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Abstract

Recent studies show increasing demands and inter-
ests in automatic layout generation, while there is still
much room for improving the plausibility and robust-
ness. In this paper, we present a data-driven layout gen-
eration framework without model formulation and loss
term optimization. We achieve and organize priors di-
rectly based on samples from datasets instead of sam-
pling probabilistic distributions. Therefore, our method
enables expressing relations among three or more ob-
jects that are hard to be mathematically modeled. Sub-
sequently, a non-learning geometric algorithm is pro-
posed to arrange objects considering constraints such
as positions of walls and windows. Experiments show
that the proposed method outperforms the state-of-the-
art and our generated layouts are competitive to those
designed by professionals. 1

1. Introduction

3D scenes are becoming fundamental in many areas of
computer graphics, e.g., photo-realistic rendering, virtual
reality (VR), providing datasets for computer vision [9], etc.
However, the progressive development of computer graph-
ics requires better modeling of 3D scenes and generation of
layouts. Therefore, we have been investigating techniques
of automatically generating scene layouts.

Generating scene layouts benefits various applications.
First, it saves the effort of manually placing objects in video
games or industrial designs 2. Li et al. [11] generate various
layouts for better simulations of wheelchair training. Handa
et al. [9] generate multi-view images from much fewer 3D
scenes.

Existing works already show the progress of scene syn-
thesis [31], where scene layouts focus on their plausibility
and aesthetic, i.e., visual identifications given generated lay-
outs. Existing works are divided into neural network based
techniques and others. The former trains several neural net-

1Code is publicly available at
https://github.com/Shao-Kui/3DScenePlatform, including the proposed
framework (algorithm) and a 3D scene platform (toolbox).

2https://planner5d.com/

works for different steps such as placing objects, rotating
objects, deciding termination of arrangements [25]. The
latter formulates a set of mathematical models including
graphs, and typically optimize a shuffled area based on e.g.,
Markov Chain Monte Carlo (MCMC) [30, 19], since the
models are too complicated to be solved. Nevertheless, al-
gorithmic methods have not been investigated as far as we
reviewed, because similarly we have to embed layout rules
into an algorithm so that it operates properly. However, lay-
out rules are innumerable. A qualitative comparison of ex-
isting techniques is beyond the scope of this paper. Despite
underlying technical details, this paper focuses on the final
results, i.e., improving the plausibility and aesthetic of gen-
erated layouts.

In this paper, we propose an algorithmic framework for
generating room layouts as shown in Figure 1. Our frame-
work is split into a data-driven phase: coherent grouping
and a non-data-driven phase: geometric arranging. In the
coherent grouping phase, objects are clustered into several
coherent groups (section 3), where priors are learnt for sug-
gesting layouts within each coherent group. We directly
use correct and denoised samples extracted from datasets as
priors. This brings two benefits. First, we no longer hy-
pothesize distributions of layout rules between/among ob-
jects, especially the mathematically inexpressible relations.
Second, we could easily formulate and represent relations
among three or more objects since we only have to load
samples of real distributions. Similar to “hyper-graphs”
where an edge connects to more than two vertices, we name
our learnt relations among objects “hyper-relations” (sec-
tion 4). Thus, several objects of the same coherent group
are arranged in O(1) time by sampling from their hyper-
relations. In the geometric arranging phase, given indepen-
dent coherent groups where objects of the same group are
already properly arranged with respect to each other, a ge-
ometric algorithm is proposed to assign positions and ori-
entations of each group. Since layout rules among objects
are applied during the coherent grouping phase, geometry
phase concentrates on much fewer rules related to walls,
windows, etc (section 5).

Current technologies of synthesizing 3D scenes include
selecting a set of appropriate objects and generating plau-
sible layouts for the objects. We do “layout” while tech-
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Figure 1: Our framework uniformly layouts objects, e.g., small objects on a surface are arranged concurrently instead of
another layout problem. In addition to the overall plausibility, we emphasize reasonableness among objects related to each
other, i.e., coherent groups. Ours is also friendly to objects hung on walls.

niques for selecting objects are easily incorporated such as
[10]. Note that in this paper, we prefer instance-based priors
to category-based priors, e.g., we consider a spatial relation
between a specific coffee table to a specific chair, where
both of them have unique textures and geometries. If cate-
gories are being based, distinct features of objects are lost.
As shown in Figure 2, different shapes of several armchairs
have their own priors to the same coffee table.

In this paper, we make the following contributions:

1. We first introduce and learn hyper-relations among
three or more objects, which increases the aesthetics
and plausibility of arranging objects in same coherent
groups and only requires O(1) time to sample layouts
of each group, e.g., a coffee table surrounded with sev-
eral distinct sofas and a TV stand, thus increasing the
overall performance.

2. We propose a new scalable geometry-based framework
for layout generation, which considers detailed aspects
of room layout, e.g., doors, windows, wall decora-
tions, small objects, etc. In coordination with hyper-
relations, more plausible and robust layouts are gener-
ated.

3. We develop an open-source platform for manipulating
3D scenes, where operations such as rendering, explor-
ing and modifying scenes are supported, thus allowing
researches to focus thoroughly on algorithms.

2. Related Works

3D scene synthesis is to select a set of appropriate ob-
jects and transform them plausibly [31]. Earlier works of
synthesizing 3D scenes are mainly based on hand-crafted
design rules, e.g., [8, 16] or data-driven priors. For the for-
mer, designing rules are mathematically formulated as a set
of constraints followed by optimizations [18, 26]. For the
latter, since learnt distributions are too complicated to be

(a) Round Sofa (b) Long Sofa (c) L-Shape Sofa

Figure 2: Extracting priors based on instances results in
finer priors. This figure shows the priors of the same coffee
table with respect to three sofa instances of different shapes
and geometries.

differentiated, MCMC is assembled to solve such situation
by attempting proposals [30, 14, 13, 19, 29].

Some of them present a framework including both ob-
ject selection and layout generation, while the rest focus on
layouts, though it may also focus on selecting objects [10].
Our method focuses on generations of layouts, i.e., we con-
tribute mainly on how to make layouts more plausible and
robust.

With the continuous study of the deep learning tech-
nique, several works based on convolutional or graph neural 
networks are proposed [25, 24, 20], including the current 
state-of-art work PlanIT [24] which serves as the baseline 
in this paper. One feature of network-based works is that 
they couple selections and layouts, i.e., selecting an object 
depends on pending layouts, vice versa. In contrast earlier 
works aforementioned seperate two stages. Literature based 
on other techniques does exists, e.g., human-centric assess-
ments [7]. Please refer to a more insightful survey on 3D 
indoor scene synthesis [31].

Several works also synthesize 3D scenes with input other
than 3D scenes. Xu et al. recovery 3D scenes from hand
sketch [28]. Luo et al [15] generate 3D scenes from scene
graphs. [1, 3, 22] generate room layouts based on RGB-D
images or 3D scans. [27, 5] generate scenes based on in-



Figure 3: Three coherent groups where white dots denote
respective dominant objects.

put examples. [2, 17] translate human language to 3D scene
configurations. However, different input results in differ-
ent constraints, frameworks and even applications, so these
works are beyond the scope of this paper.

3. Definitions

Given a list of objects with the positions of doors and
windows and a room shape, we formulate its corresponding
graph G =< V,E > where each object o ∈ V . E is the
set of edges which are also simply relations between/among
objects. Note that in this paper, we assume that a relation
may involve more than two instances i.e., a hyper-relation
among objects (section 4).

A coherent group g is a list containing objects where one
object connects to at least one another object in the same
group. In other words, two coherent groups never have
an edge between their instances respectively. Conceptually,
generating coherent groups g ∈ G is equivalent to formulat-
ing maximal connected subgraph of G, given priors as con-
nections. When generating layout given input, we always
initially group objects into several gi ⊂ V even though a
group may contain one object, such as a wardrobe, a picture
frame, a kitchen cabinet, etc. Coherent groups are hierar-
chical as shown in Figure 3, where visual edges are pairwise
between parents and children.

A transformation of an object includes its translation
(x, y, z) and Y-axis rotation θ where floors align with XoZ
plain. In this paper, we do not re-scale objects. The same
is true of coherent groups. Additionally, transformations of
coherent groups are propagated to their subordinate objects.

Priors are used to group objects into coherent groups
and suggest layouts within each coherent group. A prior
set Po1,o2,o3,...,on , abbreviated as PO, involves two or more
objects. A single prior pkO ∈ PO suggests a set of plausi-
ble transformations for all objects involved. Each prior set
contains a dominant object such as o1, and other secondary
objects. For example, if a dinning table is surrounded with
several chairs and supports a plant, “dinning table” is the
dominant object in this scenario and remaining objects are
secondary objects. If only two objects are involved in PO,
PO is a “pairwise relation” between the two objects (sec-
tion 4.1). If more than two objects are involved and all

(a) Pairwise Relation. (b) Pattern Chain. (c) Hyper-Relation.

Figure 4: Three types of priors in this paper. Links with
the same color suggest same secondary objects. 4a: a pair-
wise “one-to-one” relation between a desk and a chair; 4b:
a pairwise “one-to-many” relation between a table and sev-
eral identical chairs; 4c: a hyper-relation among several dif-
ferent objects dominated by a coffee table.

secondary objects derives from the same instance, PO is a
“pattern chain set”. Otherwise, PO is a “hyper-relation” 4.3.

4. Priors

In this section we show how we extract relations among
objects. We start by extracting traditional pairwise rela-
tions, e.g,. a desk with respect to a chair. Then, we
present pre-computed pattern chains which generalize one-
to-one relations to one-to-many relations, e.g., a dining ta-
ble surrounded by several identical chairs. Finally, based on
pairwise relations and pattern chains, we further generalize
and formulate hyper-relations among objects, i.e, relations
“among” more than two instances. Figure 4 suggests the
differences between them. In this section, we show how pri-
ors are represented and generated, and the usage is shown
in section 5.

Theoretically, pairwise relations and pattern chains are
both special forms of hyper-relations. The reason for dis-
cussing them separately is because directly learning hyper-
relations is difficult. As a result, we first introduce pairwise
relations which derive more general pattern chains thus en-
abling forming hyper-relations.

4.1. Pairwise Relation

A Pairwise relation is a set of priors Pab from a dom-
inant object a to a secondary object b. Given a pairwise
relation Pab, we can sample a prior pab,k ∈ Pab that is di-
rectly a transformation of bwith respect to a. Note that pair-
wise relations are directional, and sampled transformations
are only relative between two objects involved i.e., global
transformations are still required (section 5).

We extract discrete pairwise priors by utilizing den-
sity peak clustering (DPC) [21], which firstly calculate
ρk =

∑
k′ I{d≤dc}(dk,k′), dc = d(0.015K2) and δk =

mink′:ρk<ρk′ (dk,k′ ) for all points. In our situation, dk,k′ 

denoting the Euclidean distance from the transformation of 
dominant object k to the transformation of secondary object 
k′. A transformation includes translations and rotations. dc 
is a hyper-parameter and rhok is the number of dk,k′ that



(a) (b) (c)

Figure 5: 5a: Directly sampling a pairwise relation with-
out pre-computed pattern results in obvious implausibility.
5b: Recursively formulating a pattern chain. 5c: Additional
constraints are optional if e.g., well-aligned layouts are re-
quired.

is lower than dc. The selection of dc follows [21], i.e., the 
0.015K2th greatest dk,k′ among all k2 relative distances. δk 
seeks a minimal dk,k′ among all dk,k′ with higher rhok′ than 
rhok. Please refer to [21] for more details about this 
algorithm. Although DPC is typically used for clustering, it 
does anomaly detection for eliminating noises, i.e., re-
moving points with low values of ρ and high values of δ. 
Cluster centers and ordinary points are treated equally since 
they are already reasonable transformations in this paper.

After elimination, remaining “points” are plausible rela-
tions directly from datasets (human designers) where each 
“point” become a single pairwise prior pab,k ∈ Pab for lo-
cally arranging a dominant object and its secondary object. 
Typical dominant objects include desk, dinning table, coffee 
table, bed, etc. We manually label a set of instances that are 
capable of being dominant objects according to their cate-
gories.

4.2. Pre-Computed Pattern Chain

Commonly, a dominant object has several secondary
copies of the same instance, e.g., a dinning table with sev-
eral identical chairs. If we sample them twice or more as
shown in Figure 5a, aforementioned pairwise relations do
not guarantee the plausibility of “one-to-many” relations.
Thus, we solve it by presenting pattern chains.

A pattern chain set Cab is a prior set between object a 
and b. Each cjab = {j1, j2, ..., jn}, cjab ⊂ N is a list of 
indices to its pairwise relation Pab, e.g., jx indexes to the x-
th pairwise relation pab,jx in Pab. Generating one pat-tern 
chain cjab is a recursive process. First, a pab,j1 ∈ Pab is 
randomly selected from Pab. As discussed, pab,j1 gives a 
plausible transformation between a and b. Second, we 
traverse all pab,i ∈ Pab. If a copy of object b with the 
transformation of pab,i do not collide with another copy 
with the transformation of pab,j1 , pab,i is included in a new 
subset P ′ab ⊂ Pab. Third, we would like to place another 
copy of b, so pab,j2 is randomly selected from P ′ab and the 
above procedure is executed recursively until P ′ab is empty.

(a) (b) (c)

Figure 6: 6a: Using only pairwise relations results implau-
sibilities among secondary objects in a coherent group. 6b:
Using hyper-relations results possibilities among all objects
involved. 6c: A different object set requires another hyper-
relation, since we can not assume “as many objects as pos-
sible”.

As shown in Figure 5b, after three iterations, placing three
chairs around a table filters out a subset of their pairwise
priors (gray). Therefore, a fourth chair can only be placed
in the remaining pigmented areas. When a chain is gener-
ated, we can optionally adjust it, e.g., Figure 5c suggests
“horizontals and verticals” to make the chain well-aligned.

Note the above process generates one pattern chain
cjab = {j1, j2, ...}. In theory, a Pab of O(n) size has O(n!)
undetermined pattern chains. In practice, we only generate
one pattern chain for each pab,k ∈ Pab, to make sure each
pairwise relation is used at least once, instead of figuring out
the entire pattern chain set. Otherwise, it requires O(n!)
time and space to compute only a single set, which also
slows down online arrangement by restricting prior loading.

4.3. Hyper-Relation

A hyper-relation HO is a prior set among several objects
O = {odom, osec1, osec2, ...}. A dominant object odom ex-
ists in HO such as a coffee table and secondary objects re-
late to each other, e.g., chairs on a rug, armchairs beside
a long sofa. Purely sampling pairwise prior sets results in
scenarios such as Figure 6a, where secondary objects are
only plausible with respect to their dominant object. Hyper-
relation is essentially different from pattern chains. Pattern
chain sets are still one-to-one relations and a pattern chain
assumes incorporating as many secondary objects as possi-
ble. In contrast, a hyper-relation has a definite list of ob-
jects, i.e., we can not assume what instances are included
and how many copies each instance has in a specific hyper-
relation, because areas are limited. As shown in Figure 6b
and 6c, different numbers and instances of seats derives two
distinct hyper-relations.

To generate hyper-relations, we do not hypothesize and
learn concrete distributions because real distributions are
too complicated to be expressed, solved and sampled [12].
Instead, we try achieving as many exact samples as pos-
sible. Given a set of objects O and its dominant object
odom ∈ O, we randomly select a secondary object osec ∈ O



and randomly sample a prior from the pairwise relation be-
tween odom and osec. Thus, osec is transformed with respect
to odom. Next, similar to generating pattern chains, we fil-
ter the remaining pairwise relations between odom and other
secondary objects osec1, osec2, ... ∈ O, to ensure “collision
free”. With multiple instances, additional rules are required.
We use “tiers”, which as far as we studied is firstly termi-
nologized in [30], for finer filtering. For example, rugs are
placed on the ground where objects such as tables and beds
can be put on top of it. Merely detecting collisions would
mistakenly filter plausible priors. Not detecting collisions
between objects of different tiers alleviates such situations.
After filtering the remaining pairwise relations, recursively,
we randomly select another secondary object and repeat the
above steps until all secondary objects are placed appropri-
ately with no implausibilities. After that, a single hyper-
prior is generated with transformations of all secondary ob-
jects. We iteratively re-run the entire process to enrich the
pending hyper-relation.

Yet, the above steps still require a definite list of objects. 
Nevertheless, figuring out a ll undetermined l ists i s almost 
equivalent to exhaustively traverse all combinations of ob-
jects. To address this, we systematically optimize extrac-
tions. After forming coherent groups (section 5), we exam-
ine their hierarchies. If a parent has two or more children, 
we try to assemble the hyper-relation for them. If the hyper-
relation does not exist, a new thread is started to generate 
it in background. In other words, we either load existing 
hyper-relations if they are already generated or establish a 
thread for generating them when we need them. Alterna-
tively, users can manually suggest their own lists of objects 
to generate their hyper-relation.

5. Geometry-Based Layout Generation

5.1. Coherent Grouping

We show how we arrange objects in this section. First,
objects are decomposed into several coherent groups gi ⊂
G based on finding maximal connected subgraphs using
pairwise relations between objects as shown in Figure 7,
where whether or not two objects are connected depends on
existence of pairwise relations between objects.

One secondary object can have at most one dominant ob-
ject. If multiple available dominant objects exist with re-
spect to a secondary object osec, we randomly select a dom-
inant object and discard relations between osec and other
dominant objects. Each dominant object also has finite
lengths of copies of secondary instances guided by lengths
of respective pattern chains. This makes our framework
more flexible, e.g., given only one chair but a dressing ta-
ble and a desk in a bedroom, we randomly assign the chair
to either the dressing table or the desk, which gives more
variance to the generated results.

Figure 7: Coherent Grouping. Dotted dashes denote hyper-
relations of secondary objects. Given a list of objects to
generate their layout, we first group them into several co-
herent groups. For example, a coffee table relates to two
sofas and a TV stand and the TV stand relates to a TV, so
they form one coherent group. Two cabinets have no rela-
tion to others, so each of them form their own groups.

After that, input objects are distributed in coherent
groups. As discussed in section 4, within a specific coherent
group, we can directly sample a set of transformations for
all objects locally within the group. As shown in Figure 7, if
a parent has two or more descendants and each descendants
are different, the hyper-relation is assembled or started to be
generated in background, e.g., coffee table with respect to
two sofas and a TV stand. If the descendants are identical,
the pattern-chain set is sampled, e.g., dining table and four
chairs. Otherwise, we use pairwise priors, e.g., TV stand
and TV. Therefore, the final process is to transform several
coherent groups properly in the room.

5.2. Geometric Arranging

Eventually, we assign transformations to each coherent
group and propagate transformations to objects. Since pri-
ors already arrange objects sufficiently within groups, three
more constraints are required to make layouts physically
plausible among groups: 1, all groups should be inside a
room; 2, all groups should not overlap each other; 3, clear
paths should exist for windows and doors.

Placing a set of shapes (coherent groups) in another
larger polygon (room) is an NP-hard problem [4] in compu-
tational geometry. Thus, we geometrically simplify coher-
ent groups as cuboids, consider doors and windows as fixed
(pre-arranged) blocks, and do heuristic attempts as shown
in algorithm 1.

We first sort coherent groups according to their area oc-
cupied from largest to smallest, since bigger groups usually 
represent more central functionality of rooms, e.g., a bed-



room is call a “bedroom” due to a coherent group dominated 
by a bed. Then, coherent groups are placed with regard to 
this order, whereas random positions are assigned to them 
along the inner side of the targeting room, since the defini-
tion of coherent groups indicates the relations among dif-
ferent coherent groups are weak (section 3). After placing a 
group, we check potential collisions between this group and 
other groups or blocks. If collided, we discard the transfor-
mation and randomly re-select a new transformation. To 
enhance the performance, we used exponentially increasing 
sampling density. If a proper transformation fails at a den-
sity of d for the pending coherent group, we increase d to 
2d to find more possible positions. But if it still collides af-
ter several times of increasing density, we discard the group 
and conduct the next one. To increase the plausibility, we 
add more heuristic rules: 1, we initially attempt to transform 
groups at corners of rooms and sides of other existing coher-
ent groups. During collision detection, we take the height 
into consideration. So it is possible that some furniture with 
lower height is placed in front of windows. Finally, “lift-
ings” Lf are assigned to groups. If Lf = 0, a groups is 
placed against walls. If Lf equals to half the length of the 
room, a group is placed in the middle of the room.

6. Experiments

6.1. Setup

We utilize a recent 3D scene dataset “3D-Front3” [6]
with 70,000+ layouts and 9,992 3D models. To roam and
render 3D scenes, we develop an open-source 3D scene
platform as shown in Figure 8, where we can add, delete,
modify and search for objects. We can orbitally control the
perspective camera for selecting better views. By clicking
“layout”, a configuration of the current room is generated
by our proposed framework. We render 3D scenes using
Three.js4 and the algorithm is mainly implemented by Py-
Torch and NumPy. Several results are shown in Figure 9.
Please refer to our supplementary materials for more de-
tails.5

6.2. Plausibility and Aesthetic

We compare our framework with the state-of-the-art
PlanIT [24]. PlanIT not only performs object arrangements,
but also object selections. However, since we focus on ar-
ranging objects, we show better plausibility and aesthetic
achieved using our framework by re-arranging results of
PlanIT, i.e, we generate layouts given objects and room
shape selected by PlanIT.

3https://tianchi.aliyun.com/dataset/dataDetail?dataId=65347
4http://threejs.org/
5We also run our framework on SUNCG [23] before this dataset be-

came unavailable. We include results of SUNCG optionally in our supple-
mentary materials only to verify the effectiveness of our framework.

Algorithm 1 Geometric Arranging

Input:
1: Polygon of room’s inner side Pr;
2: List of rectangles of coherent groups with height Arec; 
3: List of rectangles of windows and doors;

Output: Transformations of rectangles Trec;
4: function CHECKOK(A)
5: if A does not overlap with existing groups and

blocks then
6: return True
7: else
8: return False
9: end if

10: end function
11: function APPLYTRANSFORM(A,t) 
12: apply transformation t to A 13: 
return A
14: end function
15: function INSERTRECTANGLE(A)

Let T be array of transformations //For heuristic 
for edge ∈ Pr and p ∈existing polygons do

Push heuristic transformation of edge or p to T 
end for
for t ∈ T do

if CheckOK(ApplyTransform(A,t)) then
return t;

16: 
17: 
18: 
19: 
20: 
21: 
22: 
23: 
24:

end if 
end for
//For random

25: Clear T
26: for n = 1 → max sampling density do
27: for edge ∈ Pr do
28: Push 2n ∗ len(edge) random transforma-

tions on edge to T
29: end for
30: Shuffle T
31: for t ∈ T do
32: if CheckOK(ApplyTransform(A,t)) then
33: return t;
34: end if
35: end for
36: Clear T
37: end for
38: return None;
39: end function 40: for a ∈ Arec do 41: 
Push InsertRectangle(a) to Trec; 42: end 
for

Qualitatively, as shown in Figure 11, ours is friendly for
layouts among objects with strong relations, i.e., “coherent
groups” in this paper. For example, a TV stand and a sofa



(a) Platform Overview. (b) Viewing & Roaming.

(c) Manipulating & Searching. (d) Rendering.

Figure 8: We develop an open-source 3D scene platform al-
lowing adding, deleting, modifying, searching objects and
rendering, saving scenes. Users can explore given 3D
scenes by orbital control. Our platform is embedded with
the proposed algorithm.

are strongly related to a coffee table. Ours makes sure they 
are plausibly arranged with respect to each other. Addition-
ally, ours does not block paths to doors and windows. Quan-
titatively, we also conduct a user study as shown in Figure 
10a. 43 subjects are invited. Subjects are university stu-
dents, workers, housewives, interior designers, etc.6 Each 
subject is given 20 questions. In each question, a layout 
generated by ours and one by PlanIT are shown in random 
order. For each question, a subject compares two layouts 
and marks them respectively. Scores ranged from 0 (very 
poor) to 4 (very plausible). All subjects are taught how 
to use the user study system before experiencing. In Fig-
ure 10a, the Chinese characters are rendered as “there are 
two room layouts below, please compare the two layouts, 
considering aesthetic, plausibility and reasonableness, thus 
marking them respectively.”, “0: totally unreasonable, in-
aesthetic. It may never appear in the real world layout. ” 
and “5: very aesthetic and plausible. I will refer to this lay-
out in the real world.” For example, Figure 10a shows two 
scenes. One subject may dislike the one on the left and pre-
fer the one on the right. Therefore, the subject marks 2 and 
4 respectively. Table 1 compares average score (standard 
deviation) of the two methods on various types of rooms.

6.3. Robustness

In this section, we compare our generated layouts with
those designed by professionals (ground truths) to verify
that ours is competitive to human designers. Subjects are
the same from section 6.2. Each subject is required to
choose a most plausible layout from ten alternative layouts
as shown in Figure 10b, where one layout is designed by a
human designer and the remaining nine layouts are gener-

6Few subjects preserve privacy.

Table 1: User study: results of comparing PlanIT with ours.

Room Type PlanIT Ours
Bedrooms 1.847 (1.336) 2.66 (1.125)

Living Rooms 1.749 (1.327) 2.572 (1.266)
Bathrooms 1.028 (1.2) 2.553 (1.314)
Kitchens 1.549 (1.342) 2.651 (1.167)

Total 1.543 (1.341) 2.609 (1.221)

ated by ours. Subjects can zoom in layouts by right clicks 
such as Figure 10c. All subjects are taught before experi-
encing and manuals are available. Ground truths are ran-
domly selected from 3D-Front. In Figure 10b, the Chinese 
characters are rendered as “there are ten layouts below and 
please select your favorite one considering aesthetic, plau-
sibility and reasonableness”, “left-click for selections and 
right click for zooming in” and “after selecting, press sub-
mit for the next question”.

Results are shown in Figure 12. Two distributions are
plotted for bedrooms and “living-dinning” rooms respec-
tively, i.e., each line is averaged distributions of user se-
lections of its room type, where “0” denotes ground truth.
Although human-designed layouts outperform ours, gener-
ated layouts are still favored competitively as shown in Fig-
ure 12.

6.4. Efficiency

We run our framework on a PC with AMD 2700X
(GHz), GTX 970, and WD20EZRX. Time consumption of
layouts depend on degrees of crowding, i.e., ratio of the to-
tal area of coherent groups to the area of the room. Higher
degrees result in more discards during geometry-based ar-
rangements (section 5.2), thus slowing down generations.

To generate layouts based on 3D-Front such as Figure 9,
if priors are cached, our framework consume within 3.5 sec-
onds for a layout. If corresponding priors of several objects
are not loaded, additional IO is required up to 2 seconds for
a layout. For non-crowded rooms, with cached priors, our
framework generates layouts in real time.

We also run the state-of-the-art PlanIT [24] on a server
with GTX 1080ti. According to our experiments, generat-
ing a layout requires more than a minute. Nevertheless, this
includes both object selection and object arrangement and
the two are interleaved with each other. Testing the exact
time consumption of “layout generations” of PlanIT is be-
yond the scope of this paper. Furthermore, [26] is not a
data-driven framework. Therefore, it is hard to conclude
“better efficiency” as a contribution.



Bedroom.

Living Room & Dinning Room.
Figure 9: Results. Please zoom in for more details. More results are included in the supplementary files.

(a) (b) (c)

Figure 10: User studies. 10a: Marking ours and PlanIT [24] respectively; 10b: Selecting the most plausible layout from ten
alternative scenes where one scene is generated by human designers; 10c: subjects can zoom in a particular layouts for better
cognition.

7. Conclusions and Future Works

In this paper, we present a new framework of generating
room layouts and we experimentally verify the plausibility
and robustness of the proposed method. The code of this
framework and a toolbox platform is publicly available. We
hope this could benefit the community. However, this work
still suffers from the following weaknesses.

The biggest difficulty we encountered is arranging
“chains” of objects around walls. For independent objects

such as wardrobes, transformations of them have high de-
gree of freedom since we find appropriate places for them
with no collision and implausibility. However, for groups
of objects such as kitchen cabinets and ovens, they are fre-
quently placed next to each other as shown in Figure 13.
Firstly, orders of a chain should be carefully considered. For
example, commonly we place similar cabinet next to each
other. Otherwise, layouts are not aesthetic as shown in Fig-
ure 13b. Secondly, an L-shape chain should somehow turn
at corners, especially when we have L-shape objects such



(a) PlanIT. (b) Ours.

Figure 11: Qualitatively comparing PlanIT with ours.

Figure 12: Distributions of user selected layouts of bed-
rooms (BLUE) and “living-dinning rooms” (RED).

as L-shape cabinets which are frequently treated as “cor-
ner objects” as shown in Figure 13c. Thirdly, doors and
windows are also challenges for arranging chains. In our
framework, if we treat a chain as an entire group, currently
we do not have plans for sampling such priors. On the other
hand, if we treat a chain as individual objects, complicated
rules are required but we also do not have a plan for formu-
lating the rules. As a result, we demonstrate this weakness
in detail and we would try fixing it in future. Fortunately, in
real-world decoration, most cabinets are fixed on walls.

The storage and loading of priors may require further
system-level optimizations. Currently, all priors are struc-
tured in “.json” format, which is inefficient if a prior of a
coherent group is too large. When arranging objects online,
loading priors may consume up to few seconds for loading
corresponding priors into the memory. Although this only
affects the first attempt, since priors are cached after that,
it is still a concern in practice. Eventually, the way of ex-
tracting patterns is robust to shapes and textures instead of
incorporating them. This is useful if we want objects ar-
ranged more compacted.

(a) (b) (c)

Figure 13: The problem of “chains” of objects around walls.
13a: The ground truth; 13b: A failure case of ours; 13c: An
L-shape “chain” with L-shape objects.
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