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Abstract Procedural noise functions are fundamental
tools in computer graphics used for synthesizing
virtual geometry and texture patterns. Ideally, a
procedural noise function should be compact, aperiodic,
parameterized, and randomly accessible. Traditional
lattice noise functions such as Perlin noise, however,
exhibit periodicity due to the axial correlation induced
while hashing the lattice vertices to the gradients.
In this paper, we introduce a parameterized lattice
noise called prime gradient noise (PGN) that minimizes
discernible periodicity in the noise while enhancing the
algorithmic efficiency. PGN utilizes prime gradients, a
set of random unit vectors constructed from subsets of
prime numbers plotted in polar coordinate system. To
map axial indices of lattice vertices to prime gradients,
PGN employs Szudzik pairing, a bijection F : N2 → N.
Compositions of Szudzik pairing functions are used in
higher dimensions. At the core of PGN is the ability to
parameterize noise generation though prime sequence
offsetting which facilitates the creation of fractal noise
with varying levels of heterogeneity ranging from
homogeneous to hybrid multifractals. A comparative
spectral analysis of the proposed noise with other noises
including lattice noises show that PGN significantly
reduces axial correlation and hence, periodicity in
the noise texture. We demonstrate the utility of
the proposed noise function with several examples in
procedural modeling, parameterized pattern synthesis,
and solid texturing.
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1 Introduction
Visually pleasing 3D content is one of the core
ingredients of successful movies, video games, and
virtual reality applications. Unfortunately, creation
of high quality virtual 3D content and textures
is a labour-intensive task, often requiring several
months to years of skilled manual labour. A
relatively cheap yet powerful alternative to manual
modeling is procedural content generation using a
set of rules, such as L-systems [1] or procedural
noise [2]. Procedural noise has proven highly
successful in creating computer generated imagery
(CGI) consisting of 3D models exhibiting fine detail
at multiple scales. Furthermore, procedural noise
is a compact, flexible, and low cost computational
technique to synthesize a range of patterns that may
be used to texture 3D models.

In general, procedural noise functions fall into three
main categories: lattice noise, explicit noise, and
sparse convolution noise [3]. A well-known example
of lattice noise is the gradient noise introduced by
Ref. [2], which is included in many commercial
rendering engines such as Terragen [4] and Unity
[5]. The popularity of Perlin noise can be attributed
to its simplicity and efficiency. Perlin noise employs
a hash function using a single random permutation
table on the integer lattice to generate a fixed random
unit gradient at each vertex. The generated gradients
are then used to compute noise values for the entire
domain [2, 6]. A sample image of Perlin noise and its
Fourier transform is shown in Fig. 1(a).

A hash function used in lattice noise should ideally
decorrelate the indices of the lattice vertices to avoid
anisotropy and periodicity. However, Kensler et al. [7]
found striations in the Fourier transform of Perlin
noise, indicating axial correlation. They modified
Perlin’s 3D hash function to use three independent
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Fig. 1 Noise images (above) and Fourier transforms (below). (a) Perlin noise, (b) fractional Brownian motion (fBm) using Perlin noise,
(c) prime gradient noise, (d) fBm using prime gradient noise, (e) fBm using additive cascades of parameterized PGN, (f) landscape generated
using the noise texture in (e).

random permutation tables corresponding to each
axis. Though the modified hashing scheme reduces
the number of permutation table lookups from 2D+1−
2 to 2D (where D is the dimension), the permutation
tables consume three times as much space as the
single permutation table in the original Perlin noise.

To capture fine details at multiple scales, Ref. [2]
constructs fractal noise by summing several weighted
“octaves” of noise. A sample image of fractal noise
based on Perlin noise and its Fourier transform is
shown in Fig. 1(b). While fractal noise successfully
captures the repetitions of an underlying shape
at different scales, it is statistically homogeneous
(invariant under translation) and isotropic (invariant
under rotation) [8]. This makes fractal noise
unsuitable for virtual terrains with features such
as valleys, foothills, or jagged alpine mountains.
Hybrid multifractals [8] provide a way to generate
heterogenous fractal noise by scaling octave values
up or down by previous local octave values, which in
turn can be used to synthesize terrains with a high
degree of roughness. However, scaling octave values
may lead to the formation of undesirable structures
in the models such as depressions on mountain slopes
[8]. Furthermore, the construction of hybrid multi-
fractals involves costly multiplicative cascades.

In this paper, we propose two improvements to
Perlin noise which lower storage requirements and
reduce axial correlation. We name our algorithm
prime gradient noise (PGN); sample images of
PGN and fractal PGN noise and their Fourier
transforms are shown in Figs. 1(c) and 1(d). The
main improvement is the construction of lattice
gradients using the distribution of the prime numbers
as a source of randomness. Each prime number
corresponds to a unique angle when taken mod 2π. A
theorem of Vinogradov on prime number distribution
[9] implies that these angles are distributed randomly

and uniformly on [0, 2π). In 2D, each “prime gradient”
is computed as the unit vector with a given prime
angle, and in 3D, a related, slightly more complicated
formula produces a uniform distribution of prime
gradients on the unit sphere from pairs of primes.

Unlike the fixed set of gradients prescribed in
Ref. [6], our algorithm is parameterized by the
choice of range from which to sieve the primes.
Incidentally, the parameterization facilitates the
generation of fractal noise with varying levels of
heterogeneity. Essentially, different base noise
functions are employed in the additive cascade of
multifractals to generate a fractal noise that is a
blend of homogeneous fBm and hybrid multifractals.
This approach avoids the computationally expensive
multiplicative cascade [8] of traditional hybrid
multifractal systems. A sample image of this additive
heterogeneous noise and its Fourier transform are
shown in Fig. 1(e) and a sample landscape generated
from this noise is shown in Fig. 1(f).

The other improvement tackles the problem of axial
correlation in Perlin noise with a simple hashing
scheme using Szudzik pairing [10]. A pairing function
uniquely encodes two natural numbers into another
natural number; we use the Szudzik pairing to map
the lattice vertex indices to gradient vectors in 2D. As
pairing functions can be composed to create bijections
between the natural numbers and higher dimensions,
our technique extends to 3D hashing as well. Instead
of storing a predefined set of random unit vectors as
in Perlin’s original implementation [2], we compute
the gradients on the fly from prime numbers. An
implementation representing each prime with two
bytes uses 1/4 the storage of Perlin noise gradients
which represents a 2D gradient with two four-byte
floats. The trade-off is the cost of computing the
gradient from the prime, but memory access is
typically a larger bottleneck than arithmetic.
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In summary, we make the following specific
contributions:
• Prime gradients: Utilization of prime numbers

to generate a family of densely and uniformly
distributed lattice gradients for noise generation.
A parameterized version of the proposed base
noise function can be used to create fractal noise
with varying levels of heterogeneity.

• Szudzik hashing: A hashing scheme using Szudzik
pairing to minimize the axial correlation found in
the lattice noises.

• OpenSN : An open source synthetic noise library
containing implementations of various noise
algorithms including the proposed noise function
along with analysis tools such as amplitude
distribution graphs and periodograms, and
algorithms for virtual geometry and pattern
synthesis.

2 Previous work
Lagae et al. [3] classify procedural noise algorithms
into three categories: lattice noise, sparse convolution
noise, and explicit noise. In lattice noise, noise
values are computed as a function of position
and pseudorandom values defined at nearby lattice
vertices. A sparse convolution noise function is the
convolution of a sparse Poisson process and a kernel.
Explicit noise functions use precomputed data (unlike
the other two procedural-only categories) to compute
the final noise values. Any noise can be sampled at
varying rates and offsets and summed with varying
weights to obtain fractal noise [2]. Wang tiles can be
used to avoid periodicity of noise functions [11, 12].

2.1 Lattice noise

Probably the best-known procedural noise algorithm
is Perlin noise [2]. It uses a hash function to
define pseudorandom gradients at each point on the
integer lattice and interpolates their dot products
with difference-from-point vectors to obtain the
noise value at each point. The hash function and
interpolation function of Perlin noise are improved in
later papers [6, 7], and hardware versions of Perlin
noise are designed and/or implemented by Refs. [13–
17]. Flow noise [18] and curl noise [19] use Perlin
noise to animate flowing liquid. Ref. [20] vastly
generalizes Perlin noise to a family of polynomial
noise algorithms.

There are other lattice noises which use differently-
shaped lattices. Wyvill and Novins [21] present a
skewed, more dense lattice. Simplex noise [22] uses
a triangular or tetrahedral lattice. Worley noise
[23] randomly fills space with “feature points” via
a Poisson process. Space is then partitioned into
regions whose points share the closest feature point,
and each noise value is computed as a function of
distance to the nearest few feature points.

2.2 Sparse convolution noise

Sparse convolution noise was introduced by Refs. [24–
26]. The choice of kernel is straightforward given
a description of the desired power spectrum, for
the spectra of the kernel and noise differ only by
a constant multiple [26]. Spot noise [27] is produced
by kernels whose graphs are disks, ellipses, and more
complicated shapes. It is common to provide the
sparse Poisson process of spot noise via a table of
precomputed random values rather than procedurally.
Ref. [28] defines a sparse convolution noise based on
a cubic filter which uses a lattice to generate “source”
points. Local random-phase noise [29] is another
sparse convolution noise using a lattice; local regions
with distinct noise parameters are defined based
on the lattice points. Texton noise [30] introduces
another kernel defined from a small texture which
reproduces “Gaussian textures”.

Gabor noise [31, 32] is a recent, well-known sparse
convolution noise using the Gabor kernel:
G(x, y)=Ke−πa2(x2+y2)cos(2πF0(x cos ω0+y sin ω0))

(1)
to generate both isotropic and anisotropic noise.
Variations on Gabor noise include random phase
Gabor noise [33], bandwidth-quantized Gabor noise
[34], and NPR Gabor noise [35]. A very recent
development based on Gabor noise is phasor noise [36],
the main idea of which is to separate the intensity and
phase of Gabor noise and control them separately.

2.3 Explicit noise

Wavelet noise [37] is an explicit noise designed to
bandlimit the power spectrum. The output noise
image is computed as the difference between a white
noise image R and a blurred copy of R. Anisotropic
noise [38] filters the Fourier transform of a white noise
image to obtain several orientable sub-bands, which
are then used to construct a noise image with the
desired power spectrum and orientation. Stochastic
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subdivision [39, 40] is a technique to approximate
Brownian noise via interpolation of pre-computed
samples.

Example-based texture synthesis is the
generation of new textures which emulate the
noise characteristics of given example input. Several
researchers [41, 42] have used “energy” to measure
how well a texture matches another. A generative
adversarial network is employed by Ref. [43] to
generate larger textures from smaller ones. A
PCA-based convolutional network is used by
Ref. [44] to identify and reproduce texture features.
Semi-procedural textures [45] are generated from a
combination of explicit structure parametrization
and colour information taken from a sample texture.
An algorithm has been designed by Ref. [46] to select
a small gallery of textures based on a short training
process by a user.

Table 1 Mathematical notation

Symbol Definition
N The set of natural numbers
P The set of prime numbers
Z The set of integers
R The set of real numbers
⊕ bitwise XOR

3 Prime gradient noise
3.1 Perlin noise

We start by reviewing Perlin noise [2, 6], one of the
best-known procedural noise algorithms and highly
relevant to the subsequent discussions. In Perlin noise,
the domain of the noise function (Rn) is implicitly
tiled by the lattice of points with integer coordinates.
A hash function H : Z

n → Z is defined which
maps each lattice vertex to an index of an array
G containing a set of predefined gradients (random
unit vectors) in R

n. At each point w, the noise value
N(w) is computed by interpolating the dot products
G[H(cij)] · (w − cij) for each corner cij of the lattice
cell containing w. Gradients and the point vectors
of a lattice cell in 2D as well as 3D are illustrated in
Fig. 2. The interpolation process uses a weighting
function to smooth the transition between lattice
cells. The smoothstep function f(t) = 3t2 − 2t3

was used in the original version of the algorithm [2],
and later replaced with the smootherstep function
f(t) = 6t5 − 15t4 + 10t3 [6]. A closely related noise

Fig. 2 Gradient and point vectors of a lattice cell.

is simplex noise [22], which is defined on a triangular
or tetrahedral lattice and uses a hash function to
convert lattice points to gradients and interpolates
dot products.

Perlin noise ultimately provides a function to
procedurally generate noise at a given frequency and
amplitude. Frequency controls the sampling period
while amplitude controls the range in which values lie
that are generated by the function. Utilizing Perlin
noise in conjunction with fBm [8] allows multiple
varied frequencies and amplitudes of Perlin noise to
be conflated. Such a process generates interesting
textures, often used to simulate clouds or height maps,
as shown in Fig. 3.

3.2 Prime gradients

In this subsection, we discuss the generation of unit
vectors in 2D and 3D from prime numbers. We use
the notation θ(r) and {r} to denote the floating-point
remainder of r by 2π and 1, respectively (the latter
is just the fractional part of r).

Weyl proved [47] the following theorem:

Theorem 3.1 (Weyl’s Criterion). Let (xn)n be a
sequence of real numbers. Then the sequence ({xn})n

is uniformly distributed (u.d.) in [0, 1) iff for all
h ∈ Z:

lim
N→∞

1
N

∞∑
n=1

e2πihxn = 0 (2)

Weyl proved the special case that ({αn})n is u.d.
in [0, 1) for irrational α. A number-theoretic result
of Vinogradov [47] implies that ({αp})p∈P is also u.d.
in [0, 1). (The citations are taken from a text on

Fig. 3 fBm composition of Perlin noise.
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uniform distribution of sequences, since Weyl and
Vinogradov did not publish in English.)

Pick α = 1/2π; since ({p/2π})p∈P is u.d. in
[0, 1), (θ(p))p∈P is u.d. in [0, 2π). This suggests a
technique for pseudorandom generation of angles.
While the sequence (θ(n))n is also u.d. in [0, 2π),
the irregular gaps between the prime numbers are
better suited to a pseudo-random number generator
(PRNG). There are many other integer sequences
(an)n such that (θ(an))n is u.d.; the primes are merely
a toy example, and future work includes investigating
easier-to-compute (an)n suitable for our PRNG.

Plots of the first few terms of the point sequences
((p cos(θ(p)), p sin(θ(p))))p∈P and ((cos(θ(p)),
sin(θ(p))))p∈P in Figs. 4 and 5 respectively illustrate
this uniform distribution.

The pre-process which generates the gradient table

Fig. 4 Polar plot of primes.

Fig. 5 Plots of the first 256 normalized prime numbers.

must select a finite set of prime numbers, one per
gradient. Our algorithm fixes an interval [m, n] (the
choice of m and n may be considered the “seed” for
the PRNG) and runs an Eratosthenes sieve [48] to
extract the prime numbers from that range. An
alternative implementation might implicitly choose
m and n and hardcode the prime table [m, n] to avoid
the sieving step. The time complexity of the sieve is
discussed in Section 4.7.

In our 2D algorithm, each gradient is computed on
the fly from each prime p as (cos(θ(p)), sin(θ(p))). In
our 3D algorithm, a table of pairs of primes (p, q) is
constructed instead. To construct each gradient from
a pair (p, q), an intermediate pair is constructed by
the following formula (the set of such pairs is u.d. in
[−1, 1) × [−1, 1)):

(cos(θ), u) =
(

cos(θ(p)),
θ(q)

π
− 1

)
(3)

The gradient is then constructed from this pair by
the formula:

(x, y, z) = (
√

1 − u2 cos(θ),
√

1 − u2 sin(θ), u) (4)
which gives a uniform distribution on the unit sphere
[49]. In higher dimensions, PGN could implement
techniques such as uniformly sampling points in the
unit n-cube and discarding ones which lie outside the
unit n-sphere.

3.3 Szudzik hashing

The hash functions Hn : Z
n → Z for 2D and 3D

Perlin noise are implemented as

H2(i, j) = σ[σ[i] + j] (5)

H3(i, j, k) = σ[σ[σ[i] + j] + k] (6)
where σ is a pseudorandom permutation table and
indices are taken modulo |σ|. Kensler et al. [7]
demonstrate that this method contributes to axial
correlation. They suggest the hash functions:

H2(i, j) = σ[i] ⊕ τ [j] (7)

H3(i, j, k) = σ[i] ⊕ τ [j] ⊕ φ(k) (8)
where σ, τ, φ are distinct permutation tables for the
x, y, z axes respectively. The drawback to this method
is the extra storage required.

We present alternative hash functions based on
pairing functions which uses only one permutation
table while avoiding axial correlation. A pairing is a
bijection F : N2 → N, and can be plotted on N

2 as
a path consisting of discrete steps from each F −1(n)
to F −1(n + 1) (see Fig. 7).
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Our proposed hash functions are implemented as

H2(i, j) = σ[F (i, j)] (9)

H3(i, j, k) = σ[F (F (i, j), k)] (10)
Note that since F (i, j) is a bijection N

2 → N,
F (F (i, j), k) is a bijection N

3 → N. This composition
of pairing functions allows us to extend our hashing
technique to any number of dimensions. In practice,
it is usually possible to force all sampled lattice points
to have non-negative indices. If lattice points with
negative indices are required, F (i, j) can be replaced
by F (B(i), B(j)) where B : Z → N is the bijection:

B(i) =

⎧⎪⎪⎨
⎪⎪⎩

−2i, i < 0
0, i = 0
2i − 1, i > 0

(11)

We compare three well-known pairing functions for
use in the hash algorithm: the Cantor pairing [10]:

cantor(i, j) = i +
(i + j)(i + j + 1)

2
(12)

the Rosenberg-Strong pairing [50]:

rosenbergstrong(i, j) =

⎧⎨
⎩

j2 + i, i < j

i2 + 2i − j, i � j
(13)

and the Szudzik pairing [10]:

szudzik(i, j) =

⎧⎨
⎩

j2 + i, i < j

i2 + i + j, i � j
(14)

It is convenient to visualize pairing functions as
lattice paths, where each step is from F −1(n) to
F −1(n + 1). The diagrams in Fig. 7 show that the
Rosenberg-Strong and Szudzik pairings map lattice
points in a given rectangular region to a smaller
interval in N than the Cantor function. This is
desirable in low-memory environments since larger
numbers use more bits.

The zoomed version of the periodograms in Fig. 6
show that the spectra of Perlin noise with the Cantor
and Rosenberg-Strong functions display diagonal
streaks, while the spectrum of PGN and Perlin noise
with the Szudzik pairing is free of such anomalies.
The spectrum of the original Perlin noise also shows
some more subtle horizontal streaks compared to
PGN.

3.4 The algorithm

The PGN algorithm is parameterized by an “offset”
parameter m determining which prime numbers are
used to generate the gradients. We refer to the

Fig. 6 Analysis of two dimensional lattice-based procedural functions.
(a) Noise. (b) fBm noise with 8 octaves. (c) Amplitude distribution.
(d) Periodogram with highlighted center region. (1) Prime gradient
noise. (2) Perlin noise with Perlin’s pairing function. (3) Perlin noise
with Szudzik’s pairing function. (4) Perlin noise with Cantor’s pairing
function. (5) Perlin noise with Rosenberg-Strong’s pairing function.

Fig. 7 Lattice paths corresponding to different pairing functions.

floating point remainder of p by 2π as θ(p) as in
Section 3.2. We describe the gradient generation
process here; the interpolation step is exactly the
same as improved Perlin noise [6].
3.4.1 2D algorithm
A pre-process computes and shuffles a table of
prime numbers for later gradient generation. First
the Eratosthenes sieve [48] is run on [215, 216] to
mark all primes in that range (the list can also be
explicitly provided, but the sieve is very fast for
such small numbers). Then the primes at the 256
indices (allowing wraparound) starting with m are
copied to an array P . Finally, P is shuffled using
the Fisher-Yates algorithm [51], which generates all
permutations of P with equal probability. Given a
lattice vertex (i, j), the hash function computes h =
szudzik(i, j) and sets p = P [h%256]. The gradient to
be returned is computed as (cos(θ(p)), sin(θ(p))).
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3.4.2 3D algorithm
A pre-process extracts 256 primes, makes two copies
of them in arrays P, Q, and shuffles P and Q into
separate permutations (separating the permutations
slightly increases the randomness). Given a lattice
vertex (i, j, k), the hash function computes h =
σ[szudzik(szudzik(i, j), k)] and sets p = P [h%256],
q = Q[h%256], u = θ(q)/π − 1. The gradient
to be returned is computed as (

√
1 − u2 cos(θ(p)),√

1 − u2 sin(θ(p)), u).

3.5 Heterogeneous noise via parameterized
PGN

Up until this point, any use of prime gradient noise
with fBm has been exclusively homogeneous and
isotropic. Homogeneous fBm can be described as
each point being treated the same in terms of how its
value is generated, resulting in a consistent roughness
throughout. However, it is evident that nature
produces more heterogeneous patterns, as exemplified
in Fig. 8 where higher elevations have a greater
degree of roughness (e.g., tops of mountains) and
lower elevations a lesser degree of roughness (e.g.,
ground beneath water). Moreover, the resulting
fBm composition, detailed in Fig. 9, exemplifies the
amplification of roughness at higher elevations and
the smoothing at lower elevations. This can be
generalized such that the noise value at a given point
is ultimately influenced by nearby points, in turn
resulting in gradual yet correlated transitions with
respect to roughness [8].

Heterogeneous fBm is commonly achieved through
the process of scaling octaves values such that lower
noise values are scaled down and higher noise values
are scaled up. Values can be scaled such that the
current octave is multiplied by the current summation
of noise values, in turn resulting in a greater degree

Fig. 8 Colour coded homogeneous and heterogeneous fBm noise,
where darker blues represent higher elevations and lighter blues
represent lower elevations.

Fig. 9 Homogeneous and heterogeneous fBm compositions of prime
gradient noise corresponding to the height maps in Fig. 8. (a)
Homogeneous. (b) Heterogeneous (multiplicative).

of roughness at higher noise values and a lesser
degree of roughness at lower noise values, resulting in
multiplicative heterogeneous fBm [8]. Alternatively,
a hybrid between homogeneous and heterogeneous
fBm can be achieved using an additive cascade of
parameterized PGN by allowing for different offsets
at each octave as in Eq. (15):

fBm(p) =
N∑
i

PGNi(p ∗ 2i) ∗ 2−H∗i (15)

where p is the point at which the function is evaluated,
and N and H are the number of octaves and fractal
increment parameter [8] respectively. This results
in a sliding window approach to compute PGNi(.),
whereby the range used in the gradient table is offset,
dependent upon the current octave. The offset is
generated as 2i−1, such that 0 < i < N where i is the
current octave and N is the total number of octaves.
Consequently, this leads to the fact that an expanded
prime table (in 2D), or tables (in 3D), are required
to accommodate for the said offset. The size of the
prime tables can be calculated to be 256 + 2N−1 − 1,
where N denotes the total number of octaves. The
combination of these two aspects enables the usable
range of the prime table or tables to shift, dependent
upon on the current octave, as exemplified in Fig. 10.

Fig. 10 Accessible range in prime tables as a result of varying offsets,
where N denotes the total number of octaves and each grey section
represents the accessible range of the prime table at a given octave.
Prime table size is 256 + 2N−1 − 1.
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3.6 Comparison with Perlin noise

The overall algorithm of prime gradient noise
generally resembles that of Perlin noise, preserving
features such as aperiodicity and random accessibility.
However, prime gradient noise differs from Perlin
noise in two ways. These differences pertain to the
method by which values in a lattice are generated,
along with the method associated with how these
values are used in noise generation. Rather than
generating pseudo-random values for each lattice
point and dimension, prime gradient noise utilizes
a sequence of prime numbers that is randomly
permuted such that a single table is needed in 2D
and two tables are needed in 3D, which are referred
to as prime tables. The parametrization element of
this function relates to an offset that in turn specifies
the range of prime numbers used, as exemplified
in Section 3.5. Prime gradient noise reduces the
number of times in which lattice values must be
accessed. Where Perlin noise accesses two lattice
values in 2D and three lattice values in 3D, prime
gradient noise only requires a single lattice value
to be accessed in 2D and two lattice values to be
accessed in 3D. The resulting value or values in
2D and 3D, respectively, is subsequently used in
the conversion of polar or spherical coordinates to
Cartesian coordinates, allowing all influence vectors
to be computed from a single lattice lookup in 2D or
two lattice lookups in 3D, as described in Section 3.4.
Consequently, the prime gradient method reduces the
overall space requirements in relation to lattice values.
Quantitatively, the number of per cell look-ups differs
slightly between prime gradient noise and Perlin noise,
which follows from the different number of lattice
tables associated with each lattice point. Where
Perlin noise results in 2D+1 − 2 lookups, where D

denotes the dimension, prime gradient noise reduces
this number by a factor close to 2, such that the
number of lookups amounts to 2D.

4 Results and discussion

4.1 Preliminaries

We implemented the prime gradient noise algorithm
in C++ using functions from OpenGL and OpenCV
libraries. For comparison purposes, we also
implemented related algorithms including Perlin [2,
6, 18], better gradient [7], Worley [23], wavelet [37],

Gabor [31], and phasor [36] noise functions. An open
source repository containing all these noise functions
along with necessary analysis tools such as amplitude
distribution and periodogram functions will be made
publicly available soon.

We conducted different experiments to exemplify
the impact of prime gradient noise on various
graphical entities. All experiments were performed on
a machine having a 2.3 GHz processor with 8 GB of
RAM. Throughout each experiment, prime gradient
noise was contrasted both in its parameterized and
non-parameterized forms. Through its parameterized
fBm form, prime gradient noise uses varying offsets at
each octave, where the offset for an octave i � N , is
calculated using 2i − 1, where N denotes the number
of octaves.

4.2 Comparative analysis

In this section, we analyse and compare prime
gradient noise with other lattice noise functions
(Perlin [2, 6], and better gradient [7], an explicit
noise (wavelet [37]), and Gabor [31] noise). We
have also included Perlin with Szudzik hashing for
comparison. The qualitative analysis is performed by
estimating the power spectrum through periodograms
and amplitude distributions. Amplitude distribution is
estimated through the use of a histogram. Periodograms
are generated by way of the Fourier transform, such
that a given pixel value is represented by the squared
magnitude of the Fourier transform [3].

Figure 11 shows the analysis of various procedural
noise functions. The top row displays the 2D noise
generated by the various noise functions. Evidently,
the outputs yield similar results for prime gradient
noise, Perlin noise, Perlin noise with the Szudzik
pairing function, and the wavelet noise. Continuing,
better gradient noise and Gabor noise yield similar
results to one another. Both of these noises
demonstrate higher aliasing effects than the previous
noise textures.

The second row in Fig. 11 displays the amplitude
distributions. It is evident that Perlin noise, Perlin
noise with the Szudzik pairing function, better
gradient noise, Gabor noise, and wavelet noise
display similar Gaussian distributions of noise values.
These distributions differ slightly from that of prime
gradient noise. Prime gradient noise prooduces
a flat-shaped appearance at an amplitude of 0.5.
This simply results in the even distribution of
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Fig. 11 Comparison of various procedural noise functions. Subtle streaks in the zoomed version of Perlin noise periodogram are absent in the
prime gradient noise implying a reduction in the axial correlations.

moderate amplitude values between 0.4 and 0.6,
thereby resulting in a lower variance than Gaussian
distributions. While a lower variance implies a lesser
extent of dispersion within the set of amplitude values,
this set still generates desirable effects comparable to
that of lattice noises with Gaussian distributions.

The bottom row of Fig. 11 shows the periodogram,
generated as the magnitude squared of the Fourier
transform. Prime gradient noise, Perlin noise, and
Perlin noise with the Szudzik pairing function produce
similar outputs. Upon closer investigation, it is
evident that prime gradient noise and Perlin noise
with the Szudzik pairing function can be differentiated
from Perlin noise through the horizontal lines emitted
in the latter. This is the result of axial correlation
in the Perlin noise hashing scheme, which is quite
minimal in prime gradient noise and Perlin noise
with the Szudzik pairing function. Similarly, better
gradient noise and Gabor noise generally resemble one
another. This being said, the notable differences in
the size of the center circle and the lines projecting on
the horizontal and vertical axes are a result of greater
detail witnessed in better gradient noise. Although
different in its shape, wavelet noise shows little axial
correlation at its center, much like prime gradient
noise and Perlin noise with the Szudzik function.

4.3 Parametrized textures

Parametrization refers to an aspect of procedural
noise generation where perturbation of inputs
yields distinct and differentiable outcomes [31].
Such a technique allows for broad applications of
generic noise functions. Prime gradient noise can be
parameterized by perturbation of noise values the
function returns or through the specification of an
offset in 2D noise generation (or various offsets in
the case of 3D noise generation). As exemplified in
Fig. 12, parameterized prime gradient noise is used
to perturb noise values such that various textures are
able to be generated. Row 1 in Fig. 12 demonstrate
the noise images. Row 2 in Fig. 12 resembles a
procedurally generated cloud texture, obtained by
simply colouring the output of fBm noise such that
the noise value is used to scale colours between white
and blue. Row 3 in Fig. 12 shows lava or fire texture,
which is generated by returning the noise value as
1 − |noise| and converting the corresponding noise
value to a coloured output. Finally, row 4 in Fig. 12
displays a wood texture generated by returning the
noise value as the fractional component (i.e., mod
1) of noise · √

(i · 0.1 + 10)2 + (j · 0.1 + 10)2, where
(i, j) corresponds to the point passed as an argument
to the 2D prime gradient noise function. From the
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various textures in Fig. 12, it is quite apparent that
specifying various prime number offsets results in
textures that clearly differ yet provide the same
general appearance.

4.4 Procedural modeling

In this section, we qualitatively and quantitatively
evaluate the efficacy of prime gradient noise
in procedural modeling. While the qualitative
evaluation is mainly based on surface roughness,
we use relative vertical vertex displacement for the
quantitative evaluation. Geometrically, the roughness
of a surface captures the extent to which a surface
appears uneven or irregular and can be characterized
through the deviation in the direction of real surface
normal from its ideal form. Large normal deviations
imply that the surface is rough whereas small
deviations indicate a smooth surface. As an example,

Fig. 12 Comparison of various patterns synthesized by prime gradient
noises at various offsets (denoted in brackets) in contrast to the same
patterns synthesized by Perlin noise.

the slopes of the mountains in Fig. 13(c) have a
rougher surface than those displayed in Figs. 13(a)
and 13(b). Homogeneous prime gradient noise is
constructed from prime gradient noise with a fixed
offset and no multiplicative cascading. The resulting
output, as displayed in Fig. 13(a), displays consistent
appearance in terms of roughness. Qualitatively,
this differs from the results in Figs. 13(b) and 13(c),
where heterogeneous prime gradient noise is used to
manipulate the roughness in correlated areas. In
observing the differences between Figs. 13(a)–13(c),
it can be noted that the homogeneous model in
Fig. 13(a) exhibits a consistent roughness throughout.
Comparatively, a higher degree of roughness is
displayed in both heterogeneous models, Figs. 13(b)
and 13(c).

Prime gradient noise with additive heterogeneity
works in tandem with the frequency at a given octave,
which defines the level of detail exhibited in the noise.
This is conducted through the use of a multiplicative
factor at each octave, multiplying the point to sample
by the octave’s frequency. The frequency aspect
is further enhanced through the specification of an
offset, which shifts the usable range of the prime table.
Given that fBm is additive in nature through the
summation of noise values in each octave, it results
in homogeneous noise that combines an octave’s
frequency with point to sample. To do so, additive
heterogeneous fBm also works by multiplying the
point to sample by the octave’s frequency, while
additionally sampling different regions of the prime
table depending on the current octave. This results
in increased roughness at moderate noise values
and decreased surface roughness at high and low
noise values, as exemplified in Fig. 14. This is
computationally beneficial: no multiplicative factor
was used to achieve such a result. Through the use of
varying offsets for each octave, prime gradient noise
has the ability to produce a blend of homogeneous and
heterogeneous noise. This can prove advantageous

Fig. 13 Procedural landscape modelled using prime gradient noise with homogeneous fBm and additive and multiplicative heterogeneous fBm,
where prime gradient noise is parametrized with 4 varying offsets and utilizes fBm with 4 octaves.
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Fig. 14 Noise (amplitude) displacement between various fBm
implementations. (a) Displacement between heterogeneous (additive)
prime gradient noise with varying offsets at each octave and
homogeneous prime gradient noise with fixed offset at each octave, each
of which was generated using fBm with 4 octaves. (b) Displacement
between heterogeneous (additive) prime gradient noise with varying
offsets at each octave and heterogeneous (multiplicative) prime
gradient noise with with a varying offsets at each octave. All height
maps were generated using fBm with 4 octaves.

in uses such as procedural terrain models, where
mountain peaks and valleys exhibit less roughness.

4.5 Surface texturing

Three major methods exist to generate noise on a
given surface: 2D mapping, solid noise, and surface
noise [3]. 2D mapping projects 2D noise onto a
3D surface. Unfortunately, this approach can cause
seams and artifacts on the surface since 2D noise is
intended to texture a plane and does not map onto
a complex 3D shape gracefully. Solid noise [2] is 3D
noise, and the observed surface texture is simply the
part of the texture which lies on the object boundaries.
However, solid noise is often distorted since solid noise
is not designed to be sampled along a complicated
surface. Surface noise uses 2D noise, but renders the
texture directly onto the surface, taking the shape of
the surface into account [3].

We present 2D mappings of prime gradient noise
in Figs. 15 and 16. Figure 15 demonstrates basic
UV mapping around a given mesh and Fig. 16
demonstrates a parallel occlusion implementation and
its impact on various textures on the sphere.

Fig. 15 A gallery of 3D models textured using parameterized PGN.

Fig. 16 2D mapping with dynamic topology and utilization of
parallax occlusion mapping. Left to right: incresing topological
displacement. Above: prime gradient noise parametrized with a marble
perturbation, middle: prime gradient noise parametrized with a wood
perturbation, and below: prime gradient noise and utilizing additive
heterogeneous fBm, all utilizing additive cascades of parameterized
PGN.

4.6 Solid noise - Fig. 17

The images in Fig. 17 illustrate a solid (3D) noise
texture applied to a cube. The textures in these
images are 256 × 256 × 256 texels and span sixteen
noise cells along each axis. We have also experimented
with using prime gradients and Szudzik hashing in
simplex noise. The result is shown in the rightmost
column of the figure. Interestingly, the solid textures
for prime gradient noise and prime simplex noise
seem to have a more subtle pattern than their
counterparts. The difference between Perlin noise
and prime gradient noise is especially pronounced;
the former displays prominent streaks while the latter
is subdued.

4.7 Speed

Prime gradient noise is much faster in our tests than
most popular noises except Perlin noise: see Fig. 18.
Indeed, Perlin noise is only slightly faster than PGN

Fig. 17 Solid noise texture applied to cubes. From left to right: Perlin
noise, prime gradient noise, simplex noise, and prime simplex noise.
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Fig. 18 Resolution versus runtime plot for various 2D noises.
Runtime includes pre-processing time (gradient generation, prime
sieving, etc.)

when the Perlin hash is replaced by the Szudzik hash.
Sieving the primes up to n has a time complexity

of O(n ln ln n) [48]. Assuming a bit array is used to
sieve for the primes less than 216, the array takes up
4 KiB (216 bits). There are 6542 primes up to 216,
occupying 13 KiB at 16 bits each (stored as integers)
or 26 KiB at 32 bits each (stored exactly as floating
point numbers). It is feasible to hardcode this small
table of primes, though the sieve runtime for a limit
of 216 is negligible.

Each call to the noise function takes constant time,
so texture generation time is linear in the number
of texels. The gradient generation from each prime
is rather expensive, requiring several floating point
operations. On the other hand, the Szudzik hash is
hardly more expensive than nested permutation table
lookup or the XOR permutation index combination
of Ref. [7], and requires no space.

4.8 Limitations

Our algorithm does not scale well to large ranges of
primes. The time complexity of sieving the range
[0, n] is O(n ln ln n), and primes larger than 216

require more storage. However, in practice, small
ranges of primes suffice for synthesizing gradients.
The floating point operations to convert primes to
gradients are expensive and evaluated more than once
per vertex to reduce storage space. Just like Perlin
noise, PGN is periodic in both axes in large samples
due to the implicit modulus applied to the gradient
table index. This can be avoided by techniques such

as Wang tiling [12]. We believe that the simplicity
and performance of PGN outweigh these flaws, which
we have not observed in practice.

5 Conclusions
We have introduced prime gradient noise (PGN), a
lattice noise using random unit vectors constructed
from polar plotted prime sequences and a Szudzik
pairing function. Subsets of primes, randomly yet
uniformly distributed in [0, 2π], not only increase
the randomness in the resulting noise, but also
facilitate the parameterization of the noise function
though offsetting. As evident in the spectral analysis,
using Szudzik pairing as a hashing scheme succeeds
in minimizing any discernible axial correlation of
the kind found in traditional lattice noise such as
Perlin noise [2]. Furthermore, we have demonstrated
that fBm composition through parameterized PGN
is highly useful for modeling virtual terrains
with varying levels of roughness, controlled by
offsetting, without using computationally intensive
multiplicative cascades. Experimental results indicate
that our noise function produces results that are
comparable to other lattice noise functions. The
proposed noise function is comparable in terms of
performance and therefore, suitable for procedural
modeling and texturing of various graphical entities.
Further theoretical analysis on how well Szudzik
pairing decorrelates the indices is indicated.
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