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Abstract

Caricature is an artistic abstraction of the human
face by distorting or exaggerating certain facial fea-
tures, while still retains a likeness with the given face.
Due to the large diversity of geometric and texture vari-
ations, automatic landmark detection and 3D face re-
construction for caricature is a challenging problem and
has rarely been studied before. In this paper, we pro-
pose the first automatic method for this task by a novel
3D approach. To this end, we first build a dataset with
various styles of 2D caricatures and their corresponding
3D shapes, and then build a parametric model on vertex
based deformation space for 3D caricature face. Based
on the constructed dataset and the nonlinear paramet-
ric model, we propose a neural network based method
to regress the 3D face shape and orientation from the
input 2D caricature image. Ablation studies and com-
parison with state-of-the-art methods demonstrate the
effectiveness of our algorithm design. Extensive ex-
perimental results demonstrate that our method works
well for various caricatures. Our constructed dataset,
source code and trained model are available at https:
//github.com/Juyong/CaricatureFace.

1. Introduction

As a vivid artistic form that represents human faces in
abstract and exaggerated ways, caricature is mainly used to
express satire and humor for political or social incidents.
It also has many applications in our daily life, such as so-
cial network, animation and entertainment industry. Since
Brennan developed the first caricature generator in 1985 [6],
the studies of caricatures have mainly focused on some spe-
cific tasks, such as caricature generation [34, 48, 9, 47], car-
icature recognition [31, 42, 1], and caricature reconstruc-
tion [33, 55, 20, 56]. Most of these tasks need facial land-
marks to help to preprocess the caricatures. As a funda-
mental process for various caricature processing tasks, auto-
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Figure 1. Some examples of automatic landmark detection and 3D
reconstruction on test set. Given a single caricature image (first
row), our algorithm generates its 3D model with orientation (sec-
ond row) and corresponding 68 landmarks (third row).

matic facial landmark detection and 3D face reconstruction
can greatly improve the efficiency and accuracy of other
caricature processing tasks. Although the state-of-the-art
face alignment methods work well for normal facial im-
ages, they are not applicable to caricatures. For example,
it still needs to manually refine the landmark positions after
applying face alignment methods to caricature images, as
reported in [25, 56, 9].

Compared with other tasks like caricature generation [9,
47, 11] and editing [10], there is little research on automatic
landmark detection for caricatures. As far as we know, one
related work is proposed by Sadimon and Haron [45], which
adopted the neural network to predict a facial caricature
configuration. However, it can not process a single 2D car-
icature without its original facial image because the train-
ing dataset is constructed by image pairs- one normal fa-
cial image and its corresponding caricature image. Besides,
their training and testing caricatures are all from exactly
one artist, and thus the trained model can not be adapted
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to other caricatures with different art styles. There exist two
main difficulties of facial landmark detection for caricature.
One difficulty is that caricatures have abstract and exagger-
ate patterns, and another is that caricatures have large rep-
resentation varieties among different artists. As pointed out
in [25], compared with landmark detection on normal facial
images, it is much more challenging on landmark detection
for caricatures.

In comparison to normal facial images, caricatures have
two fundamental attributes- exaggeration and variety, and
thus approaches for standard landmark detection can not be
directly applied to solve this problem. One straightforward
way is to regress the 2D landmarks’ coordinates of carica-
ture directly. However, 2D landmarks are controlled by fa-
cial shape, expression, orientation, and artistic style, which
makes it a challenging problem to detect 2D landmarks. In
order to alleviate the problem difficulty, we propose to de-
couple these factors. By regressing the 3D face model and
orientation, 2D landmarks can be recovered by projecting
the 3D landmarks with the orientation.

However, existing parametric 3D face models are mainly
designed to represent normal face shapes, and thus they do
not work well for caricature faces due to their limited ca-
pability of extrapolation. In this paper, to solve this chal-
lenging problem, we specifically design a parametric model
for 3D caricature faces and propose a method for landmark
detection and 3D reconstruction of caricature based on this
model. To this end, we manually label landmarks of about
6K caricature images with different styles. We further auto-
matically generate nearly 2K caricatures with labeled land-
marks from normal facial images via the method described
in [9]. Based on the labeled landmarks, we recover the cor-
responding 3D caricature shape and orientation using an op-
timization method. With the large scale training dataset, we
propose a novel convolutional neural network based method
to regress the 3D caricature shape and orientation from the
input 2D caricature. To well represent the 3D exaggerated
face, we propose to regress its deformation representation
rather than the Euclidean coordinates, which helps to im-
prove the landmark detection and 3D reconstruction ability.
In summary, the main contributions of this paper include the
following aspects:

• To the best of our knowledge, this is the first work for
automatic landmark detection and 3D face reconstruc-
tion for general caricatures.

• Rather than directly regress the 2D landmarks, we
regress the 3D caricature shape and orientation from
input 2D caricature image. 3D caricature shape is rep-
resented by a nonlinear parametric model learned from
our constructed 3D caricature dataset.

Comparisons with state-of-the-art methods and abla-
tion studies demonstrate the effectiveness of our algorithm

pipeline and each module of our proposed method. Exten-
sive qualitative and quantitative experiments demonstrate
that our method can automatically produce high accuracy
results of 2D landmark detection and 3D shape reconstruc-
tion for caricature.

2. Related Work

This section briefly reviews some works related to this
paper, with a special focus on face alignment and 3D face
reconstruction for normal facial images, and face alignment
and 3D face reconstruction for caricatures.
Face Alignment. Face alignment and landmark detection
for normal facial images have achieved great success in
the last few years with the power of convolution neural
networks. Kazemi and Sullivan [28] used an Ensemble
of Regression Trees to estimate the facial landmark posi-
tions, and their method has been integrated into the Dlib
library [29], a modern C++ toolkit containing some ma-
chine learning algorithms. Wu et al. [57] proposed vanilla
CNN, which is naturally hierarchical and requires no aux-
iliary labels beyond landmarks. Kowalski et al. [32] de-
veloped Deep Alignment Network (DAN), a robust deep
neural network architecture that consists of multiple stages.
By adopting a coarse-to-fine Ensemble of Regression Trees,
Valle et al. [54] proposed a real-time facial landmark re-
gression algorithm. Liu et al. [36] noticed that the seman-
tic ambiguity degrades the detection performance and ad-
dressed this issue by latent variable optimization methods.
Dong et al. [13] presented an unsupervised approach to im-
proving facial landmark detectors, and Honari et al. [22]
showed a new architecture and training procedure for semi-
supervised landmark localization. To solve the occlusion
problem, Zhu et al. [58] developed an occlusion-adaptive
deep network, which contains a geometry-aware module, a
distillation module, and a low-rank learning module. Mer-
get et al. [37] proposed a novel network architecture that has
an implicit kernel convolution between a local-context sub-
net and a global-context subnet composed of dilated convo-
lutions.
3D Face Reconstruction from A Single Image. 3D face
reconstruction from a single image is to recover 3D facial
geometry from a given facial image, which has applications
like face recognition [3, 53], face alignment [59, 15] and
expression transfer [50, 51]. Since Blanz and Vetter pro-
posed a 3D Morphable Model (3DMM) in 1999 [4], model-
based methods have become popular in solving problems of
3D face reconstruction. Earlier, a large number of model-
based algorithms considered some significant facial parts
between 2D images and 3D templates, such as facial land-
marks [7, 26, 18, 51, 27], latent representation [24] and so
on. Cao et al. [8] utilized some RGBD sensors to create
an extensive face database named FaceWareHouse, which
contains 150 identities and 47 expressions of each identity.
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Figure 2. Overview of our proposed Framework for Landmark Detection and 3D Reconstruction on general caricatures. Our network
includes two parts, an encoder and a decoder. We use ResNet-34 [21] backbone as the encoder and 3 Fully Connected (FC) layers as the
decoder to recover the 3D caricature shape. The PCA basis of vertex based deformation presentation {logRi,Si} is used to initialize the
last FC layer.

In recent years, deep learning-based methods have shown
promising results in terms of computation time, robustness
to occlusions, and reconstruction accuracy. Guo et al. [19]
proposed a real-time dense face reconstruction method by
constructing a large scale dataset augmented based on tra-
ditional optimization methods and adopting a coarse-to-fine
CNN framework. During the same year, Tran et al. [52]
demonstrated a nonlinear 3DMM, which is learned from
a large set of unconstrained face images without collect-
ing 3D face scans. Gecer et al. [17] harnessed Generative
Adversarial Networks (GANs) for reconstructing facial tex-
ture and shape from single images by training a generator
of facial texture in UV space. Feng et al. [14] presented a
model-free method to rebuild the 3D facial geometry from
a single light field image with a densely connected network.
However, due to the diversity of style and geometry of car-
icatures, the approaches for normal face reconstruction can
not be directly applied to general caricatures.

Face Alignment and Reconstruction of Caricature.
Compared with researches on normal facial images, there
are fewer works about caricatures [41, 40]. For face recon-
struction, existing methods mainly focus on constructing a
3D caricature model from a normal 3D face model. Lewiner
et al. [33] introduced a caricature tool that interactively em-
phasizes the differences between two 3D meshes by utiliz-
ing the manifold harmonic basis of a shape to control the
deformation and scales intrinsically. Vieira et al. [55] pro-
posed a method based on deformations by manipulation of
moving spherical influence zones. Sela et al. [46] presented
a framework to scale the gradient fields of the surface co-
ordinates by a function of the Gaussian curvature of the
surface and solve a corresponding Poisson equation to find

the exaggerated shape. Besides, there are some works on
modeling 3D caricatures from images. Liu et al. [35] chose
a semi-supervised manifold regularization(MR) method to
learn a regressive model between 2D normal faces and en-
larged 3D caricatures. With the power of deep learning,
Han et al. [20] developed a CNN based sketching system
that allows users to draw freehand imprecise yet expres-
sive 2D lines representing the contours of facial features.
With an intrinsic deformation representation that enables
considerable face exaggeration, Wu et al. [56] introduced
an optimization framework to address this issue. How-
ever, [56] needs labeled landmarks as input, which are not
easy to get and always need manually labeling. Different
from [56], we propose a learning based approach to auto-
matically detect landmarks and regress 3D shape from the
input 2D caricature. Furthermore, our method constructs
a nonlinear parametric model based on deformation repre-
sentation, which greatly improves the reconstruction accu-
racy. As [56] is the state-of-the-art caricature reconstruction
method, we adopt it to construct the 3D caricature shape set.
Landmark detection on caricature images is also a funda-
mental problem of caricature perception, but there exist few
works on this topic. As a related research direction, manga
images have aroused Stricker et al.’s [49] interest. Based
on DAN [32] framework, they proposed a new landmark
annotation model for manga images and a deep learning ap-
proach to detect them. Huo et al. [25] shows that caricature
landmark detection is of great interest, but researches on
this topic are still far from saturated. Besides, most studies
on caricature generation need facial landmarks as control
points [34, 9, 47], which demonstrate that facial landmarks
play an essential role in caricature related researches.



3. Algorithm

Given a 2D caricature, we aim to automatically recon-
struct its 3D face shape and obtain landmarks around its
eyes, nose, mouse, and so on, as shown in Fig. 1. To
this end, we construct a 2D caricature dataset with around
8K 2D images and their corresponding labeled landmarks.
The dataset contains both artists-designed caricatures and
machine-generated caricatures. With their corresponding
68 landmarks, we build a 3D caricature dataset via an opti-
mization based method [56]. Then, based on a deformation
representation, we propose an encoder-decoder framework
to directly recover the 3D face shape and weak perspective
parameters from the input 2D caricature image. Notably,
we use the principal component analysis (PCA) basis to ini-
tialize the weight of the last fully connected layer. The al-
gorithm pipeline is shown in Fig. 2. In the following, we
give the algorithm details for each component.

3.1. Dataset Construction and Augmentation

Currently, there exist some public available caricature
datasets. For the study of caricature recognition, Huo et
al. [25] constructed a WebCaricature database including
6042 caricatures and 5974 photographs from 252 persons
with 17 labeled facial landmarks for each image. Mishra et
al. [38] built IIIT-CFW database for face classification and
caricature generation, which contains 8928 cartoon faces of
100 public figures with annotation of various attributes, e.g.,
face bounding box, age group, facial expression, and so on.
However, these datasets can not be directly used for our task
as they do not supply enough labeled landmarks for 3D re-
construction.

By searching and selecting nearly 6K various caricatures
from different artists on the Internet, we construct a carica-
ture dataset in which each caricature has 68 labeled land-
marks. The landmark positions are initialized via the Dlib
library [29], and then manually refined. To further increase

Figure 3. The first row shows some examples of our collected
images with manually labeled landmarks, while the second row
shows some examples of our augmented images and correspond-
ing landmarks generated by [9].

the diversity of our dataset, we design a data augmentation
method based on CariGANs [9]. CariGANs is able to trans-
late normal facial images to caricatures with two generative
adversarial networks (GANs), namely CariGeoGAN and
CariStyGAN. CariGeoGAN learns a mapping to exagger-
ate the shape by adjusting facial landmarks, while CariSty-
GAN learns another mapping to translate the appearance
from normal facial image style to caricature style. With
trained CariGANs, we can generate a caricature and its cor-
responding 68 landmarks from a given normal facial im-
age. In this way, we generate around 2K caricatures and
add them to our dataset. Some examples of our collected
data and augmented data are shown in Fig. 3.

For each 2D caricature, based on the labeled 68 facial
landmarks, we adopt an optimization based method [56] to
recover its 3D shape. In this way, we build a caricature
dataset containing around 8K 2D labeled images and their
corresponding 3D shapes. Notably, this dataset contains dif-
ferent geometry shapes and image styles since the 2D car-
icatures are drawn by different artists or generated by the
data augmentation method.

3.2. Deformation Representation of 3D Caricatures

Some statistical parametric models, like 3DMM [4] and
FaceWareHouse [8], are popularly used in 3D face recon-
struction to represent a complex face shape with a low di-
mensional parametric vector. This kind of representation
makes optimization and learning based 3D face reconstruc-
tion easier. However, linear parametric models are only
good for interpolation in the shape space of 3D normal
faces but do not work well for extrapolation in 3D caricature
shape space. Therefore, to recover exaggerated 3D shapes
of various caricatures, we adopt a vertex based deformation
representation. Compared with 3D Euclidean coordinates,
this deformation representation is suitable to represent local
and large deformation in a natural way, which makes the
reconstructed exaggerated meshes more natural and match
the input 2D caricature quite well.

To make our paper self-contained, we first introduce the
deformation representation between two meshes with the
same topology.

Suppose there are two meshes with the same topology,
which means the number of vertices, the order of vertices,
and the connectivity of vertices of them are all identical. We
treat one mesh as a reference mesh and another as a target
deformed mesh. We denote the position of the ith vertex vi
on the reference as pi and the ith vertex vi on the target as
p′
i. We can define the deformation matrix in the one-ring

neighborhood of vi from the reference to the target as an
affine transformation matrix Ti by minimizing

min
Ti

∑
j∈Ni

cij‖(p′
i − p′

j)−Ti(pi − pj)‖22, (1)



where Ni is the neighborhood index set of vi, and cij is the
cotangent weight [5] to avoid discretization bias in defor-
mation. With polar decomposition, the deformation matrix
Ti can be decomposed into a rigid component represented
by a rotation matrix Ri and a non-rigid component repre-
sented by a real symmetry matrix Si, as Ti = RiSi.

To obtain efficient linear combination, we use the axis-
angle representation [12] to replace the rotation matrix Ri.
Following Rodrigues’ rotation formula, for the ith vertex vi,
we denote the cross-product matrix and rotation angle by
Ki, θi. We can convert Ri to a matrix logarithm notation:

logRi = θiKi, (2)

Ki =

 0 −ki,z ki,y
ki,z 0 −ki,x
−ki,y ki,x 0

, (3)

where ki = (ki,x, ki,y, ki,z) ∈ R3 and ‖ki‖2 = 1. Then,
the logarithm rotation matrix logRi can be represented by
a vector ri = θiki ∈ R3 and the scalar matrix Si can be
represented by a vector si ∈ R6. To handle the ambiguity
of axis-angle representation, Gao et al. [16] propose an in-
teger programming approach to make all ri as consistent as
possible globally. In this paper, we define [ri, si] ∈ R9 as
the deformation representation/gradient of the ith vertex vi
on a target mesh, correspondingly, {logRi,Si} is its matrix
form.

The deformation representation has many advantages,
especially for our method, it can be used for linear com-
bination [2] of two rotation matrices R0

i and R1
i by

exp(logR0
i + logR1

i ). To build a deformation space, we
choose a reference mesh and n deformed meshes which
have the same topology with the reference model. For the
ith vertex of the lth deformed mesh, we obtain its defor-
mation representation {logRl

i,S
l
i}(l = 1, 2, . . . , n). Then,

corresponding to an essential deformation representation, a
target mesh can be approximately reconstructed by a linear
combination of several known deformation gradients. In de-
tail, based on a reference mesh and n deformed meshes, we
build a linear combination of deformation gradients for the
ith vertex vi as

Ti(w) = exp(

n∑
l=1

wR,l logRl
i)(I +

n∑
l=1

wS,l(S
l
i − I)),

(4)
where w = (wR,wS) is the combination weight vec-
tor, consisting of weights of rotation wR = {wR,l|l =
1, · · · , n} and weights of scaling/shear wS = {wS,l|l =
1, · · · , n}.

Given a target mesh, we can calculate its optimal weight
w by minimizing the following energy:

min
w

∑
vi∈V

∑
j∈Ni

cij‖(p′
i − p′

j)−Ti(w)(pi − pj)‖2, (5)

where the definitions of Ni and cij are same as Eq. (1), V
is the vertex set of the mesh. Since Eq. (5) is a non-linear
least squares problem, we first compute the Jacobian matrix
∂Ti(w)/∂w, and then use the Levenberg-Marquardt algo-
rithm [39] to solve it.

For each 3D caricature from the constructed dataset in
Sec. 3.1, we receive its corresponding optimal weight by
solving Eq. (5). Then we calculate the deformation repre-
sentation of its every vertex via Eq. (4). In our experiments,
we select the reference mesh and n deformed meshes from
FaceWareHouse dataset [8] (n = 99). In detail, we choose
the mean face as the reference mesh, 24 expressions and
75 identities with the neutral expression, which have large
differences to the mean face, as the deformed meshes.

As the deformation representation for each vertex [ri, si]
contains 9 variables, the deformation representation of a
whole 3D caricature mesh with nv vertices can be repre-
sented as a 9nv vector {[ri, si], i = 1, . . . , nv}. Based on
the constructed 3D caricature dataset, we build a deforma-
tion space for 3D caricatures, where each 3D caricature is
represented as a deformation form. Therefore, we formu-
late automatic caricature reconstruction as a geometric de-
formation problem, where the deformation representation
of a 3D caricature is learned from a data-driven approach.
In detail, given a 2D caricature, we aim to train an encoder-
decoder framework that ends with several fully connected
layers to regress its corresponding 9nv deformation repre-
sentation vector directly. Owing to the representation’s ro-
bust expression ability, the translation from 2D caricature
domain to 3D deformation field is quite natural.

3.3. Landmark Detection and 3D Reconstruction

Although the deformation representation of 3D carica-
tures is well constructed, the large number of variables
(each representation is a 9nv vector) makes it hard for a
convolutional neural network to regress the vector directly.
To reduce the prediction difficulty of the network regressing
the 3D shape, we make dimensionality reduction based on
deformation representation. A similar approach is adopted
in [23], which constructs the sparse localized basis of a tri-
angle based deformation representation. However, different
from [23], we aim to estimate the deformation from the ref-
erence face to an arbitrary caricatured form, which need to
capture the global shape deformation. Taking this into con-
sideration, we adopt PCA model to assist network learning.
Specifically, we propose an encoder-decoder framework to
recover the 3D face shape and weak perspective parame-
ters from the input 2D caricature image. We utilize the con-
structed PCA basis to initialize the last fully connected (FC)
layer’s weight. Based on the learnable statistical model, we
propose a fully data-driven approach to this problem.

In detail, we propose a CNN-based approach to directly
regress the intrinsic deformation representation and the



weak perspective projection parameters with a single 2D
caricature image. As shown in Fig. 2, we utilize ResNet-34
backbone [21] to encode the input 2D caricature into
a latent vector χ ∈ R216. The latent vector contains
two parts, where χs ∈ R210 resolves the 3D shape and
χp = (ŝ, R̂, t̂) ∈ R6 represents the parameters of weak
perspective projection, where the meanings of ŝ, R̂, t̂ will
be discussed later. We construct a decoder composed of
3 fully connected layers to convert χs to the estimated
latent deformation representation {[r̂i, ŝi], i = 1, . . . , nv},
where nv is the number of mesh vertices. The deformation
gradients {(log R̂i, Ŝi), i = 1, . . . , nv} and the deforma-
tion matrixes {T̂i, i = 1, . . . , nv} then can be recovered
according to the derivation process in Sec. 3.2. To help
the model training, we use the first 500 principal compo-
nents of a PCA basis extracted from the training dataset
to initialize the weight of the last fully connected (FC) layer.

Loss for Caricature Shape. As before, the estimated ver-
tex coordinate {p̂′

i} of target mesh can be obtained by solv-
ing

argmin
{p̂′

i}

∑
j∈Ni

cij‖(p̂′
i − p̂′

j)− T̂i(pi − pj)‖22, (6)

which is equivalent to solve the following linear system:

2
∑
j∈Ni

cij(p̂
′
i − p̂′

j) =
∑
j∈Ni

cij(T̂i + T̂j)(pi − pj). (7)

As the deformation representation is translation indepen-
dent, and thus we need to specify the position of mesh cen-
ter or exactly one vertex. As the ground truth 3D caricature
meshes are under the same specification, we construct a loss
term to constrain the coordinate difference between the re-
constructed mesh and the ground truth mesh as

Ever(χs) =
∑
vi∈V
‖p̂′

i − p′
i‖22, (8)

where p′
i presents the ground truth coordinate of the ith

vertex of the corresponding 3D mesh from the dataset, and
V represents the vertex set.

Loss for Landmarks. Reconstructing the 3D mesh from
a 2D image is an inverse process of observing a 3D object
by projecting it to 2D visual space. As before, we assume
that the projection plane is the z-plane and thus the scaled

projection matrix can be written as Π = s

[
1 0 0
0 1 0

]
,

where s is the scale factor. To better recover the landmark
positions, we construct a landmark loss term to measure the
difference between the projected landmarks and the ground
truth landmarks:

Elan(χs,χp) =
∑
vi∈L′

‖Π̂R̂p̂′
i + t̂− q′

i‖22, (9)

where L′ and Q′ = {q′
i, vi ∈ L′} are the set of 3D land-

marks and 2D landmarks separately, Π̂ is the estimated
scaled projection matrix, R̂ is the estimated rotation matrix,
and t̂ is the estimated translation vector. As our 3D carica-
ture meshes have the same connectivities, the indices of 3D
landmarks are the same for different caricature shapes.

Figure 4. For non-frontal face caricatures, we need to update the
indices of silhouette landmarks on the 3D face shape to better
match the corresponding 2D landmarks (shown in cyan in upper-
left). The default 3D silhouette landmarks are shown in green in
the lower-left. We construct an optional landmark set from each
horizontal line (shown in yellow in lower-middle) that has a vertex
lying on the silhouette and select among them a set of the updated
silhouette landmarks according to the estimated rotation matrix R̂
in each training time. The vertices of the silhouette are updated in
the end, as shown in red on the upper right and lower-right.

Compared with normal face, the positions of caricature
silhouette landmarks have large variance, and thus it is quite
challenging to detect their positions accurately. Moreover,
the 3D vertices corresponding with these silhouette land-
marks are labeled on the mean neutral face with a frontal
view, which causes the problem that the correspondences
between 3D vertices and 2D landmarks are not correct for
non-frontal faces as shown in Fig. 4. To solve this prob-
lem, we update the indices of 3D silhouette landmarks dur-
ing training according to the estimated rotation matrix and
vertices’ coordinates. In each training iteration, we select
some vertices from each horizontal line that has a vertex ly-
ing on the silhouette and project them onto the image plane
according to the estimated rotation matrix R̂. Then for each
2D silhouette landmark, we set the vertex whose projection
is closet to it (see Fig. 4) as its current corresponding 3D
silhouette landmark.

The total loss function is given in the following form:

E = λ1Ever+λ2Elan, (10)

where λ1, λ2 are hyperparameters and their setting will be
discussed in the experiment section.



4. Experiments

In this section, we give the implementation details,
ablation studies, qualitative and quantitative evaluation of
our proposed method, as well as comparisons with several
related methods.

Implementation Details We train our model via the Py-
Torch [43] framework. CNN takes the input of a color
caricature image with size 224 × 224 × 3. We use Adam
solver [30] with the mini-batch size of 32 and train the
model with 2K iterations. The base learning rate is set to
0.0001. We set λ1 = 1, λ2 = 0.00001 during the first 1K
iterations, and set λ1 = 1, λ2 = 0.001 during the last 1K it-
erations. The reason why the magnitudes of parameters are
quite different is that the magnitude of vertices’ coordinates
has a big difference from that of 2D pixels.

All the tests, including our method and comparison
methods, were conducted on a desktop PC with a hexa-core
Intel CPU i7 at 3.40 GHz, 16GB of RAM, and NVIDIA TI-
TAN Xp GPU. As for the running time for each caricature,
our method takes about 10ms to obtain both 3D mesh and 68
2D landmarks. The number of vertices of our reconstructed
mesh is 6144.

4.1. Ablation Study

We first conduct ablation studies to demonstrate the im-
portance of each component. The ablation studies are de-
signed for the augmented data, PCA initialization, and sil-
houette updating strategy.

As Tab. 1 shown, we evaluate the detection performance
with several commonly used landmark error metrics, which
are also used in [32]. Specifically, the second row shows
the error metrics of our method without using augmented
data, which are generated by CariGANs [9] in Sec. 3.1. The
third row shows the errors of our method without PCA ini-
tialization for the weight of the last FC layer mentioned in
Sec. 3.3. And the fourth row shows the errors of our method
without adopting the strategy to update the indices of sil-
houette landmarks displayed in Fig. 4. As demonstrated
in Tab. 1, the mean error of estimated landmarks decreases
from 5.85 to 5.64 with the help of augmented data, from
6.91 to 5.64 thanks to the PCA initialization, and from 5.99
to 5.64 owing to the silhouette updating strategy.

Fig. 5 shows the detection and reconstruction results of
ablation studies. The reconstructed mesh of our method
without using augmented data shows that the learned model
does not show good generalization ability, which leads to
misalignment in the detection of silhouette points. The
recovered mesh of our method without PCA initialization
demonstrates that the PCA model makes the results to be
smooth and more natural. We can observe that the predicted
silhouette landmarks by the model without silhouette updat-

ing strategy deviate from the accurate position, which con-
firms the effectiveness of the silhouette updating strategy.

Table 1. Results of the ablation studies with metrics of landmark
detection errors. Values of mean error with normalization are
shown as the percentage of the normalization metric.

mean
error

inter
-pupil

inter
-ocular diagonal

w/o Augmented 5.85 9.29 6.34 2.38
w/o PCA 6.91 11.01 7.52 2.82

w/o Sil. Update 5.99 9.49 6.48 2.44
Ours 5.64 8.93 6.10 2.30

w/o Augmented w/o PCA w/o Sil. Update Ours

Figure 5. Landmark detection and reconstruction results of the ab-
lation studies. Left to right: results by method without using aug-
mented data, results by method without PCA initialization, results
by method without silhouette updating strategy, and results by our
full method.

4.2. Detection Comparison

As far as we know, there is no existing method for land-
mark detection for general caricatures. We compare our
method with some benchmark methods. The first type is
the face alignment methods, which are designed for normal
human faces, and we select three typical methods, including
DAN [32], ERT [28], and vanilla CNN (VCNN) designed
by [57]. As their released trained models are trained with
normal facial images, we retrain their models based on the
author’s training code. For a fair comparison, their meth-
ods are trained and tested with the same training and testing
dataset as our method. We randomly split our dataset into
80% for training and 20% for testing.
DAN: Deep Alignment Network (DAN) [32] is a robust
face alignment method based on deep neural network ar-
chitecture. Its algorithm pipeline includes multiple stages,
where each stage improves the locations of the facial land-
marks estimated by the previous stage.
ERT: In [28], an ensemble of regression trees (ERT) has
been used to directly estimate the facial landmark posi-
tions from a sparse subset of pixel intensities. This method



Figure 6. We provide visual landmark detection results on the test dataset using DAN [32], ERT [28], VCNN [57] and some baselines,
including Landmark PCA (L-PCA), Vertex PCA (V-PCA), and DR-PCA.

achieves super-realtime performance with high-quality pre-
dictions. It has been integrated into the Dlib library [29].
VCNN: Vanilla CNN is proposed in [57], which introduces
hierarchical and discriminative processing to the existing
CNN design for facial landmark regression.

Except for the above three methods, we also implement
some baseline methods.
L-PCA: Inspired by [9], we extract the PCA basis of 2D
caricature landmarks from the labeled landmark dataset. In
this way, the landmarks of caricature image can be repre-
sented by the coefficient of PCA basis. We use the same
ResNet framework in our method to directly regress the co-
efficient.
V-PCA: We extract the PCA basis of 3D caricature shape
set represented by the Euclidean coordinates. The network
structure is the same as our algorithm pipeline in Fig. 2, and
regresses the PCA coefficient and orientation.
DR-PCA: We extract the first 210 principal components
of a PCA basis from the 3D caricature shape set repre-
sented by the deformation representation. The pipeline
is the same as our method by changing the decoder (the
last 3 FC layers) to the matrix multiplication with the ex-
tracted PCA basis. Specifically, the deformation gradients

{(log R̂i, Ŝi), i = 1, . . . , nv} can be directly computed via
matrix multiplication between the extracted PCA basis and
the latent vector χs ∈ R210.

Table 2. Statistics of landmark detection errors and computation
time (ms/image) on the test set. Values of mean error with normal-
ization are shown as the percentage of the normalization metric.

mean
error

inter
-pupil

inter
-ocular diagonal

time
(ms)

DAN 5.78 9.93 6.80 2.59 25.9
ERT 8.24 14.52 9.95 3.71 2.7

VCNN 14.04 24.33 16.67 6.39 1.6
L-PCA 5.87 10.08 6.91 2.64 4.8
V-PCA 6.20 10.68 7.32 2.79 6.4

DR-PCA 5.75 9.89 6.77 2.58 9.3
Ours 4.98 8.51 5.82 2.23 9.8

We compare our method with these benchmark meth-
ods. Fig. 6 shows some visual results of landmark detec-
tion. It can be observed that the detected landmarks of
ERT [28] and VCNN [57] can not match the face shape.
The method of DAN [32] performs quite well for the facial
feature parts, including eyes, nose, and mouth. However,



Figure 7. Comparisons of cumulative errors distribution (CED)
curves on the test set.

its silhouette landmarks may deviate from the accurate po-
sitions. V-PCA and L-PCA are also not good for the land-
marks on the silhouette. Though DR-PCA representation
shows nice performance, it still can not match the facial fea-
ture parts precisely. In contrast, the detection results by our
method are quite close to the ground truth landmarks, even
for the silhouette landmarks. We also quantitatively com-
pare our method with these methods on several frequently
used landmark error metrics and average computation time.
We show the statistics in Tab. 2 and the cumulative errors
distribution (CED) curves of these methods on the mean er-
ror in Fig. 7. We can see that the mean error, mean error
normalized separately by inter-pupil distance, inter-ocular
distance, and bounding box diagonal of our methods are all
smaller than those of other methods.

The reason why our method performs better includes the
following aspects. First, rather than directly regressing the
2D landmarks, we regress the 3D shape and orientation. In
this way, a challenging problem is decomposed into two
easier problems. Second, to better represent the 3D cari-
cature shape, we learn a nonlinear parametric model, which
is more suitable to represent the 3D caricature shape than
3D morphable model [4] and FaceWareHouse [8].

4.3. 3D Reconstruction Comparison

Reconstructing 3D caricature shape from caricature im-
age is also a challenging problem. In Fig. 8, we show
eight reconstruction examples from the test set. The re-
constructed mesh is overplayed on the image, and we can
observe that the shape is recovered quite well. The recov-
ered mesh from two different views and with texture are
also shown to demonstrate the effectiveness of our method.

We also compare our method with an existing state-of-

Figure 8. Left to right: input caricature, predicted mesh overlaying
on the image, predicted mesh in two different views, predicted
mesh with texture.

the-art method [56], which is the only universal method of
3D caricature reconstruction. Then as shown in their pa-
per, classical parametric models like 3DMM [44, 60] and
FaceWareHouse [8] cannot reconstruct exaggerated meshes
well due to their limited extrapolation ability. As Fig. 9
shows, compared to the results of [56], the reconstructed
3D meshes by our method are quite natural and vivid. There
are two advantages of our method. One is the computation
time. It takes around 10ms (real-time) to produce the result
with our method, while 12.5s for their method. Another
difference is that our reconstruction method does not need
to label the landmarks manually, while [56] needs labeled
landmarks as input.

Moreover, we also compare our method with the recon-
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Figure 9. Reconstruction results by our method and [56] which
needs labeled landmarks. From the first column to the last col-
umn are input images, reconstruction results by [56], reconstruc-
tion results by our method, and the projected 2D landmarks by our
method, respectively.

struction methods by 3DMM [60], FaceWareHouse [8, 7]
and Alive [56]. We compare the mean square error be-
tween the projected landmarks and ground-truth landmarks,
which also has been used in [56]. For these optimization
based methods, the 3D caricature mesh is reconstructed by
minimizing the residuals between the projected landmarks
and the ground-truth landmarks. It needs to be pointed out
that the compared methods all need labeled landmarks in-
put, while our method is automatic. As shown in Tab. 3, our
method even outperforms both 3DMM and FaceWareHouse
fitting over test data, although our method does not have the
ground truth 2D caricature landmarks as input.

Table 3. The mean square error between projected landmarks and
ground-truth landmarks over test data. The first row shows the
methods, and the second row shows their corresponding mean
square errors of landmarks. Note that the compared methods all
need labeled landmarks input, while our method automatically de-
tects the landmarks and reconstructs the 3D mesh from the input
caricature.

3DMM FaceWareHouse Alive Ours
6.32 7.61 0.02 4.98

From the above quantitative and qualitative experiments,
we can see that our proposed method performs quite well
on landmark detection and reconstruction for caricatures.
In Fig. 10, more experimental results and comparisons with
the benchmark landmark detection methods [32, 28, 57]
and the existing state-of-the-art caricature reconstruction
method [56] on 10 test caricatures are given. These results
further validate the superior effect of our proposed method
on the tasks of landmark detection and 3D reconstruction
on caricature.

5. Conclusion

We have presented an effective and efficient algorithm
for automatic landmark detection and 3D reconstruction for
2D caricature images. This challenging problem is well
solved by separately regressing the 3D face shape and face
pose, and then 2D landmarks and 3D shape can both be ob-
tained. To represent the non-regular 3D caricature face, we
construct a 3D caricature shape dataset to learn the latent
representation. Extensive experimental results show that
the detected 2D landmarks and reconstructed 3D face shape
fit the caricature quite well, which outperforms the exist-
ing state-of-the-art methods in both computation speed and
accuracy.
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Figure 10. Landmark detection comparisons with benchmark methods DAN [32], ERT [28], VCNN [57] and reconstruction comparisons
with state-of-the-art method [56] which needs labeled landmarks. It can be seen that our method can detect landmarks and reconstruct 3D
face shapes quite well.
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[50] J. Thies, M. Zollhöfer, M. Nießner, L. Valgaerts, M. Stam-
minger, and C. Theobalt. Real-time expression transfer for
facial reenactment. ACM Transactions on Graphics (TOG),
34(6):183:1–183:14, 2015. 2

[51] J. Thies, M. Zollhofer, M. Stamminger, C. Theobalt, and
M. Nießner. Face2face: Real-time face capture and reen-
actment of rgb videos. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 2387–2395,
2016. 2

[52] L. Tran and X. Liu. Nonlinear 3d face morphable model.
In 2018 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18-
22, 2018, pages 7346–7355. IEEE Computer Society, 2018.
3

[53] A. Tuan Tran, T. Hassner, I. Masi, and G. Medioni. Regress-
ing robust and discriminative 3d morphable models with a
very deep neural network. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
5163–5172, 2017. 2

[54] R. Valle, J. M. Buenaposada, A. Valdés, and L. Baumela. A
deeply-initialized coarse-to-fine ensemble of regression trees
for face alignment. In European Conference on Computer
Vision (ECCV), pages 585–601, 2018. 2

[55] R. C. C. Vieira, C. A. Vidal, and J. B. C. Neto. Three-
dimensional face caricaturing by anthropometric distortions.
In XXVI Conference on Graphics, Patterns and Images, SIB-
GRAPI, pages 163–170, 2013. 1, 3

[56] Q. Wu, J. Zhang, Y.-K. Lai, J. Zheng, and J. Cai. Alive
caricature from 2d to 3d. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 7336–7345,
2018. 1, 3, 4, 9, 10, 11

[57] Y. Wu, T. Hassner, K. Kim, G. G. Medioni, and P. Natarajan.
Facial landmark detection with tweaked convolutional neu-
ral networks. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 40(12):3067–3074, 2018. 2, 7, 8, 10,
11

[58] M. Zhu, D. Shi, M. Zheng, and M. Sadiq. Robust facial
landmark detection via occlusion-adaptive deep networks. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 3486–3496, 2019. 2

[59] X. Zhu, Z. Lei, X. Liu, H. Shi, and S. Z. Li. Face align-
ment across large poses: A 3d solution. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages
146–155, 2016. 2

[60] X. Zhu, Z. Lei, J. Yan, D. Yi, and S. Z. Li. High-fidelity
pose and expression normalization for face recognition in



the wild. In IEEE Conference on Computer Vision and Pat-
tern Recognition, CVPR 2015, Boston, MA, USA, June 7-12,
2015, pages 787–796, 2015. 9, 10


