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Abstract

We introduce an A-weighting variance measurement,
an objective estimation of the sound quality generated
by geometric acoustic methods. Unlike the previous
measurement which applies to the impulse response, our
measurement establishes the relationship between the
impulse response and the auralized sound that the user
actually hears. We also develop interactive methods to
evaluate the measurement at run time and an adap-
tive algorithm that balances quality and performance
based on the measurement. Experiments show that our
method is more efficient in a wide variety of scene ge-
ometry, input sound, reverberation, and path tracing
strategies.

1. Introduction

In VR applications, the ability to simulate the sound that
user hear in virtual environment with high fidelity is of great
importance for the immersive experience. Over the years,
different methods for simulating sound propagation in vir-
tual environment have been proposed, which can be essen-
tially divided into two categories: wave-based methods and
geometric acoustic (GA) methods [25, 26]. In VR applica-
tions of which interaction being the key feature, GA meth-
ods are the dominating choice thanks to its performance ad-
vantage over wave-based methods.

Most GA methods work by tracing random paths that
link the listener and the sound sources, from which a im-
pulse response (IR) can be obtained, and then convolved
with the actual sound wave of the sources to yield the sound
that user hear. The number of paths, or samples, gener-
ated in the tracing process largely determines the quality of
the simulation. In applications it is often desirable to de-
termine a proper sampling rate according to a predefined
quality requirement. In a recent work [10] that uses bidirec-
tional path tracing to simulate sound propagation, a mea-
surement based on the signal-to-noise ratio (SNR) of im-
pulse response is proposed and used to control the sampling
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rate. This measurement, however, is computed on the im-
pulse response instead of the sound that user actually hear.
Controlling the sampling rate based on an indirect measure-
ment give rise to undesired behavior in certain input sound
– for a given impulse response the quality of the simulation
result that heard by the user is obviously also dependent on
the input sound wave, which is ignored in the measurement.

In this paper, we propose a new measurement for the
simulation quality that directly applies on the auralized
sound. We apply the widely used A-weighting technique
[8] to accumulate variance estimation of different frequency
band to yield a single-valued measurement of the qual-
ity, which can be easily used to develop adaptive sampling
strategies. The main contributions of the paper include:

• A new, A-weighting based measurement that directly
applies on the auralized sound for the simulation qual-
ity;

• An interactive method for estimating the above mea-
surement at run time;

• An adaptive method based on the new measurement to
balance quality and performance by dynamically de-
termining a minimal sample budget that satisfies the
predefined quality threshold.

We show that our method is more efficient in balancing
quality and performance than previous method in different
scene geometry, input sound wave, reverberation and path
tracing strategies.

2. Background

In this section, we briefly describe geometric acoustic
methods in sound propagation, and existing measures on
sound quality with their limitations.

2.1. GA Sound Propagation

Many widely used methods for sound propagation are
based on GA. GA methods work under the assumption that
the wavelength of sound is much smaller than the objects
in the scene. Under this assumption, sound propagates
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along straight lines, and methods used for light transporta-
tion are fit for sound propagation. Although GA meth-
ods are hard to simulate wave effects such as diffraction
and interference, these methods are still more effective than
wave-based methods in room acoustics with high-frequency
sources where wave effects take a minor position.

Early works in GA sound propagation include image
source method and ray tracing [18]. Similar to that for vi-
sual rendering, ray tracing based methods are widely used in
GA methods for sound rendering [19, 21]. Paths of sound
particles move through the scene and hit objects then are
accumulated at the position of the listener. A bidirectional
path tracing GA method was introduced in [10] using the
method in visual rendering [16].

Although path-tracing algorithms in rendering the sound
are similar to that in rendering an image, there are still some
key differences between these two cases. The auditory sys-
tem of human ears has lower spatial resolution but higher
temporal resolution than the visual system. Quality mea-
sures for sounds should be focus on the temporal dimension
instead of the spatial distance. Because of these difficulties,
few measures are introduced to evaluate the quality of GA
generated sound. [10] introduced a measure for GA algo-
rithms based on SNR on energy response, but this measure
is still not for the sound that the users would hear.

2.2. Sound Measures

Existing sound measures are mostly applied to describe
the characteristics of a sound signal. Commonly used sound
measures include some basic properties like sound pressure
and frequency [1]. Some other measures describe how the
sound propagates in an enclosed space in room acoustics,
including reverberation time RT60, clarity C50, and early
decay time EDT [5].

RT60 and C50 are measures defined on IR. They are
defined by RT60 = t−60dB − t0, the time sound pres-
sure level takes to decrease by 60dB, while C50 =
10log10(E0,50/E50,inf), the ratio of early sound energy in
first 50ms to the late sound energy. These measures give
some brief information on the shape and property of IR.
However, they are not enough to evaluate the quality of
path-tracing generated impulse response because the ex-
pected shape of IR does not change when the sample budget
changes.

Subjective sound measures based on psychoacoustics
play a different role on sound evaluation. Mean opinion
score terminology [7] is widely used in the perceptual eval-
uation of subjective sound quality. But this method is case-
specific and hard to be conducted when when the number
of virtual scenes is large while the number of test subjects
is limited. Another way of building subjective sound mea-
sures is to conclude generic rules with the support of physi-
ological or cognitive experiments, such as loudness [6] and

localization [9] cues.

3. Analyisis

3.1. Error in path tracing based GA methods

Deterministic GA methods like image source methods
are precise but not accurate since they ignore late reverber-
ation in sound propagation. Here we discuss path-tracing
based GA methods. The impulse response is generated by
1) collecting random paths propagated in the scene and 2)
filtering the collected result.

We assume all the ray path in one frame is generated in
a same sampling strategy without loss of generality. Col-
lected signal

∑
ei(t) in the first (collecting) step is written

as E(t). It is clear that a convolution filter on E(t) can be
independently applied on each ray path:

E′(t) = f(t) ∗ E(t) = f(t) ∗ 1

N

N∑
i=1

ei(t)

=
1

N

N∑
i=1

f(t) ∗ ei(t)

=
1

N

N∑
i=1

e′i(t)

(1)

Here ∗ is the convolution operator, and f(t) is a filter
on original energy response. The impulse response we are
interested in IR(t) is a case of filtered energy E′(t). Almost
all common operators between the path tracing step and the
auralization step can be represented as f(t) in Monte Carlo
based methods, including:

• Scaling energy with a constant factor.

• Shifting signal in the time domain.

• Band-pass or crossover filters.

This shows that the expectation of impulse response
IR(t) is the mean value of many filtered path impulse e′i(t).
Each e′i(t) is a random function defined on time domain.
Changing the scene, position of sound source and position
of listener also changes the distribution of each e′i(t), hence
the estimated impulse response becomes different. Increas-
ing rays from N to N ′ changes the variance of estimated IR
inverse proportionally:

var(IR′) = var(
1

N ′

N ′∑
i=1

e′i(t))

=
1

N ′
var(e′(t)) =

N

N ′
var(IR)

or : var(IR) ·N = var(IR′) ·N ′

(2)



This can also be written in the form of SNR if needed,
because mean value will not change:

SNR(IR′) =
mean2(IR′)

var(IR′)

=
N ′

N

mean2(IR)

var(IR)

=
N ′

N
SNR(IR)

(3)

These results also holds on frequency domain because:

E′freq(s) = FT (f(t) ∗ E(t)) = ffreq(s) · FT (
1

N

N∑
i=1

ei(t))

= ffreq(s) · 1

N

N∑
i=1

ei,freq(s)

=
1

N

N∑
i=1

e′i,freq(s)

(4)

Here FT (f(x)) is the Fourier transform to function
f(x), and the functions with subscript freq are defined on
frequency domain.

3.2. From IR to convoluted sound

In auralization step of sound propagation, IR is convo-
luted with input signal to get the sound human user finally
hear. In this calculation, variance on IR becomes error on
convoluted sound. For a sound clip, it is hard to analyse
convolution error in time domain. But the relationship be-
tween two errors is more clear in frequency domain:

var(Tfreq) = var(Sfreq · IRfreq)

= S2
freqvar(IRfreq)

(5)

Where T is the output sound and S is the input signal.
This implies that the variance of output sound on the fre-
quency domain is determined by the frequency amplitude
of input sound and the variance of IR. In sound propaga-
tion, Sfreq is the pre-defined input sound signal and always
keeps constant. So the variance of output signal var(Tfreq)
only changes with the variance of IR var(IRfreq), which is
further determined by the change of sample count N .

However, in practical, result sound clips on each frame
are not independent. An overlap exists between two sound
clips of the length of LIR or (LIR − 1 in discrete form).
But it is shown that the error of overlap is controlled on the
aspect of IR energy distribution:

Eclip = Etail,prev + Ehead

=

∫ LS+LIR

LS

(Sprev ∗ IR)2dt +

∫ LS

0

(S ∗ IR)2dt

=

∫ LS+LIR

0

(S ∗ IR)2dt

−
∫ LS+LIR

Ls

((S ∗ IR)2 − (Sprev ∗ IR)2)dt

(6)

Meanwhile,
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≤
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Ls

(S ∗ IR)2dt
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+
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Ls

(Sprev ∗ IR)2dt
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(7)

Here ”clip” means the output energy on a time clip of
length Lclip, ”head” means the energy of the beginning of
signal with length LS , ”tail” means the energy of ending of
signal with length LIR, and ”prev” is the last clip or block
of the input sound. This formula shows that the error from
overlap can be ignored if LIR is far smaller than LS or the
reverberation of IR is relatively small that IR can be ap-
proximately equivalent to a shorter one. From Parseval’s
theorem, the energy on the time domain is equal to that on
the frequency domain. This means the overlap error on fre-
quency can also be ignored. Experiments are described in
the following chapter confirming that overlap error does not
take an important part in common cases.

3.3. Get a single variance value

The variances analyzed in previous sections are func-
tions on time or frequency domain. We use the A-weighting
technique described in [8] to obtain a single variance value
for further application. A-weighting curve is shown in Fig.
1, describing the relative loudness of different frequencies
perceived by human ears. To make different frequencies to
be equal-loudness, the variance on the frequency domain
is multiplied with the square of the weights from the A-
weighting curve, which is the variance of a-weighed equal-
loudness sound pressure. Then the average of weighted
variances is the single variance value:

v̄ =
1

S

S∑
i=1

a2i vari (8)



Figure 1. The A-weighting curve [8]. Sound signals of differ-
ent frequencies are considered being equal-loudness if their sound
pressure level multiplying the weight (or adding in log scale) are
equal.

(a) pillar (b) roomset (c) elmia
Figure 2. Scenes used in our experiments and benchmarks. A
sound source is located in a fixed position. The listener moves
along a path, creating dynamic impulse responses and sound prop-
agation results. (a) is a rectangular room with eight pillars creating
complicated occlusion. This scene is from [11]. (b) is a realistic
building floor with a set of connected rooms. (c) is the model of
Elmia Concert Hall. These two scenes are from [10].

(a) male (b) female (c) music
Figure 3. Spectrograms of input sound signals used in our experi-
ments and benchmarks. (a) is a male voice talking about ”infinity”
in English. (b) is a female voice in Chinese. (c) is a music clip of
Canon in D Major by J. S. Bach.

Where S is frequency band count, or length of frequency
domain, ai is A-weight at frequency i, and vari is the i-th
variance on frequency domain.

The single-value weighed variance v still holds the rela-
tionship with ray count N , like variance values on the fre-
quency domain. This value is more useful than variance
function on time or frequency domain because it can be
viewed as an optimization target for GA algorithms. This
is going to be described in the next section.

Figure 4. Estimaed and real A-weighting variance at each point on
the path.

Figure 5. Variance changes with sample count N on Location 1,
20 and 40. N = 2048 is used as a standard sample count. From
this experiment, a 3dB variance reduction is observed each time
the sample count N is doubled.

3.4. Verification

3.4.1 Background

We use a simplified ”roomset” scene to show several as-
sumptions and conclusions above. This scene is a building
floor with several rooms connected to a corridor. A sound
source is placed in the largest hall while the listener moves
through the corridor and several rooms (Fig. 2b).

3.4.2 Variance estimation

At each point on the path, we have estimated A-weighting
variance using the variance of IR and input sound signal.
The result fits good with calculated variance from output
signal (Fig. 4), which implies A-weighting variance suc-
cessfully builds up the relationship between IR and convo-
luted sound.

3.4.3 Variance when Ray Count Changes

From the analysis above, doubling the sample count reduces
the variance by half. In decibel scale, this reduction is rep-
resented as a 10log102 ≈ 3.0dB variance reduction. We
take three points on the listener path (1st, 20th, 40th) and
three sample counts (N = 2048, 4096, 8192) to verify the



(a) (b) (c)
Figure 6. Results of test path method. (a) shows the estimated ray
variance in pillar scene when test path count Nt = 32, 128, 512.
(b) shows that the error of variance in pillar scene is lower than
1dB in most time even the test ray count is only 32. (c) gives
an example of unstable variance estimation in the roomset scene
where some listener positions are highly occluded and the rays are
hard to reach.

variance change. Our experiment result supports the 3dB
rule from analysis, which is shown in 5.

4. Adaptive Sound Propagation

A-weighting variance is a measure of sound quality and
can be calculated by variance on IR. Always using the
same sample count in a dynamic environment, such as a
scene with moving sound sources or listeners, makes sound
quality unnecessarily high or unacceptably low at differ-
ent points. This can be reflected by the drastic oscillation
of the A-weighting variance value. This phenomenon re-
quires a sound propagation method that modifies sample
count adaptively, while A-weighting variance can be used
as a reference for adjusting sample count. But the prob-
lem is that calculating the variance requires calculated IR,
which does not exist until the sound propagation step fin-
ishes. The ”test path” method is proposed here to solve this
chicken-egg problem.

4.1. Test path method

The test path method in sound propagation is proposed
in [11] for estimating the mean free path in room acoustics.
We have found that the test path method can estimate more
other properties on IR, including variance. From our ex-
periment result, collecting frequency variances into a single
value helps to overcome the lack of data count and get a
reasonable variance value in some cases. In other cases, the
variance estimation is not precise but the errors on sample
count estimation and sound propagation are limited.

In path-based GA methods, the energy provided by each
ray path, or each sample, is under an independent and iden-
tical distribution (IID). The variance of collected energy is
the variance of the mean value of all paths, 1

N varsingle,
where varsingle is the variance of a single sample. The
main idea of the test path method is to estimate varsingle
with few rays and then obtain a target ray budget with tar-
get variance in the sound propagation step.

From our experiment, a reasonable variance can be ob-
tained with only 32 rays in open or slightly occluded scenes

(Fig. 6). In most listener positions of pillar scene, the es-
timated 32-ray ”single ray” variances varsingle is close to
the results using more (128 or 512) rays. Compared to ref-
erence single ray variance (obtained using 2048 rays), more
test path results in a lower estimation error, but the 32-ray
case is good enough (less than 5% of the estimation error
of variance). Two ”spikes” appear on Fig. 6b because the
energy in these positions are indirect and plain path tracer
suffers a relatively larger error. This is similar to the ”fail-
ure” but acceptable case in next paragraph.

A ”failure” case can be observed in the ”roomset” scene
where variance estimation gets incorrect results on some
highly occluded listener positions (20th to 35th and after
45th). However, this error is not so severe in the sound
propagation step. Here are two reasons why this error is
acceptable: 1) this experiment only uses a plain path trac-
ing algorithm, which is hard to handle this case. The re-
sult would be better if the test path method is applied on
advanced algorithms, and 2) test path can be used as the
lower bound of sample count, and the highly occluded lis-
tener positions can obtain a reasonable propagation result
having this lower bound when their energy and variance is
far lower than other positions, which is shown in the bench-
mark results below.

The test path method works with very low extra time
cost. Compared to thousands or more samples per frame
in sound propagation, 32 rays of test paths only increase
overhead by less than 1%. The other part of the extra time
cost in this method when evaluating A-weighting variance
is the fourier transform. Due to the complexity of FFT is
O(nlogn), where n is the length of data, this part of cost
is constant to total sample count N . The real time cost of
fourier transform would be even lower because many points
in the test path generated IR is 0. The storage overhead of
test path method would be higher than plain path tracer be-
cause it stores Nt times of impulse responses. But the stor-
age cost would not increase by N infinitely. If we assume
the length of impulse response is 100K, the storage cost of
a single impulse or frequency response would be less than
0.2M. 32 test path would cause a maximum of 6.4M mem-
ory cost. This means the storage overhead from test path
method is acceptable in modern computers.

Meanwhile, this test path method is not available for all
of the variables or statistics in GA based sound propagation,
yet many statistics can be evaluated using our method. For
example, estimating mean value instead of variance brings
up a greater (more than one order of magnitude) error that
the estimated mean does not good enough for further mea-
sure calculation. SNR estimation also cannot be achieved
by test paths because the estimation of variance is accurate
but the estimation of mean is poor.



4.2. Adaptive algorithm framework description

Here we describe the framework of adaptive sound prop-
agation (Algorithm 1).

Algorithm 1 Adaptive sound propagation
Require: Scene,Nt, vartarget
Ensure: IR

for i = 1 to Nt − 1 do
IRtest,i ← path tracing(Scene, sample = 1)

end for
varsample ← var(FT (IRtest,i))
N ← varsample/vartarget
if N < Nt then
IR = collect(IRtest,i)

else
IR = path tracing(Scene, sample = N)

end if

The adaptive method runs every time the setting of the
scene changes. For example, when the listener moves along
a path, a new sample count N and scene IR is calculated
at each point of the path. The adaptive method runs as fol-
lows: First, a batch of Nt test paths are emitted to estimate
sample variance varsample. Then the estimated variance
is compared to a user-defined target variance vartarget to
get ray sample count N . If N is smaller than Nt, impulses
that are already generated can be used as the final impulse
response. Otherwise, the main sound propagation step is
called with N samples. This method only requires that
each ray in GA sound propagation is IID so that their re-
sult IR and variance can be added or linearly scaled. How
the path tracing function works in practice, like using im-
portance sampling or bi-directional path tracing, and index-
irrelative operations like HRTF, does not affect the correct-
ness of this algorithm.

4.3. Benchmark

This subsection shows the result of our experiments on
the adaptive sound propagation framework. We compare
the performance of this algorithm with different scene ge-
ometry, input sound, and reverberation. Target normalized
variance of this algorithm is set to −20dB in most cases
and −10dB in ”Elmia” and ”music” case 7, and the result
variance is calculated from output sound clips, by rendering
the sound on each point 100 times. After the adaptive step,
a constant-sample GA propagation procedure is conducted
as a reference. The total sample count of adaptive and orig-
inal sound propagation methods are identical. All the paths
are emitted, reflected, and collected using a plain backward
path tracer, and a bidirectional path tracer in the last bench-
mark, with no optimization technique like diffuse cache or
path cache. The experiments are conducted in Matlab on a

computer with Intel i7-6700HQ 2.60GHz CPU and 16.0GB
memory.

4.3.1 Sample Count Optimization

Studies on cognitive psychology point out that thresholds
of ”resolutions” widely exist on human perception, includ-
ing the just noticeable difference (JND) in sound clarity and
speed [22, 23]. In the sound propagation method, a thresh-
old variance can be assigned as the maximal target value to
make sure that each of the propagated sound clip has a lower
or equal variance compared to the target. In plain pase-
based GA methods, the sample count is determined only
by the highest variance to keep all the variance lower than
the target, which causes unnecessary samples on other posi-
tions of the listener. In our adaptive method, the necessary
sample count is predicted at each position of the listener,
which makes the most of the calculation resources. The
sample count in the original method can be calculated as
varmax/vart to make sure the whole variance curve drops
below the target, which could be reductant. Table. 1 shows
the significant reduction of required sample counts to reach
the same maximal variance limit in adaptive path tracing
than in the original method in different scenes.

Scene Samp (req.) Samp (opt.) Reduction
Pillar 15789 4411 72.1%

Roomset 6266 703 88.8%
Elmia 42720 8419 80.3%

Table 1. Sample Count Optimization

4.3.2 Scene Geometry

We tested sound propagation of the same input signal (male
voice) in multiple scenes: Pillar (Fig. 2a), Roomset (Fig.
2b) and Elmia (Fig. 2c) using same total sample budget
of original and adaptive methods. The results are shown in
Fig. 7a, 7b and 7c. In Pillar, adaptive sound propagation has
a more stable variance, while the original method results in
a high variance in some listener positions. In the roomset
scene, the adaptive variance becomes lower than the target
in the middle few positions of the path. This is because
N calculated in the test path step is smaller than Nt so the
test paths are used as the final result, which has a smaller
variance than expectation. Since small variance represents
a more accurate sound signal, this result meets the demand
of limiting large errors in sound propagation. Elmia scene
encounters a bit larger error on balancing the variance. This
is caused by the complicated geometry of that scene and the
only 32 test paths are not enough to get a precise estimation
result as other scenes. Still, the result in Elmia is acceptable
and the unnecessary samples are reduced.



4.3.3 Input Sound

Three sound clips, the default male voice clip in English
(Fig. 3a), a clip of female voice in Chinese (Fig. 3b), and
a clip of Canon music in piano (Fig. 3c), are applied as
input sound signal in this experiment. All the other condi-
tions, including scene geometry (pillar), source and listener
position, and reverberation are fixed. The results are shown
in Fig. 7a, 7d and 7e. The case of the female voice has
a similar performance to the default male voice. An error
is observed on optimized variance at the beginning of the
music case. This is caused by the very narrow frequency
band (clear sound of piano keys) of the input signal at those
points.

4.3.4 Reverberation

To test our adaptive method in different reverberation, we
set sound velocity to s1 = 343m/s and s2 = 0.1s1 =
34.3m/s respectively. The setting that sound travels in
1/10 velocity is equivalent to the reverberation magnified
by 10 times. The results are shown in 7a and 7f. The
high error at the beginning of the long reverb case is caused
by the low sound velocity. Some of the sound paths are
still propagating to the listener in the beginning seconds,
which makes the variance harder to estimate. Reverbera-
tion caused by large scenes also suffers from this problem.
In the later seconds, the adapted variance is flattened, mean-
ing the input sound finally reaches the listener and does not
bring up more error generally.

4.3.5 Using IR-related measure

We test the SNR measure from [10] to calculate Nt in our
adaptive framework. The SNR measure is defined on IR
and do not control the auralized result. In the sample count
estimation step, the maximum value of SNR on the time-
domain energy response is used as a target. Experiment
result is shown in Fig. 7g. Two conclusions can be ob-
tained from theoretical analysis and experiment result: 1)
Controlling measures on IR cannot also control measures
on auralized sound, causing the result unstable and the max-
imal variance is not reduced; 2) SNR measure helps flatten
the beginning variances because the instability of these vari-
ances is mainly caused by the change of scene geometry, but
on the following positions of the listener, geometry change
and input signal change both play a role in variance change,
which is hard for SNR measure to handle. Both of these
conclusions support our A-weighting measure.

4.3.6 Different Sample Strategies

Finally, we implemented a bidirectional path tracer to re-
place the plain backward path tracer in previous experi-

ments. The result is shown in Fig. 7h, showing that the
bidirectional path tracer is also fit for our A-weighting vari-
ance and adaptive method. Since the A-weighting variance
is calculated using output sound, it is natural to compare dif-
ferent algorithms with this measure. The total time cost of
the BDPT experiment is similar to the first case, but the vari-
ance obtained is much lower (-70dB), which implies bidi-
rectional path tracer performs better in the Pillar scene with
obstacles and occlusion.

5. Conclusion

We have analyzed Monte Carlo path tracing in GA sound
propagation and have proved that A-weighting variance is
the suitable measure which is both controllable by sample
count in sound propagation methods, and effective for mea-
suring the quality of the auralized sound the users would
hear. We have presented an adaptive sound propagation
method to estimate the required sample count, balance the
computation budget, and reduce unnecessary samples. Our
method is universal enough to cooperate well with differ-
ent sampling strategies or path tracers. All the benchmarks
show the effectiveness of our measure and adaptive method
in different scene geometry, input sound, and acoustic con-
dition. Compared to existing measures like SNR, our mea-
sure and adaptive approach perform better on output sound
signals.

A limitation of our work is the A-weighting variance not
perceptual enough to describe how the users feel with the
propagated sound. A-weighting variance is mainly calcu-
lated in theory but psychological experiments are required
to prove the effectiveness of this measure in human percep-
tion. Another limitation is from GA methods which our
work bases on. GA methods have system error on low-
frequency sound, which makes A-weighting variance not
suitable for an input signal of low frequency perceptually.
Meanwhile, input signals with narrow frequency bands will
make our method hard to evaluate a correct variance value.
Finally, how to apply the test path method in non-GA or hy-
brid methods is still a problem. Many hybrid sound propa-
gation frameworks have been proposed nowadays and find-
ing a way to apply our method into these frameworks is
helpful to get a better sound propagation result.

More works can further be done to improve our knowl-
edge of sound quality from GA methods. The adaptive
method would be more useful if the threshold variance is
guided by measures in human cognition, meaning that psy-
chological experiments can be conducted to find out the just
noticeable A-weighting variance most users hold. Other
perceptual measures can be added to our adaptive frame-
work to get a better computation balance. On the frequency
domain, a more stable method can be developed for han-
dling input sound cases of low frequency and narrow fre-
quency bands. Finally, our A-weighting variance, adaptive



(a) Pillar, Male (b) Roomset, Male

(c) Elmia, Male (d) Pillar, Female

(e) Pillar, Music (f) Pillar, Male
(long reverberation)

(g) Pillar, Male
(ERSNR controlled)

(h) Pillar, Male
(BDPT)

Figure 7. Benchmark of A-weighting variance of different scene,
input signal and reverberation. (a) is the original setting: ”pillar”
scene, ”male voice” input and normal reverberation. (b) and (c)
replaces scene with ”roomset” and ”Elmia concert hall” respec-
tively. (d) and (e) use a female voice and a piece of Canon music
as input signal. (f) enhances the scene reverberation by 10 times
using lower sound velocity. (g) replaces estimated A-weighting
variance for testing sample count with SNR measure in [10]. (h)
replaces plain path tracer with a bidirectional path tracer. The tar-
get variance in ”Elmia” and ”music” are assigned to -10dB instead
of -20dB to reduce sample count under 10k and make sure the
experiments do not take too much time. The target variance in
”BDPT” is -70dB because bidirectional path tracer performs far
better than the plain one.

methods, and test path technique can also be explored in

other hybrid sound propagation frameworks.
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