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Abstract

Unmanned airborne vehicles (UAVs) are useful in
both military and civilian operations. In this paper,
we consider a recreational scenario, i.e., multi-UAV for-
mation transformation show. A visually smooth trans-
formation needs to enforce the following three require-
ments at the same time: (1) visually pleasing contour
morphing - for any intermediate frame, the agents form
a meaningful shape and align with the contour, (2) uni-
form placement - for any intermediate frame, the agents
are (isotropically) evenly spaced, and (3) smooth trajec-
tories - the trajectory of each agent is as rigid/smooth as
possible and completely collision free. First, we use the
technique of 2-Wasserstein distance based interpolation
to generate a sequence of intermediate shape contours.
Second, we consider the spatio-temporal motion of all
the agents altogether, and integrate the uniformity re-
quirement and the spatial coherence into one objective
function. Finally, the optimal formation transformation
plan can be inferred by collaborative optimization.

Extensive experimental results show that our algo-
rithm outperforms the existing algorithms in terms of
visual smoothness of transformation, boundary align-
ment, uniformity of agents, and rigidity of trajectories.
Furthermore, our algorithm is able to cope with some
challenging scenarios including (1) source/target shapes
with multiple connected components, (2) source/target
shapes with different typology structures, and (3) ex-
istence of obstacles. Therefore, it has a great po-
tential in the real multi-UAV light show. We cre-
ated an animation to demonstrate how our algorithm
works; See the demo at https://1drv.ms/v/s!
AheMg5fKdtdugVL0aNFfEt_deTbT?e=le5poN.
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1. Introduction

“Several years ago, we had an idea of flying
drones forming the Intel logo over our corporate
headquarters, and here we are doing just that. It
really speaks to the innovative spirit that Intel was
founded on 50 years ago.”

–Anil Nanduri, vice president and general
manager, Intel Drone Group

To celebrate Intel’s 50th
anniversary, the company
honored employees and their
families by flying 500 Intel®
Shooting Star drones over
its corporate headquarters in
July 2018. Each drone was
equipped with LED lights
that can create countless color combinations and can easily
be programmed for any animation, and the entire fleet of
drones was controlled by one pilot.

In fact, multi-UAV formation transformation belongs to
flock control that is a hot research topic in diverse fields.
Some research works focus on realistic-looking simula-
tion of collective behavior, such as simulation of artificial
life [37, 3, 42, 53, 22], simulation of transportation plan-
ning [38] and simulation of emergency evacuation [48, 14],
while some focus on seeking for a minimum-cost task al-
location plan [8, 34] that considers both low-level position
control and high-level motion planning [28, 24, 46] from the
perspective of either distributed computing or centralized
computing. The research theme of this paper, i.e., multi-
UAV formation transformation, is to find an optimal mo-
tion arrangement such that a flock of UAVs can be smoothly
transformed from a source shape to a target shape.

Commonly used criteria include (a) the UAV agents must
follow a uniform placement at any intermediate time point,
and (b) each UAV agent moves along an as-rigid/smooth-
as-possible and collision-free trajectory during the process
of formation transformation. In fact, it is observed that
whether the intermediate shape is able to define a visually
meaningful shape is equally important. Therefore, in this
paper, we sum up them into three requirements: (1) visu-
ally pleasing contour morphing, (2) uniform displacement
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of agents, and (3) smooth trajectories.
It is challenging yet fascinating to find an automatic for-

mation transformation plan to satisfy the three requirements
at the same time. In this paper, we extend the technique of
2-Wasserstein distance based interpolation [40] to generate
the contour of an intermediate shape. We assume that the
i-th UAV is positioned at xki at time tk and come to in-
fer {xki }

n,K
i=1,k=1, where n is the number of UAVs and K is

the number of key frames. On the one hand, we define a
CVT-like energy to measure the uniformity between UAVs
at time tk. On the other hand, we use

∑
k ‖xki − xk+1

i ‖2 to
measure the rigidity and smoothness of the motion path of
the i-th UAV. Finally, we integrate the uniformity require-
ment and the spatial-coherence requirement into one objec-
tive function and then infer the optimal formation transfor-
mation by collaborative optimization.

Our contributions are three-fold:

1. We propose a collaborative optimization based frame-
work to formulate the multi-UAV formulation transfor-
mation problem, which simultaneously takes into the
above-mentioned multiple requirements.

2. Based on the observation that the 2-Wasserstein dis-
tance interpolation [40] depends on the domain bound-
ary, we propose to restrict the domain into a more com-
pact region, which can yield a more visually pleasing
contour morphing sequence.

3. We give an adaptive parameter tuning mechanism
for balancing the uniformity energy and the spatial-
coherence energy. We also give a fast swap strategy
to strictly guarantee that any two trajectories are colli-
sion free.

2. Related Work

2.1. Flock/crowd simulation

Flock is a system consisting of many autonomous units.
The connections between the units may be local or global
depending on specific occasions, and the interaction be-
tween them can be as simple as attraction/repulsion or
more complex. The topic of flock/crowd simulation draws
wide attention due to both theoretical and application val-
ues [37, 3, 42, 53, 22]. The problem has been studied in
both normal and emergency situations. Existing approaches
on flock/crowd simulation can be roughly categorized into
two classes: hypothesis based and data driven.

Most of the hypothesis based approaches are based
on biomechanical knowledge such as biological rhythms
and psycho-social diagnosis [23, 7]. The existing ap-
proaches can be further divided into microscopic, macro-
scopic and mesoscopic, where macroscopic models mostly
simulate overall crowd behavior in a large-scale crowd, mi-
croscopic models focus on detailed behavior and unique

features of individuals, while mesoscopic models fall in
between. Macroscopic models, without respecting realis-
tic biomechanical limitations, are particularly suitable for
dense, homogeneous crowds and complex environments
but always lead to unrealistic agent behaviors. The un-
derlying fluid dynamics potential fields include continuum
fields [18, 44, 10], dynamic aggregation functions [29],
navigation fields [31, 5] and so on. Microscopic mod-
els, different from macroscopic models, are used to in-
fer complex pedestrian movements while preserving physi-
cal, social and psychological features of individuals. They
are generally less efficient in the simulation of large-scale
crowd. Typical approaches on this side include force-based
models [36, 15], velocity-based models [9, 30, 32, 39] and
agent-based models [20, 50]. Mesoscopic models aim at
combining macroscopic models and microscopic models to-
gether and take more aspects into account. It can be di-
vided into at least the following three kinds: zone-based
models [51, 2], layer-based models [4, 43] and sequential
models [52].

In recent years, the data-driven strategy [26, 19,
35] becomes increasingly important within the realm of
flock/crowd simulation. Since the real crowd behavior may
be influenced by a variety of factors such as distance to
neighbors, spatial formation, personal habit and emotion,
learning based approaches are proposed to use real captured
emergency and evacuation scenarios to obtain prior knowl-
edge. The kind of approaches diminishes the use of hypo-
thetical rules and is able to enhance visual realism. The
realistic simulated results can be further used to perform
crowd analysis [13, 6], or facilitate direct manipulation on
crowd scenes [25, 21].

2.2. Group formation control

Generally speaking, the task of group formation con-
trol is to explicitly control spatial adjacency between in-
dividuals or their subgroups in order to generate meaning-
ful spatio-temporal transitions. The requirements include at
least boundary alignment, stable adjacency structure, uni-
form in-between gap and reasonable intermediate forma-
tion. It’s a challenging task to achieve these goals at the
same time. Kwon et al. [25] suggested applying the tech-
nique of Laplacian mesh editing to deform and concate-
nate existing crowd formations to synthesize large scale an-
imations. The key idea is to minimize the distortion of
relative arrangements among adjacent agents. Takahashi
et al. [41] proposed to interpolate two given formations
based on spectral analysis. In spite of the ability to gen-
erate artistic intermediate formations, the approach doesn’t
take the uniform placement or boundary alignment into ac-
count. Besides, there are many research works on control-
ling high-level movements by interactive sketch [11, 12],
multitouch [16, 17] and so on.



(a) (b) (c) (d) (e)
Figure 1. Algorithm pipeline. (a) The source/target formation shapes. (b) K representative formation shapes. (c) Extract the shape
contour. (d) Initialize the positions/trajectories of agents for every frame. (e) Collaboratively optimize the agent positions and trajectories.

2.3. Cost driven formation transform

Alonso-Mora et al. [1] found that centroidal Voronoi tes-
sellation (CVT) is helpful in generating a uniform distribu-
tion of agents. They further proposed to guarantee avoid-
ance trajectories by Hungarian algorithm. Zheng et al. [55]
observed that the Lloyd descent method of CVT is able to
yield a set of collision free trajectories. Xu et al. [54] used
the subgroup-based social force model (SFM) for purpose
of cohesion such that the intermediate frames look visually
pleasing. The reciprocal collision avoidance is guaranteed
by minimizing the overall travelling distance. However,
these approaches face with a common issue, i.e., how to
deal with the multiple challenges simultaneously.

In this paper, we develop a set of systematic strategies
to deal with the above-mentioned challenges. First, we ex-
tend 2-Wasserstein distance based displacement interpola-
tion [40] to generate intermediate frames; We further re-
strict the transformation into a more compact domain such
that the interpolated shapes are more consistent with hu-
man’s perception. Second, we enforce the uniformity of
agents by utilizing the technique of centroidal Voronoi tes-
sellation (CVT). Third, we give a fast swap based strat-
egy to guarantee that any two trajectories are collision free.
Finally, we integrate the uniformity requirement and the
trajectory smoothness requirement into a unified algorithm
framework, and report the formation transformation plan by
collaborative optimization.

3. Algorithm

In this section, we first give the algorithm overview, fol-
lowed by elaborating the key constituent steps in the follow-
ing subsections.

3.1. Overview

Given the source/target formation shapes (see Fig-
ure 1(a)), our algorithm consists of the following five steps;
See Figure 1.

1. InferK−2 intermediate formation shapes that are rep-
resented by a density field; See Figure 1(b).

2. Extract the shape contour frame by frame; See Fig-
ure 1(c);

3. Initialize the positions of agents at every time point
with CVT; See Figure 1(d).

4. Collaboratively optimize the agent positions and tra-
jectories such that the uniformity requirement and the
path-smoothness requirement are satisfied at the same
time; See Figure 1(e).

5. Identify those agent pairs with possible trajectory in-
tersection and enforce a swap operation until all the
trajectories are completely free of collision.

3.2. Wasserstein distance based shape interpolation

2-Wasserstein distance, thanks to its ability of charac-
terizing the distance between two probability distributions
µ ∈ Ω1 and ν ∈ Ω2, has the potential to interpolate two
images or shapes [33, 47]. Its definition is as follows:

W2(µ, ν)
def
=

√
inf

ξ∈Ξ(µ,ν)

∫∫
Ω1×Ω2

d2(x,y)dξ(x,y),

where Ξ denotes a transportation plan and dξ(x,y) means
the amount of mass moving from x ∈ Ω1 towards y ∈ Ω2.

Imagine that we have two 2D contours as the input and
each of them is represented by a binary image. After nor-
malized to a unit total mass, one can infer a transition shape
(represented by a density field) like barycentric interpola-
tion:

ρ(t) = arg minρ(1− t)W 2
2 (ρ0, ρ) + tW 2

2 (ρ1, ρ), t ∈ [0, 1].

Solomon et al. [40] proposed an efficient numerical method
to solve this problem on a geometric domain. Take Figure 2
for an example. If we view the square as the domain, the
interpolated result may be of a scattered shape; See Fig-
ure 2(a-b); But if we restrict the domain into a more com-
pact region, it will own higher cohesion; See Figure 2(c-d);
The rational behind lies in different distance metrics. Rather
than induce the Wasserstein distance by straight-line dis-
tance, we use the interior distance instead for the restricted
domain, which is able to take the cohesion requirement into
account and better manifest how the agents move from one
position to the other. We detail the domain restriction tech-
nique as follows.
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Figure 2. The choice of base domain determines the way of how to 
measure the distance between two points, and thus leads to differ-
ent interpolation behaviors. (a-c) Squared domain and the interpo-
lated shapes at t = 0, t = 1, t = 0.5. (d-f) Restricted domain and 
the corresponding interpolated shapes at t = 0, t = 1, t = 0.5. 
Obviously, the restricted domain tends to interpolate a more visu-
ally pleasing result.

Domain restriction. Suppose that there are two shapes A
and B, as shown in Figure 3(a), and we come to define a
compact and connected region to enclose A and B, which
will be used as the geometric domain to define an interpo-
lated shape. Let ConvexHull(A,B) be the convex hull of A
and B. The boundary of ConvexHull(A,B) can be further
split into two kinds of curved segments: (a) contacting seg-
ments (e.g., l1) and (b) supporting segments (e.g., l2, l3, l4).
The region ConvexHull(A,B)\(A∪B) consists of separate
sub-regions. One type of sub-regions has only one support-
ing segment, and the other type has at least two support-
ing segments. They are respectively named inward corners
(pink) and penetrating parts (grey). Finally, we traverse the
boundary of ConvexHull(A,B) in a counter-clockwise di-
rection and replace the supporting segment of each inward-
corner subregion with the counter-part boundary segment
of A ∪ B. For consideration of numerical robustness, we
enlarge the resulting area by a small gap, generally 5% of
the bounding box size, and obtain a restricted domain that
allows an agent move inside; See Figure 3(b).

Shape extraction. We distinguish the foreground from the 
background with the average grayscale value c. Imag-ine 
that we get the histogram of the grayscale value dis-
tribution; See Figure 4(a). To guarantee the numerical ro-
bustness, we compute the average grayscale value by using 
only those pixels whose grayscale value is between cmin +1 
and cmax −1, where cmin and cmax are respectively the min-
imum grayscale value and the maximum grayscale value. 
The contour can be thus extracted at the level of the aver-
age grayscale value; See Figure 4(b). Finally, we perform a 
simple smoothing operation; See Figure 4(c).

(a) (b)

Figure 3. (a) By replacing the supporting segment of each inward-
corner subregion (colored in pink) with the counter-part boundary
segment ofA∪B, we get a compact region that enclosesA andB.
(b) The final restricted domain can be obtained by enforcing an
additional small outward offset. The restricted domain defines the
accessible area where an agent is allowed to move.

(a) (b) (c)
Figure 4. (a) Grayscale image. (b) Distinguish the foreground from 
the background with the average grayscale value. (c) Before/after 
boundary smoothing (the smoothed boundary is colored in red).

3.3. Collaborative optimization

As mentioned above, we have two kinds of requirements
on the position configuration of the agents. On the one
hand, we hope that the agents are uniformly placed in each
intermediate shape. On the other hand, we hope that each
agent trajectory is as rigid/smooth as possible. In the fol-
lowing, we shall integrate the couple of requirements into
one objective function:

CVT-like energy. Centroidal Voronoi tessellations
(CVTs), as a special type of region decomposition,
are proven to be useful in providing
an exceedingly uniform point place-
ment. In its essence, CVT is to find
the best discrete point set that can
well approximate the original con-
tinuous density function ρ. After the
given domain Ω is parititioned into a
set of sub-regions by a Voronoi dia-
gram, CVT measures the uniformity
by summing the second-order moment of each sub-region
together. We discretize the whole transform process into
K representative frames, where t1, tK are respectively the
time points of the first frame and the last frame. In our prob-
lem, we assume that the i-th agent is positioned at xki ∈ Ωk



at tk, k = 1, 2, · · · ,K. We define the overall uniformity as
follows:

FCVT =

K∑
k=1

n∑
i=1

∫
Ωk

i

ρk‖x− xki ‖2dx,

where ρk = 1/|Ωk| is a constant density function defined
in the k-th intermediate shape, which is used to equally em-
phasize the importance of different frames.

Spatial coherence. We can enforce the requirement that
the trajectories are as rigid/smooth as possible by reducing
the total travelling distance or an equivalent cost. Recall
that we discretize the time span into t1, t2, · · · , tK . It’s rea-
sonable to assume that each agent moves along a straight-
line segment between tk and tk+1. When the total mov-
ing cost is minimized, collision between agents can be ef-
fectively avoided (we shall discuss the avoidance problem
later). Here we use the sum of squared distances to measure
the overall travelling cost:

FSmoothness =

n∑
i=1

K−1∑
k=1

‖xki xk+1
i ‖2.

In fact, according to the Cauchy–Schwarz inequality

K−1∑
k=1

‖xki xk+1
i ‖2 ≥ 1

K − 1
(

K−1∑
k=1

‖xki xk+1
i ‖)2,

we have two observations:

• When
∑K−1
k=1 ‖xki x

k+1
i ‖2 is completely minimized, all

the intermediate positions are collinear and lying on
the segment x1

ix
K
i , which explains why the avoidance

term FSmoothness can make the path as rigid/smooth as
possible. (It’s worth mentioning that generally the re-
sulting path is not necessarily a straight-line segment
since we shall balance the term FSmoothness and the term
FCVT.)

• When
∑K−1
k=1 ‖xki x

k+1
i ‖2 is completely minimized, all

the intermediate positions are equally spaced, which
implies that the i-th agent roughly moves in a constant
speed throughout the formation transformation.

Initialization. We need to initialize {xki }
n,K
i=1,k=1, totally

n × K positions, at the very beginning of the optimiza-
tion. First, with the support of CVT, we generate a set of
uniformly distributed positions {x1

i ∈ Ω1}ni=1 at the time
point t1. We take the resulting positions {x1

i ∈ Ω1}ni=1 as
the initial placement of agents in the second frame, and gen-
erate n corresponding positions {x2

i ∈ Ω2}ni=1 with CVT.
In this way, {xki }

n,K
i=1,k=1 can be incrementally initialized

frame by frame. Such a progressive initialization style en-
ables a rough spatial coherence between successive frames.

Super-linear optimization. By combining the above
mentioned two kinds of requirements, we get a new objec-
tive function:

F = FCVT + λFSmoothness, (1)

whose gradients w.r.t. xki is

∇xk
i
F = 2mk

i (xki − cki ) + 2λ(2xki − xk−1
i − xk+1

i ),

where λ is a balance parameter (the choice of λ will be dis-
cussed later), mk

i is the mass of Ωki , and cki is the mass cen-
ter of Ωki . Like [27], we use the L-BFGS solver to quickly
find the solution with super-linear convergence rate. The
optimization terminates when ‖∇F‖ ≤ 1e− 6. At the con-
clusion of the optimization, two kinds of information are
reported, including (1) the position of the i-th agent at tk,
i.e, xki , and (2) the motion path of the i-th agent:

Γi : x1
i → x2

i → · · · → xKi .

See Figure 1(e) for an example.

3.4. Adaptive tuning of λ

In our objective function, there are two energy terms
that need to balanced. Experimental results show that the
choice of λ depends on many factors including the number
of agents, the number of intermediate frames, the scale of
the input shapes, and the source/target positions. It is not
easy to find a fixed λ that owns high suitability. In the fol-
lowing we give an adaptive strategy to automatically tune
the value of λ.

Normalization. We assume that a normalized scenario is
roughly like this: the source shape and the target shape are
scaled into a [0, 1]× [0, 1] square, and both K and n are set
to 50. We rewrite the balancing parameter λ as

λ = λ′ × s

1
× (

K

50
)2/(

n

50
)2, (2)

where s is the real scale of the scenario. The above formula
enables us to tune λ′ instead, without considering the num-
ber of intermediate frames, the number of agents, as well
as the scenario scale. In the defaulting setting, we set λ′ to
be 1.

Uniformity measure. As pointed out in [49], one can use
the CVT energy to measure the uniformity of the agent
distribution. Recall that we initialize the agent positions
for each frame with a single CVT optimization (see Fig-
ure 1(d)). Suppose that F init

CVT denotes the total CVT energy
at initialization. It’s natural that the collaborative optimiza-
tion improves the path smoothness at the cost of uniformity.



Let F opt
CVT be the total CVT energy after optimization. We

have F opt
CVT ≥ F init

CVT generally. We define

τ1 =

√
F opt

CVT

F init
CVT

,

and use τ1(≥ 1) to evaluate the uniformity. The closer to 1
the value of τ1, the more uniform the agents will be.

Trajectory smoothness measure. Since our algorithm
takes the cohesion feature into consideration such that
the intermediate formation is more visually pleasing (see
Section 3.2), the trajectory of the i-th agent, say Γi, is
generally not a straight-line segment. Here, we mea-
sure how zigzag Γi is by checking if Γi can be re-
fined to a much shorter path with slight perturbation.

x𝑖𝑖1

x𝑖𝑖2

x𝑖𝑖3 x𝑖𝑖4

x𝑖𝑖5 x𝑖𝑖6

x𝑖𝑖7

x𝑖𝑖8

x𝑖𝑖9

x𝑖𝑖10

x𝑖𝑖11
x𝑖𝑖12

Considering that Γi is a poly-
line curve with K vertices,
we connect any pair of ver-
tices if they are in a two-ring
neighborhood; See the inset
figure. Suppose that the aug-
mented graph is G and the
corresponding shortest path is
ΓGi . It is proper to define an
indicator to measure the trajectory smoothness with ‖Γi‖

‖ΓG
i ‖

,
which is obviously equal to or larger than 1. By averaging
the indicator over all the agents’ trajectories, we obtain the
overall smoothness indicator τ2 (≥1). The closer to 1 the
value of τ2, the smother the trajectories will be.

Adaptive strategy. Without doubt, λ′ is more convenient 
for users to tune than λ. However, experimental results 
show that the choice of λ′ still depends on the source/target 
shapes, and thus manual adjustment of λ′ is very tedious. 
With the support of τ1 and τ2, we have a convenient way 
to tune λ′ by checking if the two measures are sufficiently 
close to each other. We observe that when the difference be-
tween τ1 and τ2 is very small, e.g., less than 0.3, the balance 
between the trajectory smoothness and the agent uniformity 
can be carefully maintained. Based on the observation, we 
develop an adaptive strategy to tune λ′ automatically. The 
algorithm pseudo-code is available in Algorithm 1. Exper-
imental results with different λ′ are demonstrated in Fig-ure 
5. It can be seen that a larger λ′ tends to make the paths to 
be smoother.

3.5. Collision-free trajectories

A basic rule to trajectory planning is to guarantee that
different agents are free of collision during the entire forma-
tion transformation. Generally speaking, the requirement
that no collision occurs between the i-th agent and the j-
agent implies (1) Γi and Γj don’t intersect each other at all,

Algorithm 1 Adaptive tuning of λ′

Input: {xki }
n,K
i=1,k=1,τ1,τ2;

Output: λ′;
1: λ′ = 1;
2: step = 1;
3: τ1,τ2 = CollaborativeOptimization({xki },λ′);
4: flag = τ1 < τ2;
5: while |τ1 − τ2| > 0.3 do
6: if (τ1 < τ2) 6= flag then
7: step *= 0.5;
8: end if
9: if τ1 < τ2 then

10: λ′ -= step;
11: else
12: λ′ += step;
13: end if
14: τ1,τ2 = CollaborativeOptimization({xki },λ′);
15: flag = τ1 < τ2;
16: end while

(a) (b) (c)
Figure 5. The parameter λ′ is used to balance trajectory smooth-
ness and agent uniformity - a larger λ′ tends to encourage the tra-
jectory smoothness. The top row shows the trajectories while the 
bottom row shows the intermediate frame at t = 0.5. (a) λ′ = 
4.17. (b) λ′ = 41.7. (c) λ′ = 417.

or (2) the two trajectories have an intersection point but the
two agents pass through that intersection at different time
points.

In fact, the agent trajectories yielded our collaborate op-
timization are mostly collision free since it takes the travel-
ling cost into account. But there may still exist a few pairs
of agents that may collide with each other. In the following,
we shall explain why collision possibly occurs and how to
re-arrange trajectories based on swap operations.

Spatial coherence. In our current formulation, we
use

∑K−1
k=1 ‖xki x

k+1
i ‖2 to characterize the spatial coherence

of Γi. The intention behind is to make the i-th agent have
a least moving cost, which is similar to but different from∑K−1
k=1 ‖xki x

k+1
i ‖.



First, if we replace the spatial coherence term by∑K−1
k=1 ‖xki x

k+1
i ‖ in our formulation, it can be verified that

Γi and Γj are naturally free of intersection. We explain this
observation as follows. Suppose that the two trajectories Γi
and Γj collide with each other at a time point between tk
and tk+1. By swapping the sub-sequence

{xk+1
i ,xk+2

i , · · · ,xKi }

and the sub-sequence

{xk+1
j ,xk+2

j , · · · ,xKj },

‖Γi‖+ ‖Γj‖ is decreased but the uniformity term FCVT re-
mains unchanged. This shows that if we define Fsmoothness
by

∑K−1
k=1 ‖xki x

k+1
i ‖, the optimal transformation by our

formulation naturally guarantees that any two trajectories
cannot collide with each other.

Figure 6. Minimizing ‖xk
i x

k+1
i ‖2 + ‖xk

jx
k+1
j ‖2 is able to avoid

intersection between xk
i x

k+1
i and xk

jx
k+1
j except that ai < aj

and xk
i → xk

j → xk+1
i → xk+1

j forms a convex polygon, where
ai, aj are respectively the projection points of xk+1

i and xk+1
j

onto the directional axis
−−−→
xk
i x

k
j .

However,
∑K−1
k=1 ‖xki x

k+1
i ‖ is not smooth with regard

to the positional variables {xki }, causing low convergence
rate. That’s why we use

∑K−1
k=1 ‖xki x

k+1
i ‖2 instead to char-

acterize the spatial coherence of Γi. As Figure 6 shows, we
create a straight line through xki and xkj , and let ai and aj
be respectively the projection points of xk+1

i and xk+1
j onto

the directional axis
−−−→
xki x

k
j . Generally, when ‖xki x

k+1
i ‖2 +

‖xkjx
k+1
j ‖2 is minimized, it naturally guarantees that there

is no intersection between xki x
k+1
i and xkjx

k+1
j . Let ai, aj

be respectively the projection points of xk+1
i and xk+1

j onto

the directional axis
−−−→
xki x

k
j . The only exception occurs when

ai < aj and xki → xkj → xk+1
i → xk+1

j forms a convex
polygon. We omit the proof for brevity. Empirical observa-
tion is that when the optimization terminates, the trajectory
collision may occur for only a few agent pairs. Despite the
rarity, we still have to enforce an additional step to strictly
guarantee the avoidance requirement. In the following, we
shall develop a fast swap based strategy to handle this issue.

Swap strategy. Imagine that we have the agent positions
{xki }ni=1 at the time point tk, as well as the positions
{xk+1

i }ni=1 at tk+1. A naı̈ve idea for obtaining an inter-
section free matching between {xki }ni=1 and {xk+1

i }ni=1 (in
terms of straight-line distance) is to utilize Hungarian algo-
rithm. However, Hungarian algorithm costs O(n3) time to
find the perfect matching, which is computationally expen-
sive.

A straightforward way is to check all pairs of agents.
If xki x

k+1
i and xkjx

k+1
j intersect each other, then we swap

xk+1
i and xk+1

j for the i-th agent and the j-th agent. It costs
O(n2) time for one iteration. Repeat this process until no
collision occurs. Empirical observation shows the number
of iterations ranges between 3 to 10 generally. To this end,
the empirical timing cost can be taken as O(n2). In our
setting, the agents, optimized by the CVT-like energy, are
distributed very uniformly at every frame. We observe that
it is enough to check every pair of neighboring agents. In-
spired by this observation, we visit the Voronoi tessellation
by {xki }ni=1 at tk, and for each pair of neighboring agents at
xki and xkj , we swap their descendant positions if xki x

k+1
i

and xkjx
k+1
j intersect each other. In this way, the timing

cost can be further reduced from O(n2) to O(n). (For pur-
pose of being strictly collision free, we also perform similar
checking operations for any two second-order neighboring
agents in our implementation.)

4. Evaluation

4.1. Timing

We implemented our formation transformation algo-
rithm in Matlab and C++. The experiments were conducted
on a PC with Intel(R) Core(TM) i7-8700 CPU 3.20 GHz
and 16 GB memory. The computational cost mainly con-
sists of three parts: intermediate contour generation (Mat-
lab), initialization with CVT (C++) and collaborative op-
timization (C++). Two main factors, i.e., the number of
agents and the number of intermediate frames, are central
to the overall timing cost. From the timing statistics in Ta-
ble 1, we can see that the total cost climbs withK and n but
not dramatically. In real formation transformation show, it
is sufficient to set K = 100 and n = 50. Our algorithm
requires totally 4 minutes to report the transformation plan
for such a parameter setting, and nearly half of the timing
cost is spent on interpolating the intermediate shapes (rep-
resented by a binary image). We shall further boost the per-
formance in the future.

4.2. Comparison

Here we compare our algorithm with the following ap-
proaches:

• ORCA [45]: Based on velocity obstacles (VO), it fo-



Model K n Intermediate contours (s) Agent position initialization (s) Optimization (s) Total (s)
Mickey-Pikachu 50 50 68.6 19.0 44.5 133.4

Figure 1 50 100 68.6 29.2 107.8 207.0
100 50 135.7 23.8 63.0 226.3

Circle-Pentacle 50 50 60.8 20.4 24.6 107.3
Figure 7 50 100 60.8 36.2 51.3 149.7

100 50 121.2 31.4 66.3 221.7
Table 1. Time statistics with different K’s and different n’s.
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Figure 7. Transforming a disk to a star. From top to bottom:
ORCA [45]; SFM [54]; ImplicitCrowd [20]; CVT [55]; Ours-1
is our result obtained by inputting user specified agent placement
in the source/target shapes; Ours-2 is our result obtained by au-
tomatic computation of the agent placement in the source/target
shapes. The last column shows the corresponding trajectories.

cuses on finding a strictly collision-free motion plan
by solving a low-dimensional linear program. The
approach doesn’t take visually pleasing intermediate
shapes into account and thus not suitable for the for-
mation transformation purpose.

• SFM [54]: It adapts the original social force model
(SFM) by adding a local attraction term to maintain the
local stability. However, the approach lacks explicit
control of intermediate shapes, which makes it fail to
precisely guarantee the uniformity of agents as well as
the boundary alignment property.

• ImplicitCrowd [20]: Based on the assumption that the
interaction energy between any given pair of pedestri-
ans follows a power law as a function of their projected
time to collision, it defines an anticipatory potential
function and uses an optimization-based implicit inte-
gration scheme to deal with the crowd simulation prob-

lem. By contrast, ORCA is overly conservative while
ImplicitCrowd can give more realistic behavior. How-
ever, it cannot satisfy either the agent uniformity re-
quirement or the boundary alignment requirement.

• CVT [55]: It uses the Lloyd descent method of CVT to
yield a set of collision free trajectories. Although it en-
ables both the uniformity of agents and the trajectory
avoidance requirement, the approach doesn’t enforce
the trajectory smoothness. Experimental results show
that the motion paths are zigzag; See the close-up win-
dow. In addition, it includes a step of pre-computing
intermediate contours. In our implementation, we also
use the 2-Wasserstein distance based displacement in-
terpolation technique to generate the contour morphing
sequence.

In Figure 7, we show an example of transforming a disk to
a star, where the last column shows the corresponding tra-
jectories. It’s worth mentioning that our algorithm not only
supports user specified agent placement in the source/target
shapes (see Ours-1), but also can infer a more uniform
placement automatically (see Ours-2). It can be seen from
Figure 7 that our algorithm can achieve the three goals at
the same time, i.e., (1) visually pleasing intermediate for-
mation, (2) uniform agent placement, and (3) smooth/rigid
trajectories.

4.3. More challenging scenarios

Variable number of agents. Even if the source/target
shapes are given, it is challenging yet necessary to accom-
plish the formation transformation with a limited number
of agents. What is the most important is that the forma-
tion must follow a visually pleasing/meaningful shape dur-
ing the transformation. Besides, it is also important to make
the agents evenly spaced so that the region of interest has a
balanced coverage (e.g., the region can be evenly lit with
enough light). In Figure 8, we use 50, 200 and 500 agents
to generate the transformation and observe that even if there
are only 50 agents, they can still well manifest the underly-
ing interpolated shape.

Source/target shapes with unequal areas. The original
2-Wasserstein distance based shape interpolation requires
that the source shape and the target shape must be of the
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Figure 8. When the source/target shapes are given, users can arbi-
trarily specify the number of agents, and our algorithm can always
report a visually smooth formation transformation.

same area. This requirement cannot be satisfied in a general
formation transformation. Recall that we define a density
function ρk = 1/|Ωk| for the k-th intermediate shape. In
this way, the area of the k-th frame, weighted by ρk, is ex-
actly equal to 1, which guarantees that the 2-Wasserstein
distance based barycentric interpolation can be well de-
fined. In Figure 9(a), we show an example of unequal-size
source and target shapes. Our algorithm can produce a vi-
sually pleasing transformation for this situation.

Multiple components, different topology structures, and
highly non-convex contours. Since the source/target
shapes vary greatly, the situation of formation transforma-
tion can be arbitrarily complex. It is highly desirable for
a transformation algorithm to handle various challenging
situations. We divide the challenging scenarios into three
kinds including (a) source/target shapes with multiple com-
ponents, (b) source/target shapes with different topology
structures, and (c) source/target shapes with highly non-
convex contours. It can be seen from Figure 9(b-e) that even
under the challenging situations, our algorithm still has the
ability to generate a visually pleasing transformation ani-
mation with uniform agent placement and smooth/rigid tra-
jectories.

Obstacle avoidance. In some special scenarios, one may
hope that the agents avoid an obstacle or pass through spec-
ified accessible area. Our algorithm explicitly controls the
geometric domain for every intermediate frame (excluding
the in-accessible area from the original domain) and thus
is able to naturally guarantee that the agents cannot collide
with obstacles. What’s more, the agents keep a uniform
placement when they move around the obstacles, and all
the trajectories are guaranteed to be collision free; See Fig-
ure 10.

4.4. Simulation of real formation transformation show

The drone light show becomes a fashionable form of
public entertainment showing up at sports competition, fes-
tival celebration and some other events. On the one hand,
different lighting combinations can give different visual pat-
terns. On the other hand, formation transformation can also
offer visual pleasure to audience. To our best knowledge,
the intelligent design/manipulation of an aesthetic forma-
tion transformation still remains a challenging problem so
far. In fact, the study of this paper is exactly motivated by
the three requirements of drone formation transformation,
i.e., (1) visually pleasing intermediate formation, (2) uni-
form agent placement, and (3) smooth/rigid trajectories. We
simulated the Pokémon drone-light/formation transforma-
tion show based on the proposed algorithm; See Figure 11
and the attached video. In spite of the complex geometric
shapes, our algorithm can still satisfy these requirements at
the same time with 500 UAVs or even fewer. Furthermore,
our algorithm is very flexible for users to control:

• Users only need to specify the source/target shapes,
without spending efforts in the initial placement of
agents.

• Our algorithm owns the boundary alignment property
and thus can still manifest the underlying shape with a
quite limited number of agents, e.g., 30.

• Although our algorithm is able to automatically infer a
sequence of visually pleasing intermediate shapes, we
also allow users to edit them.

The above mentioned nice properties distinguish itself from
the existing algorithm and show that it has a great potential
of generating an automatic drone-light/formation transfor-
mation plan.

5. Conclusion and Future Work

In this article, we propose a collaborative optimization
algorithm to generate a visually pleasing formation trans-
form. Our transform plan has many nice features including
(1) visually pleasing intermediate shapes, (2) strict bound-
ary alignment, (3) high uniformity of agents, and (4) smooth
trajectories, which is validated by extensive experimental
results. Besides, we test our algorithm in some challenging
scenarios and witness its superior performance. These sce-
narios include (1) source/target shapes with multiple con-
nected components, (2) source/target shapes with different
typology structures, and (3) existence of obstacles.

However, our algorithm, in its current form, still has
some disadvantages. First, when users specify a large num-
ber of agents and a large number of intermediate frames, our
algorithm requires a huge computational cost to yield the
final transform plan. Secondly, we use the Wasserstein dis-
tance based barycentric interpolation [40] to infer the inter-
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Figure 9. Source/target shapes with different areas (a), multiple components (b), different topology structures (c) and highly non-convex
contours (d,e). The bottom row shows the spatio-temporal trajectory by lifting the 2D path (colored in grey) to the 3D space (colored in
pink), where the vertical axis denotes the time dimension.

Figure 10. The first row shows how a group of agents avoids an obstacle during the formation transformation, while the second row shows
how they run through the middle of two obstacles. All the snapshots are captured from the top view.

mediate formations frame by frame. However, the equally 
spaced time parameter t ∈ [0, 1] cannot guarantee that the 
intermediate formations are also (visually) evenly spaced. 
In addition, our swapping based strategy for guaranteeing 
collision free trajectories, in its current form, only works in 
2D. Therefore the algorithm cannot be directly extended to 
3D space. We shall develop more techniques to cope with 
the difficulties in the future.
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[32] J. Pettré, J. Ondřej, A.-H. Olivier, A. Cretual, and
S. Donikian. Experiment-based modeling, simulation and
validation of interactions between virtual walkers. In Pro-
ceedings of the 2009 ACM SIGGRAPH/Eurographics Sym-
posium on Computer Animation, pages 189–198, 2009. 2
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