers (the conv3 and conv5

layer) are utilized for feature matching, followed by ho-

mography fitting which can result in inliers. According

to the inlier count we obtain top k image candidates

(10 in our experiment), which can form k image pairs

together with the query photo. For each pair, standard

P3P-RANSAC [39] is utilized to compute the camera

pose with a given focal length of the query photo. These

k candidate poses are then fed to the next pose verifi-

cation stage.

5.2 Scene Layout-Enhanced Pose Verification

The pose verification module aims to select the final

pose from k candidate poses. Our method builds on the

Dense Pose Verification (DensePV) approach of InLoc.

We first review their DensePV algorithm. InLoc

compares the query and each of its synthesized views

using RootSIFT descriptor in a pixel-wise manner, and

then scores the similarity to select the final pose among

candidates. Different from DensePV using all pixels

which have valid depth, we leverage additional geome-

try clues of scene layout to pick certain pixels. Figure

3 shows the procedure. For a given query image, as we

explained before, we obtain k estimated poses, each of

which corresponds to a retrieved database image. For

each retrieved image, it is convenient to acquire the

associated point cloud and planar features through the

constructed sitemap. We project the corresponding col-

ored point cloud in the pose i (i = 1, 2, ...k) to generate

a synthetic view of the query image and we further use

the extracted layout to enable for picking some certain

pixels. Technically, we project the corresponding planar

features in the pose i to form a rendered view of scene

layout, through which we assign attention to those pix-

els on layout regions. For an image pair i demonstrated

in Figure 3, the top image is rendered from candidate

pose i, the bottom image is query photo, and the color-

code indicates scene layout. Red, green, and blue color

are assigned to x, y and z axis of MF.

We compare the query and synthesized image by

taking care of both the geometry and appearance simi-

larity. Firstly we compute the geometry similarity. Ex-

tract RootSIFT descriptors from both images for the

pixels selected by layout planes. Local geometry sim-

ilarity score is computed as the median of the inverse

Euclidean distance between RootSIFT descriptors cor-

responding to the same pixel position. Additionally, we

take a global similarity metric to investigate the simi-

larity of the image appearance between the query and

retrieved database image. The appearance similarity

score is defined as the inverse Euclidean distance be-

tween NetVLAD descriptors of the two images. We get

a final similarity score by adding up the two kinds of

score for each pose candidate. Finally, the final camera
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Fig.3. Flowchart of the proposed LayoutPV method. The final pose is selected from k given candidate poses
through comparing both the geometric similarity and image appearance. In figure, C means computing the inverse
distance between descriptors, + means addition operation.

pose with the highest similarity score is verified among

k candidate poses.

6 Experiment Results

In this section, we use the InLoc benchmark to eval-

uate the proposed approach ReLoc in three aspects: 1)

the effectiveness of proposed BMVC descriptor in im-

age retrieval; 2) the enhancements of view synthesis

and geometric similarities for pose verification; 3) the

final localization comparisons with the state-of-the-art

methods.

The reason why we use Inloc benchmark in our ex-

periments is that the benchmark is one of the large-scale

indoor localization dataset and widely used in various

methods, which is composed of 10k RGB-D images that

are generated from panoramic scans of university build-

ings, and a query set of RGB images taken by mobile

phones about a year after the database images acquired,

thus the appearance variation between the dataset and

query image makes the task of visual localization sig-

nificantly challenging.

We implement our method on a PC with Intel Core

i9-9820 and 64 GB RAM. In the sitemap construction

module, we use 256-dimension BMVC descriptor and

4096-dimension NetVLAD representation pre-trained

by Pitts30K.

6.1 Recall Evaluation on Image Retrieval

We study the performance in the context of image

retrieval on large-scale InLoc dataset. We use eval-

uation metric Recall@N, which is the probability of

queries that are correctly localized in the given N near-

est neighbor database images returned by the module

of image retrieval, to evaluate the performance of our

image retrieval method.

Table 1. Comparison of the state-of-the-art approach w/o and

w/ BMVC re-ranking for place recognition

Method N

40 60 80

NetVLAD 83.2 88.0 91.7

NetVLAD+BMVC 84.6 90.3 92.2

Note: N used in the table represents “Number of top database
candidate images”.

The query is considered to be correctly localized if at

least one relevant database image is reported in the top
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Fig.4. Spatial Distribution of returned database images using different methods. The top row shows top 40 candidate images
retrieved using NetVLAD. The bottom row illustrates top 40 candidate images returned from NetVLAD followed by BMVC re-
ranking. The colorbar corresponds to ranking. The darker the red color the higher the ranking, and the darker the blue color the
lower the ranking. Green balloon location is the reference position where the query photo was taken. It can be seen that re-ranking
via BMVC improves the ranking of nearest neighbours of the query photo.

N ranked database images. The relevance is determined

by whether the query and database image see the same

planar feature.

For each query image in the InLoc dataset, a

ranked list of top 100 candidate images are returned

via NetVLAD descriptor, and then all candidate images

are re-ranked using our BMVC descriptor. We consider

NetVLAD as a baseline, and compare it with NetVLAD

followed by BMVC (NetVLAD+BMVC). Totally we

evaluate 329 InLoc query images and report the Re-

call@N for the two methods in Table 1.

It is noteworthy that NetVLAD+BMVC outper-

forms NetVLAD at Recall@N with various thresholds.

Furthermore, we present the spatial distribution of

top 40 returned database images via NetVLAD versus

NetVLAD followed by BMVC re-ranking using a chal-

lenging query image from the InLoc dataset as shown

in Figure 4. We use vertical planes within the scene

layout to depict the structure of the five floors. The

top row shows top 40 candidate images retrieved using

NetVLAD. The bottom row illustrates top 40 candidate

images returned from NetVLAD followed by BMVC re-

ranking. The colorbar corresponds to the order of rank-

ing. The darker the red color the higher the ranking,

and the darker the blue color the lower the ranking.

Green balloon indicates the reference position where

the query photo was taken. It is obvious that BMVC

re-ranking improves the ranking of truly nearest neigh-

bours of the query image.

The evaluation results on Recall@N demonstrate

that statistic information based BMVC is capable to

describe images, and has potential to make images more

discriminative.

6.2 Comparisons of Pose Verification

In this part, we present a group of statistical results

to show the advantages of proposed pose verification

LayoutPV against the baseline method DensePV on the

InLoc and extended dataset, to show the effectiveness

of our view synthesis strategy and the using of planar

geometries similarity when doing pose verification as

shown in Figure 3.

Table 2 shows the results of first experiment. We

compare the statistical correction rates of two methods

under the same localization accuracy. In this exper-
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iment we produce an extended dataset by adding 10

synthetic viewpoints, leading to add 2450 synthesized

images in total finally after removing less-informative

images by visual inspection. The extended dataset con-

tains 12422 images in which 9972 images are originated

from the InLoc dataset and others are rendered from

synthesized viewpoints. To make a fair comparison, we

use exactly the same set of candidate poses acquired by

NetVLAD to test the two pose verification methods.

Table 2. Comparison with DensePV on the InLoC and

extended dataset

DensePV LayoutPV

original database 69.9 72.5

extended database 74.6 77.3

Note: the rate (%) of correctly localized queries is within 1 meter
distance threshold and 10◦ error threshold.

As shown in Table 2, compared with the original

database, the localization performance of DensePV and

LayoutPV on the extended dataset has increased in

4.7% and 4.8%, respectively. This can be attributed

to using of view synthesis that enables to generate syn-

thetic views more similar in appearance with the query

image. Furthermore, LayoutPV has shown 2.6% and

2.7% performance gain compared to DensePV on the

original dataset and the extended dataset respectively.

This makes us believe that the improvement mainly

comes from the leverage of scene layout, which mea-

suring the geometric similarity between the query and

rendered image other than only evaluating pixel level

similarity. Technically, in our method LayoutPV, scene

geometry acts as an attention mechanism which fo-

cuses on pixels where stable (e.g. tables, couches, and

wardrobes) or fixed (e.g., walls, floors, and ceilings) ob-

jects are therein, while the DensePV takes all pixels

with valid depth values into consideration, which is thus

less robust compared with our method.

6.3 Comparisons on Localization Accuracy

In this part we evaluate our final indoor localization

performance by measuring the differences in position

and orientation between our result and ground truth.

We report the percentage of query images whose poses

differ by no more than X meters and Y degrees from the

reference pose for different pairs of thresholds (X,Y ).

Here InLoc [12] and InLoc+N+S [13] serve as our main

baseline. InLoc+N+S is a variant of InLoc which in-

tegrate normals and semantics to regress the camera

pose. Other than InLoc and its variants, we also com-

pare with other state-of-the-art localization approaches,

i.e., Direct 2D-3D matching [6] and DisLoc [11]. Direct

2D-3D is a 3D structure-based image localization ap-

proach, using RootSIFT features associated with the

scene point cloud. Disloc is a classical image retrieval-

based localization method which represents images us-

ing bag-of-words.

Table 3 reports comparison results on the rate

of correctly localized queries within different distance

threshold and a 10◦ orientation error threshold. It is

obvious that the proposed method ReLoc (with syn-

thesized viewpoint and LayoutPV) constantly improves

the localization accuracy by about 5.0% and 3.5%

when compared to the state-of-the-art InLoc and In-

Loc+N+S, respectively. We furthermore show multi-

ple qualitative examples of localization on the InLoc

dataset in Figure 5. Column 1 in the figure shows the

query photos, and columns 2 to 5 are the synthesized

views rendered from corresponding camera poses ac-

quired by different methods. The numbers under the

rendered images indicate the position and orientation

error with respect to the ground truth poses. ReLoc

(column 5) achieves a higher accuracy of camera pose

estimation when compared to ReLoc without generat-

ing synthesized viewpoints (column 4).
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Table 3. Comparison with the state-of-the-art localization approaches on the InLoc dataset

Threshold Method

Direct2D-3D [6] DisLoc [11] InLoc [12] InLoc+N+S [13] ReLoc

0.25m 11.9 13.0 39.8 41.0 45.9

0.50m 15.8 17.7 59.0 60.5 64.0

1.00m 22.5 22.3 69.0 72.3 77.3

Note: the rate (%) of correctly localized queries is within a 10◦ orientation error threshold.

7 Conclusion

We have proposed an indoor visual localization sys-

tem ReLoc supported by a hierarchical sitemap, which

is constructed in off-line stage and consists of a scan

graph and scene layout. The scan graph organizes a

hierarchical structure of image features and geometry

features of pre-scanned and synthetic views, and also

builds up the connections between scan locations with

overlap of views. Furthermore, a scene layout is con-

structed based on the planar elements to represent the

geometric frame of a scene. Therefore, the sitemap is

efficient to associate all features of the scene.

In on-line stage, BMVC descriptor improved the

proximity to the true location by re-ranking the short-

list of candidates that returned from image retrieval.

The proposed pose verification method is also effective

to measure the similarity only in the planar surface re-

gions of the query photo and synthetic views from the

estimated pose to verify the candidates and select the

final pose, which alleviates the problems due to drastic

variation in scene appearance over time. With hierar-

chical sitemap and improved pose verification approach,

our ReLoc system enhanced the efficiency and accuracy

of indoor visual localization.
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