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Abstract

A porous scaffold is a three-dimensional network structure composed of a large number of pores, and triply periodic minimal surfaces (TPMSs)
are one of the conventional tools for designing porous scaffolds. However, discontinuity, incompleteness, and high storage space requirements are
the three main shortcomings of porous scaffold design using TPMSs. In this study, we developed an effective method for heterogeneous porous
scaffold generation to overcome the abovementioned shortcomings of porous scaffold design. The input of the proposed method is a trivariate
B-spline solid with a cubic parametric domain. The proposed method first constructs a threshold distribution field (TDF) in the cubic parametric
domain, and then produces a continuous and complete TPMS within it. Finally, by mapping the TPMS in the parametric domain to the trivariate
B-spline solid, a continuous and complete porous scaffold is generated. Moreover, we defined a new storage space-saving file format based on the
TDF to store porous scaffolds. The experimental results presented in this paper demonstrate the effectiveness and efficiency of the method using
a trivariate B-spline solid, as well as the superior space-saving of the proposed storage format.
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1. Introduction

Porous structures are widely found in natural objects, such
as trabecular bones, wood, and cork, which have many appeal-
ing properties, such as low weight and large internal surface
area. Recently, triply periodic minimal surfaces (TPMSs) have
been widely employed in the design of porous scaffolds [1]. A
TPMS is a type of minimal surface with periodicity in three in-
dependent directions of the three-dimensional Euclidean space,
and is represented by an implicit equation [2]. Generally speak-
ing, porous scaffold design methods based on TPMS can be
classified into two categories. In the first class of methods, a
volume mesh model is embedded in an ambient TPMS, and the
intersection of them is taken as the porous scaffold by Boolean
operations or marching tetrahedra algorithm [3, 4, 5, 6]. In
the second class of methods, a regular TPMS unit, i.e., the
TPMS in a whole period, is transformed into each hexahedron
of a hexahedron mesh model, thus generating a porous scaf-
fold [7, 8, 9]. However, the first class of methods can generate
incomplete TPMS units near the boundary of a volume mesh
model, leading to poor mechanical performance. The second
class of methods may cause discontinuities between two adja-
cent TPMS units, and, more seriously, the porosity is difficult
to control.

The continuity and completeness are two key ingredients to
a porous scaffold. On the one hand, continuities in the scaf-

folds can positively influence the fluid flow between the two
adjacent regions, which will in turn be beneficial to cell pene-
tration, and transport of nutrients and growth factors in and out
of the scaffolds [10]. On the other hand, the completeness of the
scaffolds’ component is related to the mechanical performance
of the scaffold. In addition, the scaffolds generated by TPMS-
based methods can provide a larger surface for cell attachment,
so that the scaffolds degrade faster and the tissues grow faster
than that of traditional methods, due to the high specific surface
area of TPMS [11, 12].

More seriously, due to the complicated geometric and topo-
logical structure of the porous scaffold, its storage cost is very
large, usually requiring hundreds of megabytes (MB) [8]. The
large storage cost becomes the bottleneck in porous scaffold
generation and processing.

In this study, we developed a method for generating het-
erogenous porous scaffolds in a trivariate B-spline solid with
TPMS designed in the parametric domain. Specifically, given
a trivariate B-spline solid, a threshold distribution field (TDF)
is first constructed in the cubic parametric domain, as well as a
TPMS. By mapping the TPMS in the parametric domain to the
B-spline solid, a porous scaffold is produced. All of the TPMS
units generated in the porous scaffold are complete, and adja-
cent TPMS units are continuously stitched. Moreover, based on
the TDF in the parametric domain, a new porous scaffold stor-
age format is designed for saving storage space. To summarize,
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the main contributions of this study are as follows:

• A trivariate B-spline solid is employed to generate porous
scaffolds, which ensures completeness of TPMS units,
and continuity between adjacent TPMS units.

• Porous scaffolds are easy to design and modify using the
TDF defined in the parametric domain of the B-spline
solid.

• A storage format for porous scaffolds is developed, which
saves significant storage space.

The remainder of this paper is organized as follows. In
Section 1.1, we review related work on the porous scaffold de-
sign and B-spline solid generation. In Section 2, preliminaries
on trivariate B-spline solid and TPMS are introduced. Then,
the heterogeneous porous scaffold generation method using a
trivariate B-spline solid and TPMS is presented in detail in Sec-
tion 3. In Section 4, some experimental examples are presented
to demonstrate the effectiveness of the developed method. Fi-
nally, Section 5 concludes the paper.

1.1. Related work

In this section, we review some related work on porous scaf-
fold design and trivariate B-spline solid generation methods.

Porous scaffold design: In recent years, TPMS has been
of special interest to the porous scaffold design community ow-
ing to its excellent properties, and many scaffold design meth-
ods have been developed based on TPMS. Rajagopalan and
Robb [13] made the first attempt to design tissue scaffolds based
on Schwarz’s primitive minimal surface, which is a type of
TPMS. Moreover, the other two typical TPMSs (Schwarz’s di-
amond surface and Schoen’s gyroid surface) are constructed by
employing K3DSurf software to design tissue scaffolds [14],
which achieve a gradient change of gyroid structure in terms of
pore size by adding a linear equation into the TPMS function.

To reduce the time consumed in the trimming and re-meshing
process of Boolean operations, a tissue scaffold design method
based on a hybrid method of distance field and TPMS was pro-
posed in [3]. Moreover, to make the porosity easier to control
in designing a heterogeneous porous scaffold, Yoo [4] intro-
duced a method based on an implicit interpolation algorithm
that uses the thin-plate radial basis function. Similar to the
method of Yoo [4], Yang et al. [5] introduced the sigmoid func-
tion and Gaussian radial basis function to design tissue scaf-
folds. However, the hexahedral mesh-based porous scaffold
generation methods cannot ensure continuity between adjacent
TPMS units.

Recently, in consideration of the increasing attention to-
wards gradient porous scaffolds, Shi et al. [9] utilized the TPMS 
and sigmoid function to generate functional gradient bionic porous 
scaffolds from Micro-CT data reconstruction. Feng et al. [6] 
proposed a method to design porous scaffold based on T-spline 
solids and TPMS, and analyzed the parameter influences on the 
ratio of volume to surface area and porosity. Subsequently, Li et 
al. [15, 16] adopted trivariate T-splines in modeling and slicing 
heterogeneous porous structures. In addition, a heterogeneous

methodology for modeling porous scaffolds using a parameter-
ized hexahedral mesh and TPMS was developed by Chen et
al. [8].

Trivariate B-spline solid generation: Trivariate B-spline
solid modeling methods are developed mainly for producing
three dimensional physical domain in isogeometric analysis [17].
Specifically, to analyze arterial blood flow through isogeomet-
ric analysis, Zhang et al. [18] introduced a skeleton-based method
of generating trivariate non-uniform rational basis spline (NURBS)
solids. In [19], a tetrahedral mesh model is parameterized through
discrete volumetric harmonic functions and a cylinder-like trivari-
ate B-spline solid is generated. Aigner et al. [20] proposed
a variational framework for generating NURBS parameteriza-
tions of swept volumes using the given boundary conditions and
guiding curves. Optimization approaches have been developed
for filling boundary-represented models to produce trivariate B-
spline solids with positive Jacobian values [21, 22]. Moreover,
a discrete volume parameterization method for tetrahedral mesh
models and an iterative fitting algorithm have been presented
for trivariate B-spline solid generation [23].

2. Preliminaries

2.1. Trivariate B-spline solid

A B-spline curve of order p + 1 is formed by several piece-
wise polynomial curves of degree p, and a B-spline curve is
Cp+1−µ continuous at its breakpoints with multiplicity µ [24].
A knot vector U = {u0, u1, . . . , um+p+1} is defined by a set of
breakpoints u0 ≤ u1 ≤ · · · ≤ um+p+1.

A trivariate B-spline solid of degree (p, q, r) is a tensor prod-
uct volume defined as

P(u, v,w) =

m∑
i=0

n∑
j=0

l∑
k=0

Ni,p(u)N j,q(v)Nk,r(w)Pi jk, (1)

where Pi jk, i = 0, 1, · · · ,m, j = 0, 1, · · · , n, k = 0, 1, · · · , l are
control points in the u, v and w directions, and

Ni,p(u),N j,q(v),Nk,r(w)

are the B-spline basis functions of degree p in the u direction,
degree q in the v direction, and degree r in the w direction, with
parametric domain [0, 1] × [0, 1] × [0, 1].

In this study, the input to our porous scaffold generation
algorithm is a trivariate B-spline solid (Eq. (1)) that represents
geometry at a macro-structural scale. The B-spline solid can
be generated either by fitting the mesh vertices of a tetrahedral
mesh model [23], or filling a closed triangular mesh model [22].

2.2. Triply periodic minimal surface

TPMS is a competitive alternative for representing the pore-
volume structure of tissue engineering scaffolds. Because the
four types of TPMS (P, D, G, and I-WP types) possess larger
smooth surface area, compared with the other types of TPMS,
they are widely employed to design porous scaffolds [13, 14].
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The most frequently employed way for describing a TPMS
is to approximate the TPMS using a periodic nodal surface de-
fined by a Fourier series [25],

ψ(r) =
∑

k

Akcos[2π(hk · r)/λk − Pk] = C, (2)

where r is the location vector in the Euclidean space, Ak is the
amplitude, hk is the kth lattice vector in the reciprocal space,
λk is the wavelength of the period, Pk is the phase shift, and C
is the threshold constant. Specifically, a TPMS is the implicit
surface defined by ψ(r) = C (Eq. (2)). Please refer to [26]
for more details on the abovementioned parameters. The nodal
approximations of P, D, G, and I-WP types of TPMSs, which
were presented in [2], are listed in Table 1, where the valid
range of C guarantees that the implicit surface is complete.

In TPMS-based porous scaffold design methods, the thresh-
old C (Eq. (2)) controls the porosity, and the coefficients ρu, ρv,
and ρw (refer to Table 1), called period coefficients, affect the
period of the TPMS and the pore size. The effects of the two
types of parameters in porous scaffold design have been dis-
cussed in detail in the literature [6]. Additionally, in this study,
the marching tetrahedra (MT) algorithm [27] is employed to
extract the TPMS (Fig. 1).

(a) (b) (c) (d)

Figure 1. Four types of TPMS units. (a) P-type. (b) D-type. (c) G-type.
(d) I-WP-type.

Moreover, we define three types of volume TPMS structures
(refer to Eq. (2)):

• pore structure represented by ψ ≥ C,

• rod structure represented by ψ ≤ C,

• sheet structure represented by C − ε ≤ ψ ≤ C,

where ε is set to 0.2 in our implementation. However, the tri-
angular meshes of the three types of volume TPMS structures,
generated by the polygonization, are open on the six boundary
faces of the parameter domain, so they should be closed to form
a solid. Take the pore structure (ψ ≥ C) as an example. In the
polygonization procedure of the TPMS ψ = C by the MT al-
gorithm, the triangles on the boundary faces of the parameter
domain are categorized into two classes by the iso-value curve
ψ = C on the boundary faces: outside triangles, where the val-
ues of ψ at the vertices of these triangles are larger than or equal
to C, and inside triangles, where the values of ψ at the vertices
of these triangles are smaller than or equal to C. Therefore, the
pore structure can be closed by adding the outside triangles into
the triangular mesh generated by polygonizing ψ = C.

As stated above, the method developed in this paper can en-
sure completeness of TPMS units, and continuity between ad-
jacent TPMS units. On the one hand, completeness means that
each TPMS unit in the generated porous scaffold is complete.
On the other hand, unless otherwise specified, continuity in this
paper refers to C0 continuity between adjacent surfaces.

Algorithm 1 Heterogeneous porous scaffold generation
Input: TPMS type, structure type, period coefficients (ρu, ρv, ρw),

trivariate B-spline solid, porosity requirements.
Output: Heterogeneous porous scaffold.

1: Construction of the initial TDF;
2: Calculation of the porosity in the physical domain;
3: while not meeting the porosity requirements do
4: Porosity adjustment in the TDF;
5: Calculation of the porosity in the physical domain;
6: end while
7: Generation of the volume TPMS structure;
8: Generation of the heterogeneous porous scaffold.

3. Methodology of Porous Scaffold Design

The whole algorithm of the developed heterogeneous porous
scaffold generation method is illustrated in Algorithm 1. Specif-
ically, given a trivariate B-spline solid as the physical domain,
we design a method for constructing the TDF in its cubic para-
metric domain. In order to ensure the generated porous scaf-
fold meets the engineering requirements, the TDF is modified
iteratively until the requirements are satisfied. Based on the
TDF, a volume TPMS structure is generated in the parmetric
domain. Moreover, by mapping the volume TPMS structure
in the parametric domain to the physical domain through the
B-spline solid function (Eq. (1)), a porous scaffold with com-
pleteness and continuity is produced. The details of the porous
scaffold design method are elucidated in the following sections.

3.1. Threshold distribution field (TDF) construction

To design heterogeneous porous scaffolds, we alter the thresh-
old C to a trivariate B-spline function C(u, v,w) defined on the
parametric domain of a trivariate B-spline solid, which is called
threshold distribution field (TDF). Then, the TPMS in the para-
metric domain is represented by the zero-level surface of,

f (u, v,w) = ψ(u, v,w) −C(u, v,w) = 0. (3)

Therefore, the TDF plays a critical role in the heterogeneous
porous scaffold generation, and how to design the TDF be-
comes a key problem in the porous scaffold design.

Because the TDF is represented as a trivariate B-spline func-
tion C(u, v,w), it facilitates the design of TDF, as well as the
porous scaffold. In the following, we presented a methodology
framework for designing a TDF. Users can develop their own
method to generate a TDF based on the methodology frame-
work. Specifically, the parametric domain of a trivariate B-
spline solid is first discretized into a dense grid (in our im-
plementation, it is discretized into a grid with a resolution of
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Table 1. Nodal approximations of typical TPMS units.

TPMS Nodal approximations Valid range of C

Schwarz’s P Surface ψP(u, v,w) = cos(ρuu) + cos(ρvv) + cos(ρww) = C [−0.8, 0.8]

Schwarz’s D Surface ψD(u, v,w) = cos(ρuu)cos(ρvv)cos(ρww) − sin(ρuu)sin(ρvv)sin(ρww) = C [−0.6, 0.6]

Schoen’s G Surface ψG(u, v,w) = sin(ρuu)cos(ρvv) + sin(ρvv)cos(ρww) + sin(ρww)cos(ρuu) = C [−0.8, 0.8]

Schoen’s I-WP Surface
ψI−WP(u, v,w) = 2[cos(ρuu)cos(ρvv) + cos(ρvv)cos(ρww) + cos(ρww)cos(ρuu)]

−[cos(2ρuu) + cos(2ρvv) + cos(2ρww)] = C
[−2.0, 2.0]

50 × 50 × 50), called a parametric grid. Then, the threshold
values at the grid vertices are assigned (for example, using the
techniques presented later in this section), constituting a dis-
crete TDF. Finally, the discrete TDF is fitted by a trivariate B-
spline function, which is taken as the TDF C(u, v,w), i.e.,

C(u, v,w) =

nu∑
i=0

nv∑
j=0

nw∑
k=0

Ni,p(u)N j,q(v)Nk,r(w)Ci jk, (4)

where the scales Ci jk are the control points of the trivariate B-
spline function.

Next, we present two techniques for generating the discrete
TDF, i.e., physical domain based technique and parametric do-
main based technique, by which a threshold value Cα,β,γ is as-
signed to the parametric grid vertex with index (α, β, γ). How-
ever, users can develop their methods for discrete TDF genera-
tion to satisfy specific requirements.

Physical domain based technique. Initially, the parametric
grid is mapped into the B-spline solid (i.e., the physical domain)
to generate a grid, called physical grid, and all of the scalar
values at the physical grid vertices are set to 0. Then, some
physical quantities (here, we take the porosity values as an ex-
ample) can be specified at the boundary physical grid vertices.
Next, the porosities at the boundary grid vertices are diffused
into the inner physical grid vertices by the Laplace smoothing
operation [28], and then the entire physical grid is filled. Fur-
thermore, the porosities defined at the physical grid vertices are
mapped back to the parametric grid. After changing the porosi-
ties to the threshold values by the relationship between them
(refer to Appendix B and Figs. 4(a)-4(b)), and transforming
them into the valid threshold range (Table 1) according to the
type of TPMS being produced, they are taken as the threshold
values Cα,β,γ at the parametric grid vertices. In this way, the dis-
crete TDF is constructed based on the porosities defined at the
boundary physical grid vertices. In Fig. 2, the mean curvatures
of the boundary surface is taken as the porosities (Fig. 2(a)),
and then the discrete TDF is generated based on the mean cur-
vatures (Fig. 2(b)).

Parametric domain based technique. The threshold values
Cα,β,γ in the parametric grid vertex with index (α, β, γ) can be
directly assigned by a function prescribed by users. For ex-
ample, we define two types of distribution functions, including
radial distribution (Eq. (5)) and axial distribution (Eq. (6)),

Cα,β,γ = 1.4 ∗ max{|α − 0.5| , |β − 0.5|} − 0.6, (5)

(a) (b)

Figure 2. Physical domain based technique. (a) Mean curvatures on the
boundary surface of a trivariate B-spline solid. (b) Discrete TDF based
on the mean curvatures.

Cα,β,γ = 1.2 ∗ (γ − 0.5), (6)

which are illustrated in Figs. 3(a) and 6(b), respectively. Note
that the values Cα,β,γ should be linearly transformed into the
valid threshold range (Table 1) according to the type of volume
TPMS structure being produced.

TDF generation by data fitting. After the discrete TDF is
generated, it is fitted with a trivariate B-spline function (Eq.
(4)), using the least squares progressive-iteration approximation
(LSPIA) method [29]. The indices of the grid vertices, i.e.,
(α, β, γ), are the natural parametrization of the vertices. For the
purpose of B-spline fitting, they are normalized into the interval
[0, 1] × [0, 1] × [0, 1], denoted as (uα, vβ,wγ). The knot vectors
of the B-spline function (Eq. (4)) are uniformly defined under
the Bézier end condition. In our implementation, the size of
the control grid of the trivariate B-spline function is taken as
20 × 20 × 20, and the initial values of the control points of the
B-spline function (Eq. (4)) are produced by linear interpolation
of the discrete TDF.

Suppose the LSPIA iteration has been performed for l steps,
and the lth B-spline function C(l)(u, v,w) is constructed as:

C(l)(u, v,w) =

nu∑
i=0

nv∑
j=0

nw∑
k=0

Ni,p(u)N j,q(v)Nk,r(w)C(l)
i jk. (7)

To generate the (l + 1)th B-spline function C(l+1)(u, v,w), the
difference vector for each parametric grid vertex is calculated,

δ(l)
α,β,γ = Cα,β,γ −C(l)(uα, vβ,wγ), (8)
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where Cα,β,γ is the threshold value at the vertex (α, β, γ), and
(uα, vβ,wγ) are its parameters. Each difference vector δ(l)

α,β,γ is

distributed to the control points C(k)
i, j,k if the corresponding ba-

sis functions Ni,p(uα)N j,q(vβ)Nk,r(wγ) are non-zero. Moreover,
a weighted average of all difference vectors distributed to a con-
trol point is taken, leading to the difference vector for the con-
trol point,

∆
(l)
i jk =

∑
(α,β,γ)∈Ii jk

Ni,p(uα)N j,q(vβ)Nk,r(wγ)δ
(l)
α,β,γ∑

(α,β,γ)∈Ii jk
Ni,p(uα)N j,q(vβ)Nk,r(wγ)

, (9)

where Ii jk is the set of indices (α, β, γ) such that

Ni,p(uα)N j,q(vβ)Nk,r(wγ) , 0.

Next, the (l + 1)th control points C(l+1)
i jk are formed by adding

the difference vectors ∆
(l)
i jk to the lth control points,

C(l+1)
i jk = C(l)

i jk + ∆
(l)
i jk. (10)

Thus, the (l + 1)th B-spline function C(l+1)(u, v,w) is produced:

C(l+1)(u, v,w) =

nu∑
i=0

nv∑
j=0

nw∑
k=0

Ni,p(u)N j,q(v)Nk,r(w)C(l+1)
i jk . (11)

The computational complexity for the iteration is O(MN),
where M is the number of control points C(l) , and N) is thei jk
number of data points Cαβγ. The convergence and the stability
of LSPIA iteration have been discussed in detail in Ref.[29].
After the iterations stop, the result is taken as the TDF C(u, v,w)
in the parametric domain.

(a) (b)

Figure 3. Local modification on TDF. (a) TDF generated based on the
prescribed function (5). (b) TDF after local modification.

3.2. Local modification
With the TDF C(u, v,w), the TPMS (Eq. (3)) in the para-

metric domain can be generated. By mapping the TPMS into
the trivariate B-spline solid, a porous scaffold is produced. How-
ever, if the generated porous scaffold does not satisfy the practi-
cal engineering requirements, the TDF C(u, v,w) can be locally
modified in the parametric domain, and then the porous scaf-
fold can be rebuilt to meet the practical requirements (refer to
Section 3.3).

To locally modify the TDF, some vertices of the parametric
grid are first chosen, and the threshold values there are changed

to the desired values. Then, a local LSPIA iteration is invoked
to fit the changed values at the chosen vertices. In the local
LSPIA iteration, the difference vector δ (Eq. (8)) is calcu-
lated only at the chosen vertices, and we adjust only the control
points to which the difference vectors δ are distributed. The
other control points remain unchanged. As illustrated in Fig. 3,
the TDF in Fig. 3(b) is generated by locally modifying the TDF
in Fig. 3(a) using the method presented above.

3.3. Porosity preservation
The porosity is an important parameter in porous scaffold

design, which directly influences the transport of nutrition and
waste. The porosity of porous scaffolds designed by TPMS
units can be controlled by adjusting the threshold C (Table 1).
The relationship between the porosity and the threshold C is
illustrated in Figs.4(a)-4(c), and the mathematical functions be-
tween the porosity and C are presented in Appendix B. It should
mention that, for the sheet structure (Fig. 4(c)), the porosity
is insensitive to the change of threshold C. When the thresh-
old C varies in its valid range, the porosity changes very small
(Fig. 4(c)).

In practice, the porous scaffold is usually required to reach
predefined porosity values Por` at some physical grid vertices
(x`, y`, z`), with parameters (u`, v`,w`), ` = 0, 1, · · · ,N − 1. In
order to make the generated porous scaffold meet the poros-
ity requirements, a constrained optimization problem is formu-
lated (Eq. (12)), where the optimization variables are the con-
trol points of the TDF, arranged in the lexicographical order,
i.e.,(C000,C001, · · · ,Cnu,nv,nw ).

min E =

N−1∑
`=0

∥∥∥Por(C000,C001, · · · ,Cnu ,nv ,nw ; u`, v`,w`) − Por`
∥∥∥2

s.t. C000,C001, · · · ,Cnu ,nv ,nw are in the valid range,

(12)

where Por(C000,C001, · · · ,Cnu,nv,nw ; u`, v`,w`) is the porosity value
of the porous scaffold at the parameter (u`, v`,w`).

We employ the gradient descent method to solve the mini-
mization problem (Eq. (12)). The gradient vector of the objec-
tive function is,

∇E =

(
∂E
∂C000

, · · · ,
∂E
∂Ci jk

, · · · ,
∂E

∂Cnu,nv,nw

)
. (13)

In the optimization, the control points Ci jk move along the gra-
dient vectors to produce the new control points, i.e.,

Cnew
i jk = Ci jk + τ

∂E
∂Ci jk

,

where τ ∈ (0, 1] is a weight. In our implementation, we dis-
cretize τ ∈ (0, 1] to { 1n ,

2
n , · · · ,

n
n } with n = 20, and select a

weight as large as possible to minimize the objective function
(12).

Because the relationship between the variables

C000,C001, · · · ,Cnu,nv,nw

and the objective function E is complicated, the expressions
of the partial derivatives in the gradient vector (Eq. (13)) are
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(a) (b) (c)

Figure 4. Relationship between the threshold C and the porosity of the four types of TPMSs based on pore structures (a), rod structures (b), and
sheet structures (c), respectively.

hard to be deduced. Therefore, in calculating the gradient vec-
tor (Eq. (13)), we replace the partial derivatives with the finite
differences,

∂E
∂Ci jk

≈
E(· · · ,Ci jk + δ, · · · ) − E(· · · ,Ci jk, · · · )

δ
,

where i = 0, 1, · · · , nu, j = 0, 1, · · · , nv, k = 0, 1, · · · , nw, and δ
is a tiny increment, taken as 0.02 in our implementation.

The initial TDF is constructed as follows. Firstly, the thresh-
old values C` corresponding to the predefined porosity values
Por` can be calculated using the relationship between the poros-
ity and the threshold C, as presented in Figs. 4(a)-4(b) and Ap-
pendix B. Secondly, the threshold values at the corresponding
parametric grid vertices (u`, v`,w`) are set asC`, ` = 0, 1, · · · ,N−
1. Finally, the initial TDF C(u, v,w) in the parametric domain
is generated by fitting the threshold values at parametric grid
vertices using LSPIA. The error of the porosity in the physical
domain is defined as,

err =
E
N
, (14)

In our implementation, the terminate condition is defined as,∣∣∣∣∣erri − erri−1

err0

∣∣∣∣∣ < 10−4, i ≥ 1, (15)

where erri denotes the error of the porosity after the i-th iter-
ation, and err0 denotes the initial error. And for each itera-
tion, the computational complexity is O(M2N), where M is the 
number of the control points. The convergence and the stability 
of the gradient descent method has been discussed in detail in 
several references, such as Ref.[30].

In our experiments, the gradient descent method converges 
rapidly. For example (Fig. 5), a uniform porosity of 0.5 is pre-
defined at all physical grid vertices. Fig. 5(a) is the porous scaf-
fold generated with the initial TDF. Fig. 5(b) is the heteroge-
neous porous scaffold after optimization, where the uniformity 
of the porosity is improved. As we can see, the pore size in the 
red circles changes obviously. As shown in Fig. 5(c), the er-
ror is reduced from 0.0111 to 0.0012 after 2 iterations, and the 
iteration is terminated at the 27-th step.

It should be pointed out that, the porosity preservation method
cannot be applied in the design of sheet structures, because the

porosity of a sheet structure is nearly constant as a function of
the threshold C (Fig. 4(c)). In other words, for the sheet struc-
tures, the porosity can vary just in a vary small range.

(a) (b)

0 5 10 15 20 25 30
Iterations
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0.002

0.004
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0.008
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E
rr

or

Iterations v.s. Error

(c)

Figure 5. Porosity preservation: the predefined porosities at all physi-
cal grid vertices are 0.5. (a) Porous scaffold before optimization. (b)
Porous scaffold after optimization. (c) Plot of error v.s. iterations.

Porosity Calculation: The porosity Por of the heteroge-
neous porous scaffold at the point (x, y, z) in the physical do-
main with the parameter (u, v,w) can be calculated by the fol-
lowing formula,

Por =

∫
Ωvoid

Jac(u, v,w)dΩ∫
Ω

Jac(u, v,w)dΩ
,

where Ω is a cuboid region centered at the point (u, v,w) in the
parametric domain, with size 1

ρu
× 1

ρv
× 1

ρw
(equal to the size

of a TPMS unit in the parametric domain), Ωvoid is the pore
region in Ω, and Jac(u, v,w) is the Jacobian value of the B-
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spline solid mapping (Eq. (1)) at (u, v,w). In our implementa-
tion, the porosities Por is calculated using the Gaussian quadra-
ture rule [30]. Note that, the calculation of the porosity Por of
heterogeneous porous scaffold in the physical domain is per-
formed in the parametric domain, owing to the Jacobian value
Jac(u, v,w) of the B-spline solid mapping(Eq. (1)). Therefore,
the heterogeneous porous scaffold in the physical domain is not
required to be generated for the calculation of its porosity.

(a) (b)

(c) (d)

Figure 6. Generation of the TPMSs (with perspective-view and side-
view drawing) (a,c) based on the corresponding TDF in the parametric
domain (b,d). Note that the porosity of the TPMS is controlled by the
TDF.

3.4. Generation of heterogeneous porous scaffold
Till now, there is only one unknown in the heterogeneous

porous scaffold generation: the period coefficients ρu, ρv, ρw

(Table 1). It is worth noting that the internal connectivity of
the scaffold is crucial to the transferring performance of the
scaffold. The period coefficients ρu, ρv, ρw (Table 1) can be em-
ployed to adjust the number of TPMS units, as well as the size
of TPMS units in the three parametric directions. The values
of the period coefficients ρu, ρv, ρw used in the examples in this
paper are listed in Table 2.

After the TDF and the period coefficients are both deter-
mined, the TPMS in the parametric domain (Eq. (3)), i.e.,

f (u, v,w) = ψ(u, v,w) −C(u, v,w) = 0,

can be determined and polygonized into a triangular mesh. For
this purpose, the cubic parametric domain is uniformly divided
into a grid. In our implementation, to balance the accuracy and
storage cost of the porous scaffold, the parametric domain is
divided into a 100 × 100 × 100 grid. Moreover, the volume
TPMS structures can also be generated, just as presented in Sec-
tion 2.2. In Figs. 6(a) and 6(c), we illustrate the TPMSs (sheet
structure) calculated based on the TDFs in Figs. 6(b) and 6(d).

Finally, the heterogeneous porous scaffold in the trivariate
B-spline solid can be generated by mapping the volume TPMS

structures into the trivariate B-spline solid. Because the TPMS
in the parametric domain is a unitary surface and the trivariate
B-spline solid mapping (Eq. (1)) is C2 continuity, each TPMS
unit is complete, and adjacent TPMS units are continuous along
their boundary. Therefore, the heterogeneous porous scaffold
in the trivariate B-spline solid is ensured to be complete and
continuous.

3.5. Storage format

Owing to their complicated geometric and topological struc-
ture, the storage costs for porous scaffolds are very large, usu-
ally requiring hundreds of megabytes (MB) (refer to Table 2).
Therefore, the large storage cost becomes the bottleneck in porous
scaffold generation and processing. In this study, we developed
a new porous scaffold storage format that reduces the storage
cost of porous scaffolds significantly. Using the new storage
format, the space required to store the porous scaffold models
presented in this paper ranges from 0.538 MB to 0.947 MB,
while the storage space using the traditional STL file format
ranges from 407.188 MB to 1359.087 MB. Thus, the new stor-
age format reduces the storage requirement by at least 99%
compared with the traditional STL file format. Moreover, the
generation of heterogeneous porous scaffolds from the new file
format costs just a few seconds (Table 2).

Specifically, because the TDF in the parametric domain and
the period coefficients(Table 1) entirely determine the hetero-
geneous porous scaffold in a trivariate B-spline solid, the new
storage format is required to store only the following informa-
tion:

• TPMS type,

• structure type,

• period coefficients ρu, ρv, ρw,

• control points of the TDF C(u, v,w),

• knot vectors of the TDF C(u, v,w),

• control points of the B-spline solid P(u, v,w),

• knot vectors of the B-spline solid P(u, v,w).

Therefore, the new storage format is called the TDF format, and
is summarized in Appendix A for clarity.

4. Implementation, Results and Discussions

The developed heterogeneous porous scaffold generation
method is implemented with the C++ programming language
and tested on a PC with a 3.60 GHz i7-4790 CPU and 16 GB
RAM. In this section, some examples are presented, compar-
ison with classical methods and some implementation details
are discussed.
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4.1. Solution to complex models with non-zero genus
Because the genus of a trivariate B-spline solid is zero, it

cannot fit a 3D model with non-zero genus directly. Gener-
ally, when a 3D model with non-zero genus is required to be
fitted using a trivariate B-spline solid, it is segmented into sub-
parts with zero genus. Then, each sub-part is fitted using a sin-
gle trivariate B-spline solid, and all of the B-spline solids are
stitched into a unified solid, forming the trivariate solid fitting
the original 3D model with non-zero genus. It is the widely em-
ployed strategy for fitting 3D model with non-zero genus and
lots of methods have been developed to handle the continuity
problems in stitching adjacent B-spline patches and solids [31].

As illustrated in Fig. 7, the given mesh model Eight (Fig. 7(a))
with non-zero genus is first segmented into six sub-parts (Fig. 7(b)),
and each sub-part is fitted by a trivariate B-spline solid (Fig. 7(c)).
Next, the TDF is designed in the parametric domain of each B-
spline solid. In our implementation, adjacent trivariate B-spline
solids, as well as the TDFs therein, are made C1 continuous. Fi-
nally, by mapping the volume TPMS structures in the paramet-
ric domains into the B-spline solids, the heterogeneous porous
scaffold in the mesh model Eight is generated (Fig. 7(d)).

(a) (b)

(c) (d)

Figure 7. Heterogeneous porous scaffold in the model Eight with non-
zero genus. (a) Mesh model Eight with non-zero genus. (b) Segmented
sub-parts. (c) Stitched trivariate B-spline solid. (d) P-type pore struc-
ture scaffold.

4.2. Comparison with classical methods
The heterogeneous porous scaffold generation method de-

veloped in this study is compared with three classical methods
presented in Refs. [4, 6, 8], respectively. The method developed
in [4] produces a porous scaffold by first immersing a hexahe-
dral mesh model in an ambient TPMS structure, and then tak-
ing the intersection of them as the porous scaffold. Therefore,
this method cannot guarantee the completeness of the bound-
ary TPMS units. As shown in Fig. 8(a), many boundary TPMS
units are broken.

In the method proposed in [6], a fourth coordinate is firstly
added into each control point of a T-spline solid, which deter-
mines the threshold field, and then an ambient TPMS. Secondly,
the T-spline solid is discretized into a hexahedral mesh. Finally,

the porous scaffold is generated by intersecting the hexahedral
mesh with the ambient TPMS. Then, the porous scaffold gener-
ated by the method in [6] still contains broken boundary TPMS
units, as illustrated in Fig. 8(b).

Finally, in the method presented in [8], the porous scaf-
fold is generated by mapping a regular TPMS unit into the
hexahedrons of a parameterized hexahedral mesh with a tri-
linear interpolation. However, because the mappings from the
TPMS unit to the hexahedrons are performed one by one in-
dependently, the continuity between adjacent TPMS units in
adjacent hexahedrons cannot be guaranteed. For example, in
Fig. 8(c), the triangular meshes of two adjacent TPMS units are
mismatched. Moreover, because the threshold value C of all
TPMS units is a constant, the porosity is difficult to adjust in
the method [8].

However, because our method generates a heterogeneous
porous scaffold by mapping a unitary TPMS in the paramet-
ric domain to a trivariate B-spline solid, it avoids the short-
comings of the aforementioned three methods. The heteroge-
neous porous scaffold generated by our method has the follow-
ing properties (Fig. 8(d)):

• Completeness of TPMS units and continuity between ad-
jacent TPMS units are guaranteed.

• The TDF can be easily designed.

• The TDF file format saves significant storage space.

4.3. Manufacturing results and mechanical performance

As stated above, while hexahedral meshes are employed in
the two methods developed in [4] and [8], our method and the
method developed in [6] both use trivariate parametric solids,
i.e., T-spline solid in [6], and B-spline solid in our method.
Moreover, our method and the method [6] can both control the 
porosity distribution by trivariate parametric functions. There-
fore, the heterogeneous porous scaffolds designed using our 
method (abbreviated as TDF based porous scaffold) and the 
method in [6] (abbreviated as T-spline porous scaffold) are man-
ufactured using a 3D printer (SLA: stereo lithography appara-
tus) to compare their mechanical performances (Fig. 9). The 
material is special photosensitive resin, and the printing thick-
ness is set as 0.1mm. The porosity distributions of the two 
porous scaffolds are made the same by setting the same trivari-
ate parametric function, and the printing sizes are both set as 
87mm×100mm×89mm (Fig. 9). In addition, as shown in Fig. 9, 
the weights of the two porous scaffolds are 86.073g (T-spline 
porous scaffold) and 80.834g (TDF based porous scaffold), re-
spectively. The printed T-spline porous scaffold is 6.48% heav-
ier than the TDF based porous scaffold.

Moreover, we use an electromechanical universal testing
machine to physically evaluate the strength of the printed mod-
els under mechanical pressure from the same direction (Fig. 10(a)),
and plot the load-displacement curves in Fig. 10(b), where the
orange and blue curves are the mechanical test results of the
TDF based porous scaffold and T-spline porous scaffold, re-
spectively. As shown in Fig. 10(b), while the T-spline porous
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(a) Method in [4]. (b) Method in [6]. (c) Method in [8]. (d) Our method.

Figure 8. Comparison with classical porous scaffold generating methods. The methods in [4] (a) and [6] (b) cannot guarantee the completeness,
and there are broken boundary units in the generated porous scaffold (a, b). The method in [8] (c) cannot ensure the continuity between adjacent
TPMS units, and the triangular meshes of the two adjacent TPMS units in the porous scaffold are mismatched along the red boundary curve (c).
On the contrary, the porous scaffold generated by our method is completed and continuous (d).

Table 2. Statistical data of the heterogeneous porous scaffold generation method developed in this paper.

Model Type Structure Period coefficients Run time(s)1 Storage space(MB)2

TDF TPMS Porous scaffold STL format TDF format

Ball joint P
pore

(16, 14, 18) 2.745
0.326 1.466 722.428

0.813rod 0.319 1.421 704.105
sheet 0.658 2.836 1355.363

Venus D
pore

(10, 10, 10) 2.728
0.293 1.394 701.682

0.947rod 0.286 1.383 695.595
sheet 0.528 2.699 1359.087

Tooth G
pore

(8, 6, 8) 2.732
0.238 0.926 407.188

0.538rod 0.237 0.931 407.202
sheet 0.499 1.789 789.972

Moai I-WP
pore

(6, 6, 16) 2.736
0.290 1.286 621.676

0.829rod 0.284 1.301 614.045
sheet 0.583 2.537 1212.565

1 Run time (in second) for TDF construction, generation of volume TPMS and heterogeneous porous scaffold.
2 Storage space (in megabyte) of heterogeneous porous scaffolds using the traditional STL file format and the TDF file format.

(a) (b)

Figure 9. Two 3D printed (SLA) porous scaffolds and their weights. (a)
TDF based porous scaffold. (b) T-spline porous scaffold.

scaffold can sustain just about 2050N external force, our TDF
based porous scaffold can sustain external force 3080N or so.

Moreover, in Fig. 10(b), while the orange curve decreases at
about 3080N external force, the first decreasing of the blue
curve appears at about 1140N external force. The decreasing of
the load-displacement curve means that fracture occurs. There-
fore, the T-spline porous scaffold begins to fracture at an ex-
ternal force (1140N), much less than that of the TDF based
porous scaffold (3080N). Finally, with the same external force
being applied to the porous scaffolds (refer to Fig. 10(b)), the
T-spline porous scaffold (blue curve) displaces larger than TDF
based porous scaffold (orange curve), meaning that the TDF
based porous scaffold performs better than the T-spline porous
scaffold in strength.

In the mechanical test, it was noticed that the T-spline porous
scaffold begins to fracture at the places where the TPMS units
are incomplete. Therefore, we think that the completeness is an
important factor for the strength of a porous scaffold. Because
the TPMS units of the TDF based porous scaffold are all com-
plete, and some TPMS units of the T-spline porous scaffold are
not complete, the TDF based porous scaffolds perform better
than the T-spline porous scaffolds in terms of strength.
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Figure 10. Mechanical test and the load-displacement curve. (a) Me-
chanical test using an electromechanical universal testing machine. (b)
The load-displacement curves for TDF based porous scaffold (in or-
ange) and T-spline porous scaffold (in blue).

4.4. Experimental examples

In this section, some heterogeneous porous scaffold results
generated by our method are presented (Figs. 11-14). In Figs. 11-
14, (a) is the input trivariate B-spline solid, (b) is the TDF de-
signed by the above methods, and (c,d, and e) are the hetero-
geneous porous scaffolds of pore structure, rod structure, and
sheet structure with different TPMS types, all generated based
on (b).

Specially, the TDFs in Figs. 11 and 12 are designed using
the physical domain based method, where the mean curvatures
on the boundary surface of a trivariate B-spline solid are dif-
fused inside. In Fig. 13 and 14, the heterogeneous porous scaf-
folds are generated by the porosity preservation method. In
Fig. 13, the porosities at the physical grid vertices are set as
0.5. In Fig. 14, the porosity Pori at the physical grid vertex
(xi, yi, zi) is specified as,

Pori = 0.3
(
1 −

zi − zmin

zmax − zmin

)
+ 0.7

zi − zmin

zmax − zmin
,

where zmin = mini{zi}, and zmax = maxi{zi}.
Moreover, statistical data are listed in Table 2, including

period coefficients (ρu, ρv, ρw), run times for the TDF construc-
tion, porosity preservation, TPMS triangulation, and heteroge-
neous porous scaffold generation, and storage costs of porous
scaffolds with the traditional STL file format and the new TDF
file format.

4.5. TDF file format

In Table 2, the storage spaces required to store the porous
scaffolds using the traditional STL file format and the new TDF
file format are listed. Storing the porous scaffolds using the
TDF file format costs 0.538 to 0.947 MB, while using the STL
file format, it costs 407.188 to 1359.087 MB. Therefore, at least
99% of storage space is saved by using the new TDF file format.
Moreover, in Table 2, the time cost for generating the heteroge-
neous porous scaffold from the TDF file format is also listed,
including the run time for generating volume TPMS structures
and porous scaffolds. We can see that the time costs range from
4 to 7 seconds, which is acceptable for user interaction.

The TDF file format brings some extra benefits. Tradition-
ally, heterogeneous porous scaffolds have been stored as linear
mesh models. However, the TDF file format stores a trivariate
B-spline function. Therefore, in theory, a porous scaffold can
be generated to any prescribed precision using the TDF file for-
mat. In addition, the period coefficients and control points of
the trivariate B-spline function, stored in the TDF file format,
can be taken as some types of parameters. Therefore, a het-
erogeneous porous scaffold can be changed by altering these
parameters, just like the parametric modeling technique.

4.6. Discussion

In this section, we will discuss the advantages and limi-
tations of the developed method (abbr. TDF based method),
which are untouched in the above.

On the one hand, the TDF based method has some extra
advantages. First, the heterogeneous porous scaffold generated
by the TDF based method is fully determined by the TPMS
in the parametric domain. Because the parametric domain is
a cubic domain, the other types of porous structures, such as
those developed in [32, 33], are easily produced in the cubic
parameter domain. Therefore, the TDF based method can be
extended to generate the other types of porous structures.

On the other hand, the limitations of the TDF based method
are evident. First of all, because a trivariate B-spline solid has
zero genus, a single B-spline solid cannot represent the 3D
model with non-zero genus. As stated in Section 4.1, to rep-
resent a 3D model with non-zero genus using B-spline solids, it
should be segmented into sub-parts with zero-genus. The seg-
mentation of the 3D model is tedious, usually needing user in-
teraction.

Moreover, though the TDF file format can save considerable
storage space, it is still required to convert to the traditional file
formats for manufacturing. Therefore, as the future work, we
will study how to manufacture the models stored in TDF file
format directly, avoiding the conversion to the traditional file
formats.

5. Conclusion

In this study, we developed a method for generating a het-
erogeneous porous scaffold in a trivariate B-spline solid by the
TDF designed in the parametric domain. First, the TDF is
easy to be designed in the cubic parametric domain, and is
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(a) (b) (c) (d) (e)

Figure 11. Heterogeneous porous scaffold of Ball-joint. (a) Trivariate B-spline solid. (b) TDF designed by the physical domain based method with
mean curvatures. (c) P-type pore structure. (d) P-type rod structure. (e) P-type sheet structure.

(a) (b) (c) (d) (e)

Figure 12. Heterogeneous porous scaffold of Venus. (a) Trivariate B-spline solid. (b) TDF designed by the physical domain based method with
mean curvatures. (c) D-type pore structure. (d) D-type rod structure. (e) D-type sheet structure.

(a) (b) (c) (d) (e)

Figure 13. Heterogeneous porous scaffold of Tooth. (a) Trivariate B-spline solid. (b) TDF generated after porosity preservation. (c) G-type pore
structure. (d) G-type rod structure. (e) G-type sheet structure.

represented as a trivariate B-spline function, which can be em-
ployed to control some physical properties, such as porosity,
of the porous scaffold. Then, a TPMS can be generated in the
parametric domain based on the TDF. Finally, by mapping the
TPMS into the B-spline solid, a heterogeneous porous scaffold
is produced. Moreover, we presented a new file format (TDF)
for storing the porous scaffold, that saves significant storage
space. By the method developed in this study, both complete-
ness of the TPMS units and continuity between adjacent TPMS
units can be guaranteed. More importantly, the TDF file format

not only saves significant storage space, but it can also be used
to generate a porous scaffold to any prescribed precision. In
terms of future work, determining how to change the shape of
a porous scaffold using the parameters stored in the TDF file
format is a promising research direction.
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Appendix A: TDF file format

#TPMS type
# m=0 : P-type; m=1 : G-type; m=2 : D-type; m=3 : I-WP-
type;
m
#structure type
# n=0 : Rod structure; n=1 : Pore structure; n=2 : Sheet struc-
ture;
n
#period coefficients(ρu, ρv, ρw)
ρu ρv ρw

#resolution of control grid of TDF
nu + 1 nv + 1 nw + 1
#control points of TDF
C0,0,0
C0,0,1

...
Cnu,nv,nw

#knot vector in u-direction of TDF
u0 u1 · · · unu+4
#knot vector in v-direction of TDF
v0 v1 · · · vnv+4
#knot vector in w-direction of TDF
w0 w1 · · · wnw+4
#resolution of control grid of trivariate B-spline solid
m + 1 n + 1 l + 1
#control points of trivariate B-spline solid
x0,0,0 y0,0,0 z0,0,0
x0,0,1 y0,0,1 z0,0,1

...
...

...
xm,n,l ym,n,l zm,n,l

#knot vector in u-direction of trivariate B-spline solid
U0 U1 · · · Um+4
#knot vector in v-direction of trivariate B-spline solid
V0 V1 · · · Vn+4
#knot vector in w-direction of trivariate B-spline solid
W0 W1 · · · Wl+4

Appendix B: Functions between the porosity and the thresh-
old C

In order to ensure the fitting error reaches 10−5, we use lin-
ear or quadratic functions to fit the relationship between the
porosity and the threshold C.
Pore structures shown in Fig. 4(a)
P-type: Por = 0.2887C + 0.5001, C ∈ [−0.8, 0.8],
D-type: Por = 0.5898C + 0.5001, C ∈ [−0.6, 0.6],
G-type: Por = 0.3338C + 0.4998, C ∈ [−0.8, 0.8],
I-WP-type: Por = −0.1332C + 0.5243, C ∈ [−2.0, 2.0].
Rod structures shown in Fig. 4(b)
P-type: Por = −0.2887C + 0.4999, C ∈ [−0.8, 0.8],
D-type: Por = −0.5898C + 0.4999, C ∈ [−0.6, 0.6],
G-type: Por = −0.3338C + 0.5002, C ∈ [−0.8, 0.8],
I-WP-type: Por = 0.1332C + 0.4757, C ∈ [−2.0, 2.0].
Sheet structures shown in Fig. 4(c)
P-type: Por = −0.0009C2 +0.00005C +0.943, C ∈ [−0.6, 0.8],
D-type: Por = −0.0.0151C2+0.003C+0.8839, C ∈ [−0.4, 0.6],
G-type: Por = −0.0048C2 +0.0001C+0.9357, C ∈ [−0.6, 0.8],
I-WP-type: Por = −0.0006C2−0.0021C+0.974, C ∈ [−1.8, 2.0].
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