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CNLPA-MVS: Coarse-Hypotheses Guided Non-Local PAtchMatch Multi-View
Stereo
Abstract In multi-view stereo, unreliable matching in low-textured regions has a negative impact on the completeness of reconstructed
models. Since the photometric consistency of low-textured regions is not discriminative under a local window, non-local information
provided by the Markov Random Field (MRF) model can alleviate the matching ambiguity but limited in continuous space with high
computational complexity. Owing to its sampling and propagation strategy, PatchMatch multi-view stereo methods have advantages in
terms of optimizing continuous labeling problem. In this paper, we propose a novel method to address this problem, namely the Coarse-
hypotheses guided Non-Local PAtchMatch Multi-View Stereo (CNLPA-MVS), which takes the advantages of both MRF-based non-local
methods and PatchMatch multi-view stereo and compensates for their defects mutually. First, we combined dynamic programing (DP) and
sequential propagation along scanlines in parallel to perform CNLPA-MVS, thereby obtaining the optimal depth and normal hypotheses.
Second, we introduced coarse inence within a universal window provided by winner-takes-all to eliminate the stripe artifacts caused by DP
and improve completeness. Third, we added a local consistency strategy based on the hypotheses of similar color pixels sharing approximate
values into CNLPA-MVS for further improving completeness. CNLPA-MVS was validated on public benchmarks and achieved state-of-
the-art performance with high completeness.

Keywords 3D reconstruction, multi-view stereo, PatchMatch, dynamic programming

1 Introduction

In recent years, multi-view stereo (MVS) has become a

hot research topic that is widely used in image classification

[1], SLAM [2], and image-based rendering [3], etc. The

goal of MVS is to obtain a dense 3D presentation from a

set of calibrated scene images. In the last decades, the high-

resolution datasets [4, 5, 6] that are publically available have

promoted MVS research and resulted in the development of

numerous MVS methods. However, reconstructing a high-

quality and a complete 3D model is still a challenge due to

inaccurate and missed depth inference in low-textured re-

gions.

The main difficulty in depth inference in low-textured

regions is the matching ambiguity due to similar colors. Al-

though learning-based methods [7, 8, 9] address the issue by

introducing semantic information, the performance is highly

dependent on the training datasets, and accuracy improve-

ment is instable. Traditional non-local methods [10, 11] uti-

lize global information. They regard the depth-map estima-

tion as a pixel-labeling problem with the Markov Random

Field (MRF) model, which can reduce matching ambiguity.

However, discretizing depth values as a label set is unsuit-

able for reconstructing slanted surfaces, and the optimiza-

tion in continuous space is complicated. Recently, Patch-

Match MVS approaches have gained attention because of

the high-accuracy reconstructed models generated and high-

efficiency solutions for continuous labelling problems. GPU

compatible methods [12, 13, 14] with modified propagation

strategies were presented to further improve the efficiency.

However, the original PatchMatch Stereo method [15] with

only one data term suffers from the matching uncertainty

in low-textured regions. Some global PatchMatch methods

[16, 17, 18] in stereo matching that incorporate global MRF

solution into the PatchMatch algorithms were proposed. Al-

though these approaches can robustly solve the optimization

in continuous space to some extent, efficient processing of

high-resolution image pairs still remains intractable.

In this paper, we combined the advantages of non-

local methods using MRF and PatchMatch MVS algorithms

to improve the completeness of dense matching in low-

textured regions. Unlike the previous global PatchMatch

Stereo methods, our solution integrates sequential propaga-

Regular Paper

Page 6 of 20Journal of Computer Science and Technology       http://jcst.ict.ac.cn



2 J. Comput. Sci. & Technol.

tion along scanlines in parallel into non-local optimization.

We propose a coarse-hypotheses guided non-local Patch-

Match MVS (CNLPA-MVS) method to improve the com-

pleteness of 3D reconstruction. We carefully analyzed the

common point in sequential propagation (Figure 1(a)) and

dynamic programming (DP) (Figure 1(b)) and found that

they both sweep and update the status of each pixel along

the scanline. Hence, based on this observation, we elab-

orately combined the two methods (sequential propagation

and dynamic programming) to obtain a parallel non-local

PatchMatch MVS framework (Figure 1(c)). This frame-

work contributes to the completeness of depth estimation

in low-textured regions. Moreover, we propose a coarse-

hypotheses guidance strategy that integrates the winner-

takes-all (WTA) results using coarser scale images into the

hypotheses candidates for the DP process (Figure 1(d)).

Within a universal window, the coarser scale images that

contain more texture information can improve the ability of

matching in low-textured regions, and the WTA estimation

results help eliminate stripe artifacts caused by the simple

DP algorithm. Similar to the previous work [19], we in-

troduce local consistency to assume that neighboring pix-

els with similar colors share approximate depth values and

adopt it as a smooth constraint. Rather than adopting local

consistency constraint directly, we only consider the previ-

ous neighborhood along the sweep direction with the lat-

est state instead of the 4-neighborhoods considered in [19],

which neglects the state of the pixels.

Experiments show the great power of our method to

reconstruct low-textured regions with strong occlusions,

which are common in indoor and outdoor scenarios. The

main contributions of this paper are summarized as follows:

• A novel parallel non-local PatchMatch MVS frame-

work is proposed by combining dynamic program-

ming and PatchMatch sequential propagation to alle-

viate the matching ambiguity in low-textured regions.

Fig.1. CNLPA-MVS derivation: (a) Sequential propagation. (b) Dynamic
programming in discrete depth space. (c) Non-local PatchMatch MVS
method in continuous depth space. (d) CNLPA-MVS. Note that the above
images only show methods in the depth space. The black arrows are current
propagation direction. The red arrows mean the penalty computed between
the previous pixel with different depths and the processing pixel (the orange
pixel). The white circles in (c) and (d) show the hypotheses representations
in continuous depth space, and the yellow circle show the introduced depth
hypothesis at a coarser scale using WTA.

• A coarse-hypotheses guidance strategy is presented to

propagate reliable estimations in low-textured regions

obtained at a coarser scale to a finer scale and to re-

duce stripe artifacts caused by simple DP.

• A new local consistency constraint is introduced to the

global PatchMatch energy function utilizing the latest

status of the adjacent pixel with similar colors along

the sweep direction.

2 Related Work

On the basis of the output scene representation, MVS al-

gorithms can be categorized into four types: (1) depth-map

based methods [10, 12, 20], (2) patch based methods [21,

22], (3) voxel based methods [23, 24], and (4) surface evo-

lution based methods [25]. More details can be found in

literature [26, 27]. The proposed algorithm belongs to the

first type of methods, in which per-view depth map is esti-

mated and fused into a whole point cloud. In this section,

we review the most relevant methods that are widely used in
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multi-view stereo and two-view stereo applications.

PatchMatch Multi-View Stereo. PatchMatch algo-

rithm was first proposed by Barnes et al. [28]. It randomly

initializes each label of pixels, and then it propagates the

good estimation to the neighboring areas. Consequently, the

best matches spread over the whole image. Based on this

kernel idea, PatchMatch MVS algorithms were proposed to

rapidly estimate approximate depth and normal hypotheses

of each image. For efficiency, various propagation schemes

tailored for parallel computation were presented, includ-

ing 1) sequential propagation [5, 20] that traverses pixels

along scanlines in parallel; and 2) diffusion-like propaga-

tion [13, 14] which process half of the pixels in an image at

a time. For accuracy, Schönberger et al. [12] and Zheng

et al. [20] jointly modeled pixelwise view selection and

depth inference into a Hidden Markov Chain. However, the

above methods suffer from the matching uncertainty in low-

textured regions, resulting in reconstruction incompleteness

due to the lack of a smoothness term in the original Patch-

Match Stereo algorithm [15]. To overcome this problem,

Wei et al. [29] and Xu et al. [14] constructed a multi-

scale framework to increase completeness of reconstruction

in low-textured regions, but this framework may reduce the

accuracy of high-textured regions. Other methods address

the problem by utilizing planar priors, such as super pix-

els [24] and coarse triangulations [31]. These solutions as-

sume that the 3D points of pixels within a small area are in

the same plane. However, they cannot be extended to the

curved surfaces. To solve the overall matching uncertainty

problem, Liao et al. [19] proposed the concept of local con-

sistency, which assumes that the adjacent pixels with simi-

lar colors share approximate depth and normal hypotheses.

However, their work ignored the status of 4-neighborhoods

and hindered the propagation of the latest depth and nor-

mal hypotheses. Hence, non-optimal results were obtained.

Xu et al. [32] proposed a new pixelwise window-size se-

lection strategy to decrease the matching uncertainty of the

low-textured regions. However, the method neglected the

fact that the pixelwise view selection is important for ac-

curacy. In contrast, our proposed algorithm utilizes a MRF

model with a smoothness term to improve the reconstruction

completeness while maintaining the high fidelity of the 3D

reconstruction.

Non-local Methods Using MRF. Since matching with

only one data term in low-textured regions leads to ambi-

guity, many non-local methods with a smoothness term that

assume adjacent pixels share similar depth values were pro-

posed. In binocular stereo vision, the non-local methods

could use the MRF model to perform disparity estimation

as a pixel-labelling problem. Since finding the best label as-

signment that minimizes the global energy function is NP-

hard, various approximate approaches, such as graph cuts

[33, 34] and belief propagation [35, 36], were proposed.

For the label space, in some early approaches [37, 38], the

disparity space was discretized into a finite set, and then,

the best disparity for each pixel was determined. The dis-

crete disparity space prefers front-parallel surfaces, where

all pixels are assigned to the same depth value. Thus, the

above methods were unsuitable for slanted or curved sur-

faces. Woodford et al. [11] introduced a second-order

smoothness term into a global energy function over triple

cliques, that was adapted to piecewise planar surfaces. How-

ever, this approach is computationally complex and hard for

optimization. For large-scale scenes, the depth space with a

large range further dramatically increases the optimization

complexity. Campbell et al. [10] proposed a strategy for

estimating true depth from multiple depth hypotheses rather

than using discrete depth values as a label set for an entire

image. They first selected several local optimal depths of

each pixel from the photo-consistency curves of neighbor-

ing images and then utilized the MRF formulation to assign

the depth of one of such local optimums to each pixel. Our

method integrates the PatchMatch MVS algorithm into the

global energy function, assigns different label sets to each
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Fig.2. (a) Graphical model of [12, 20]. (b) The framework of our approach in one iteration. Here, θl and nl are the depth and normal of pixel l, respectively.
Zml denotes the selection of image m at pixel l. The colored circle Xm

l is the observation on the source image m given depth θl and normal nl.

pixel utilizing the PatchMatch sampling scheme, and then

solves the depth and normal estimation efficiently.

Non-local PatchMatch Methods. In stereo vision, the

PatchMatch algorithm was introduced in some approaches

such as PMBP [16], PM-Huber [17] and PMSC [18] for dif-

ferent elaborate optimizers to minimize the global energy

function and then achieve better performance. From two-

view to multi-view, the overall efficiency of non-local Patch-

Match methods decreases because of the high optimization

complexity and serial computations. Thus, considering the

common merits of sequential propagation and dynamic pro-

graming, we combined these two methods into a novel par-

allel method.

3 Overview

Given a set of images with known camera parameters,

our goal is to obtain the per-view depth map and normal

map and then combine them into a complete 3D point cloud

of the scene in the input images. The framework of our ap-

proach in one iteration is illustrated in Figure 2(b).

We first obtained the coarse inference by using the ba-

sic graphical model (Figure 2(a)), which jointly models pix-

elwise view selection and depth-normal estimation. After

upsampling the estimation at the coarse scale, the coarse hy-

potheses were utilized to guide our parallel non-local Patch-

Match MVS method. This method combines sequential

propagation and dynamic programming. After several itera-

tions, the optimal depth map and normal map were obtained.

In following sections, we describe the basic graphical

model of the CNLPA-MVS in Section 4 and the detailed

CNLPA-MVS algorithms in Section 5. The effectiveness of

each individual part and the overall method are described in

Section 6.
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4 Basic Model of the CNLPA-MVS

The basic model [12, 20] of joint pixelwise view selec-

tion and depth-normal estimation is introduced in this sec-

tion. Note that the framework processes each row and each

column independently and alternately for the sake of paral-

lel computing. We focus on a single line to describe this

method.

Given a reference image Xref and a set of source im-

ages Xsrc = {Xm | m = 1...M}, the method models the

sequential estimation problem of depth θl and normal nl for

each pixel l as a Markov process and optimizes it iteratively.

The probabilistic model corresponds the hidden states to bi-

nary indicator variables Zml ∈ {0, 1}, which define the set

of the non-occluded source images as Xm
l = {Xm | Zml =

1}. Then, the joint pixelwise inferences are formulated as

a maximum-a posteriori (MAP) estimation where the poste-

rior probability is as follows:

P (Z, θ,N | X) =
P (Z, θ,N ,X)

P (X)

=
1

P (X)

L∏
l=1

M∏
m=1

[
P
(
X
m
l | Z

m
l , θl,nl

)
P
(
Z
m
l,t | Z

m
l−1,t, Z

m
l,t−1

)
P
(
θl,nl | θml ,n

m
l

)]
,

(1)

where L is the number of pixels in the considered line
sweep; M is the number of source images and X =
{Xref ,Xsrc}. The likelihood term,

P (X
m
l |Z

m
l , θl,nl) =

 1
NA exp

(
− (1−ρml (θl,nl))

2

2σ2ρ

)
if Zml = 1

1
N u otherwise,

(2)

represents the probability of photometric consistency be-

tween a reference patch Xref
l and the source patches

Xm
l in non-occluded source images, where A =∫ 1

−1 exp
{
− (1−ρ)2

2σ2
ρ

}
dρ and N is a constant. In the case

of occlusion, uniform distribution u in the range [−1, 1]

with probability densify 0.5 indicates that the two patches

are irrelevant. A bilaterally weighted NCC based on color

and spatial distances is used to compute the patch similar-

ity ρml as the photometric consistency with σρ as a constant.

The spatial and temporal state-transitions are jointly mod-

eled as P
(
Zml,t | Zml−1,t, Zml,t−1

)
, which ensures that the oc-

clusion maps are smooth both between adjacent pixels and

along successive iterations. Finally, the geometric consis-

tency term P (θl,nl | θml ,nml ) enforces the consistency be-

tween multi-view depth and normal estimations.

To solve Equation (1), Zheng et al. [20] utilized a

variational inference to estimate the optimal member of

the family of approximate posterior. Similar to this work,

Schönberger et al. [12] approximated P (Z, θ,N | X)

as q(Z, θ,N) = q(Z)q(θ,N) and in the sense that the

Kullback-Leibler divergence between the two functions is

minimized. Then, they utilized a variant of the gen-

eralized expectation-maximization (GEM) algorithm [39]

to solve the corresponding probalistic model. In the E-

step, the forward-backward algorithm through the Hidden

Markov Model was employed to infer q(Zml,t) in itera-

tion t while keeping q (θl,nl) fixed. In the M-step alter-

nately, q(Zml,t) was fixed while q (θl,nl) was constrained

to the family of Kronecker delta functions q (θl,nl) =

δ (θl = θ∗l ,nl = n∗l ), and calculated via the PatchMatch se-

quential propagation and sampling. The optimal θ̂optl and

n̂optl are calculated as follows:

(
θ̂optl , n̂optl

)
= argmin

θ∗l ,n
∗
l

1

|S|
∑
m∈S

ξml (θ∗l ,n
∗
l ) , (3)

ξml (θ∗l ,n
∗
l ) = 1− ρml (θl,nl) + ηmin (ψml , ψmax) . (4)

S is a subset of source images according to probability

Pl(m), which prefers the non-occluded images with three

priors, i.e., sufficient baseline, similar resolution, and non-

oblique viewing direction. The cost ξml (θ∗l ,n
∗
l ) com-

bines the photometric cost ρml and the geometric forward-

backward reprojection error ψml = ‖xl −Hm
l Hlxl‖, where

Hm
l and Hl denote the homograph matrix mapping of the

patch from the source to the reference image and from the

reference to the source image, respectively. Further, η and

ψmax are two constants that are set to 0.5 and 3 px. More-
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over, the pair (θ∗l ,n
∗
l ) is chosen from the set of hypotheses:{

(θl,nl) ,
(
θprpl−1,nl−1

)
,
(
θrndl ,nl

)
,
(
θl,n

rnd
l

)
,(

θrndl ,nrnd
l

)
,
(
θprtl ,nl

)
,
(
θl,n

prt
l

)}
,

(5)

where θrndl and nrndl are randomly generated samples; θprtl

and nprtl are two samples that are slightly disturbed in depth

space and normal space, respectively; and θprpl−1 and nl−1

denote the propagations from the parameters of the previous

pixel.

5 Detailed Algorithms in the CNLPA-MVS

In this section, we describe the proposed algorithms in

detail. Our algorithm leverages the graphical model intro-

duced in Section 4. In Section 5.1, a new parallel non-

local PatchMatch based depth-normal estimation framework

is presented. This framework can be used to ensure that

the matching uncertainty in low-textured regions due to the

missing of global information can be alleviated significantly.

In Section 5.2, the coarse-hypotheses guidance mechanism

is proposed. This mechanism can propagate the hypothe-

ses estimation at a coarser scale in low-textured regions and

reduce the over-smoothing caused by simple dynamic pro-

gramming. In Section 5.3, a robust local consistency mea-

surement is proposed by considering the sequential propa-

gation scheme comprehensively.

5.1 Non-local Depth and Normal Inference

Dense stereo matching can be effectively solved by min-

imizing a MRF global energy function consisting of a data

term and smoothness term:

E =
∑
l

ϕ (l,ul) +
∑
l

∑
rεNl

ψ (l, r,ul,ur) , (6)

where Nl is the pairwise neighborhood set. The data term

ϕ(l,ul) computes the local cost for the hypotheses label

ul = (θl,nl) of each pixel l. The smoothness term

ψ (l, r,ul,ur), provides a constraint that the planes defined

by the hypotheses change smoothly except at the object

boundaries.

After defining the energy function (6), an appropriate

solver should be selected to minimize the energy function.

The energy function is defined in terms of continuous vari-

ables ul. Hence, we first describe the label-set selection

strategy in Section 5.1.1 and then provide a novel parallel

optimization scheme in Section 5.1.2.

5.1.1 Hypotheses Set Generation

The smoothness term makes the minimization challeng-

ing. For a discrete space where ul is in a finite set of size

D, assuming the number of pixels in the reference image is

n, the worst complexity of minimization is O(Dn), which

is extremely high. For a continuous case, the minimization

problem will be more complicated because of the continu-

ous feasible region.

The key to solve the global energy function for contin-

uous state variables ul is representation selection for each

pixel hypotheses label. Similar to the previous work [16],

we associate each pixel with a hypotheses label set Hl ={(
θ
(i)
l ,n

(i)
l

)}K
i=1

during each step of estimation. At the

beginning, we random initialize K hypotheses as the plane

set Hl for each pixel. Then after neighborhood propagation

and resampling in each sweep, K best planes are selected

as the new hypotheses set by minimizing (6). The candidate

hypotheses at each propagation step in PatchMatch from (5)

are modified as follows:

{(
θ
(i)
l ,n

(i)
l

)
,
(
θ
prp(i)
l−1 ,n

(i)
l−1

)
,
(
θ
rnd(i)
l ,n

(i)
l

)
,
(
θ
(i)
l ,n

rnd(i)
l

)
,(

θ
rnd(i)
l ,n

rnd(i)
l

)
,
(
θ
prt(i)
l ,n

(i)
l

)
,
(
θ
(i)
l ,n

prt(i)
l

)}K
i=1

.

(7)

Note that this strategy still maintains optimization over

a continuous ul and is not limited to the current label set

Hl. However, the computation of the smoothness term in (6)

over the continuous ur is changed into a calculation over a

finite set Hr of size K.
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Fig.3. Plane similarity measurement. The illustration simplifies the multi-
view problem into a two-view problem. SupposeCr andCs are the camera
centers of the reference view and the source view, respectively, and pl and
pr are the reconstructed 3D points of the pixel l and its neighborhood r,
respectively. Red lines fl and fr show the tangent planes of pl and pr ,
respectively. The plane similarity measurement δlr can be computed using
the two distances (dotted lines) from points to planes.

5.1.2 Optimization

As an early method in stereo matching, dynamic pro-

gramming (DP) still remains one of the most popular op-

timizers due to its effective 1D optimization performance.

DP solves a complex energy function by dividing it into sev-

eral sub-problems that are minimized on a subset of the im-

age, typically along a scanline. It can be discovered that the

process flow of DP is similar to the sequential propagation

scheme of PatchMatch, as illustrated in Figure 1.

To maintain the parallel solution framework reviewed in

Section 4, the traditional DP optimizer is adopted to min-

imize the energy function. In this work, the data term is

defined as shown in (8), which is directly obtained from (3)

and (4), and the smoothness term is shown in (9):

ϕ (l,ul) =
1

|S|
∑
m∈S

ξml (θ∗l ,n
∗
l ) , (8)

ψ (l, r,ul,ur) = λ (1− δlr) , (9)

where( 
λ is a constant)regularizer. We denote δlr =

exp −φ(pl,fr)+φ(pr,fl)2γs
as the plane similarity measure-

ment. Considered the distance between the two tangent 

planes fr and fl should be small enough (approximately 

equal to 0), we set γs to an extremely small value (0.0005)

to strictly estimate the plane similarity. As shown in Figure 

3, φ(pl, fr) is defined as the distance from the reconstructed 

point pl to the local plane fr at the neighboring pixel, r and 

φ(pr, fl) has a similar definition. Note that the photometric 

consistency cost ρlm in (4) using bilaterally weighted NCC 

is replaced by the modified measurement from a previous 

study [19]. The photometric consistency cost ρlm is defined 

as follows:

ρml =

 g if h = 0
η + 0.1 if h = 2 and |cml − cl| ≤ 3σc
−1 otherwise,

(10)

where g represents the original bilaterally weighted NCC

in (4), σc is set to 0.05 that is the same as the previ-

ous work [19] and η = 1 − σρ

√
−2 ln

(
A
2

)
. Then,

P (Xm
l | Zml , θl,nl) becomes equal when Zml = 1 and

Zml = 0. We denote h as the number of low-textured

patches in Xref and Xm
l . For the case that both patches are

textured, a bilaterally weighted NCC g is used for evalua-

tion. In contrast, if colors cml and cl of the two low-textured

patches are similar, the metric η + 0.1 slightly favors that

Xm
l is non-occluded. For other cases, the two patches are

regarded as unrelated and set to −1. The piecewise pho-

tometric consistency cost ρml is more suitable for the areas

with homogeneous color.

The energy function can be minimized in parallel along

each row/column alternatively as follows:{(
θ
(i)
l ,n

(i)
l

)}K
i=1

= argmin
K

M (l, θ∗l ,n
∗
l ), (11)

M
(
l, θ∗l ,n

∗
l

)
= 1
|S|

∑
m∈S

ξml
(
θ∗l ,n

∗
l

)
+ min(

θ
(i)
l−1

,n
(i)
l−1

)
∈Hl−1[

M
(
l − 1, θ

(i)
l−1,n

(i)
l−1

)
+ λ

(
1− δl(l−1)

)]
.

(12)

During each sweep, the hypotheses set is selected as the K

best planes by minimizing the energy, and simultaneously,

the corresponding energies M
(
l, θ

(i)
l ,n

(i)
l

)
are saved to

compute the plane set of the next pixel. The optimal θ̂optl

and n̂optl are calculated by optimizing the following func-

tion:(
θ̂optl , n̂optl

)
= argmin(

θ
(i)
l ,n

(i)
l

)
∈Hl

M
(
l, θ

(i)
l ,n

(i)
l

)
. (13)
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This process is performed for each scanline to obtain all the

optimal hypotheses of the entire image.

Fig.4. Optimal normal hypothesis selection. Candidate hypotheses set of
one pixel is shown as a blue elliptic circle on the left. Hypotheses in blue re-
gions are the candidate set at the original scale, and the optimal hypothesis
is indicated in red. The coarse normal hypothesis (indicated in orange) is
introduced to the candidate hypotheses set. After propagation and sampling
of all pixels, a normal map can be obtained.

5.2 Coarse-hypotheses Guidance

Although acquiring the best hypotheses through DP with

non-local information can effectively alleviate the match-

ing problems in low-textured regions, two problems persist.

First, finding the accurate hypotheses using only the DP is

difficult in the case of high-resolution images that contain

numerous pixels of homogeneous colors as the method only

converges to the optimal solution along the scanline. Sec-

ond, the depths estimated by the simplified DP algorithm

change slowly in the depth discontinuity areas resulting in

oversmoothing and stripe artifacts.

We analyzed the selection strategy of optimal hypothe-

ses and found that the coarse hypotheses, that is, optimal

depth and normal estimations acquired at a coarser scale,

can help to improve the completeness of 3D reconstruction

in low-textured areas. For these regions, it will be more dis-

criminative to match under identical window sizes when an

image is down-sampled [14, 29]. In this case, coarse hy-

potheses are more reliable than hypotheses at the original

scale and may be selected as the optimum. However, in

high-textured regions, the optimal hypotheses at the coarse

scale are inadequate for the fine scale as details may be

blurred under the universal window size. The coarse hy-

potheses can be excluded as the optimal hypotheses since

the photometric consistency cost of coarse hypotheses may

be higher than that of some fine hypotheses. Instead of us-

ing the coarse inference for all pixels as the initial hypothe-

ses [14, 29], we added the optimal hypotheses at the coarse 

scale (θl0, nl0) as an additional candidate into the candidate 

hypotheses set for each pixel. Then, (7) is modified as fol-

lows:

{{(
θ
(i)
l , n

(i)
l

)
,
(
θ
prp(i)
l−1 , n

(i)
l−1

)
,
(
θ
rnd(i)
l , n

(i)
l

)
,
(
θ
(i)
l , n

rnd(i)
l

)
,(

θ
rnd(i)
l , n

rnd(i)
l

)
,
(
θ
prt(i)
l , n

(i)
l

)
,
(
θ
(i)
l , n

prt(i)
l

)}K
i=1

,
(
θ0l , n

0
l

)}
.

(14)

Finally, the coarse hypotheses are likely to be chosen as the

optimal hypotheses in low-textured regions while retaining

the high-frequency details. The process of optimal normal

hypothesis selection is shown in Figure 4.

To alleviate the oversmoothing caused by DP, we inte-

grated the WTA results into our method. We first applied

the WTA strategy to estimate the approximate inference at

a coarser resolution in each sweep. The down-sampling

factor is denoted as 1
2s . Images are not downscaled when

s = 0. We used the coarse depth maps and normal maps

estimated by the WTA method to prevent stripe artifacts in

DP results and propagated the downscaled texture informa-

tion to the fine scale through a joint bilateral up-sampler

[40]. The core idea is to add the coarse hypotheses of the

previous pixel (θ0l−1,n
0
l−1) to the candidate hypotheses set

H
′

l−1 =
{
Hl−1, (θ

0
l−1,n

0
l−1)

}
for the DP process. Then,

(12) is modified as follows:

M
(
l, θ∗l ,n

∗
l

)
= 1
|S|

∑
m∈S

ξml
(
θ∗l ,n

∗
l

)
+ min(

θ
′
l−1

,n
′
l−1

)
∈H′

l−1[
M
(
l − 1, θ

′
l−1,n

′
l−1

)
+ λ

(
1− δl(l−1)

)]
.

(15)

Thus, we implicitly transferred more reliable estimations

from a coarser resolution to a finer resolution via a sup-

plemental plane label. This helped avoid error propagation

from the wrong hypotheses in areas with abundant details.

Guided by the coarser information, a better trade-off be-

tween smoothness and details can be made.
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5.3 Local Consistency

It is hard to estimate the depth and normal in low-

textured regions only constrained by the photometric and ge-

ometric consistency. To alleviate this difficulty, we adopted 

a new local consistency strategy that sufficiently accounts 

for the characteristics of sequential propagation in Patch-

Match. We assumed that adjacent pixels with similar colors 

are likely to belong to the same plane, such that the distance 

from the point of one pixel to the ones of its neighboring 

pixels is extremely close. We gave a larger penalty to con-

strain these pixels with homogeneous colors. Therefore, the 

smoothness term is changed as follows:

ψ (l, r,ul,ur) = λ (1 + εlr) (1− δlr) . (16)

We denote the color similarity measurement as εlr =

exp
(
− |cl−cr|γc

)
, where |cl − cr| denotes the color distances

between pixel l and its neighborhood r. The constant γc is 

preset to 1.0, giving a slightly larger constraint to make the 

distance between the two reconstructed points of l and r 

with similar colors closer but avoiding over smooth. Hence, 

the minimization function along the scanline is defined as 

follows:

M
(
l, θ∗l ,n

∗
l

)
= 1
|S|

∑
m∈S

ξml
(
θ∗l ,n

∗
l

)
+ min(

θ
′
l−1

,n
′
l−1

)
∈H′

l−1[
M
(
l − 1, θ

′
l−1,n

′
l−1

)
+ λ (1 + εlr)

(
1− δl(l−1)

)]
.

(17)

Unlike the method adopted by Liao et al. [19], who con-

sidered all 4-neighborhoods and were unsure of the latest

status, our method only accounts for the previous pixel to

avoid the impact of wrong hypotheses (Figure 5). Moreover,

similar to the previous work [19], we also applied the local

consistency to estimate view selection probability P (Zml ).

The transition probability of Z is formulated as follows:

P
(
Zml | Zml−1

)
=

(
γ 1− γ

1− γ γ

)
, (18)

where the transition probability of view selection denotes

γ = µεl(l−1). Therefore, the view selection estimations be-

tween the adjacent pixels with similar colors are likely to be

smooth. To avoid oversmoothness regardless of photometric

consistency, we preset µ = 0.999 to prevent γ = 1.

Fig.5. Difference in local consistency between [19] (a) and the proposed
method (b). The black arrows show the sequential propagation direction.
The bold pixels show the currently processing pixels in different scanlines,
and the hypotheses of their previous pixels are the latest. We focus on pixel
(i, j) and its adjacent pixels. A constraint based on the color similarity mea-
surement (double-headed arrows) is given to assume coherent depths. The
red fonts and arrows show data with the latest states. Note that in the pre-
vious work [19], 4-neighborhoods were used, while the proposed method
only considers the previous one.

6 Experiments and Disccusion

The proposed method was implemented in C++ with

CUDA and executed on a PC with Intel Core i7-6700K

CPU, 64GB RAM and a couple of GeForce GTX 1080Ti

GPUs. All the experiments were performed on ETH3D

benchmark [5] and Strecha dataset [6]. Three criteria pro-

posed in [5] were used for evaluation, including the eval-

uation of accuracy, completeness, and F1 score which is

defined as the harmonic mean of accuracy (precision) and

completeness (recall).

Following the previous work [16], the number of hy-

potheses set K was set to 5. Balancing the details and com-

pleteness, we set s = 2 to obtain the coarse optimal hy-

potheses (θ0l , n0
l ). All other parameters are the same as the

default of values adopted in [12]. We adopted the fusion

method implemented in [12] to obtain a whole point cloud.

We validated the effectiveness of three individual com-

ponents with the proposed method, i.e., non-local depth

and normal inference, coarse-hypotheses guidance, and lo-

cal consistency. The overall qualitative and quantitative

evaluations were subsequently done by comparing with the
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state-of-the-art MVS methods. Finally, we discussed the pa-

rameter analysis, versatility, and limitations of the proposed

method.

Fig.6. (a) Reference image. Depth maps obtained before (b) and after (c)
using the non-local depth and normal inference method.

6.1 Validation of Three Components in CNLPA-MVS

Non-local Depth and Normal Inference. The method

for non-local depth and normal inference proposed in Sec-

tion 5.1 introduces non-local information and obtains the op-

timal depth and normal hypotheses through DP to alleviate

the matching ambiguity in low-textured regions. To test the

effectiveness of the non-local depth and normal inference,

we first compared our result (Figure 6(c)) with the baseline

local algorithm [12] (Figure 6(b)). The wrong depth esti-

mation in low-textured regions was alleviated. A quantita-

tive comparison is presented in Table 1. NL and COLMAP

denote our method and the baseline algorithm [12], respec-

tively. It can be seen that the completeness and F1 score

improved after utilizing the non-local depth and normal in-

ference method.

Coarse-hypotheses Guidance. The introduction of

coarse hypotheses to the candidate hypotheses set propa-

gates more reliable estimations in low-textured regions ob-

tained at a coarser scale to a finer scale, and decreases the

oversmoothing. As shown in Figure 7(b), some details, par-

ticularly, edges, are missing owing to scanline optimization

during DP. After integrating WTA results into DP process,

the oversmoothing was alleviated, and more details were ob-

tained (Figure 7(c)). We subsequently replaced the WTA

result at the original scale (s = 0) by the result at the

coarse scale (s = 2). The proposed coarse-hypotheses guid-

ance strategy reduces noises in the low-textured regions and

improves the completeness (Figure 7(d)). Quantitative re-

sults are provided in Table 1. Without coarse-hypotheses

guidance (w/o CI), the accuracy and completeness both de-

creased.

Fig.7. (a) Reference image. Normal maps obtained utilizing (b) non-local
PatchMatch method with DP, (c) after introducing WTA result at the origi-
nal scale, and (d) at a coarse scale with s = 2.

Local Consistency. The proposed local consistency fur-

ther improves the quality of reconstruction in low-textured

regions. A qualitative comparison is shown in Figure 8;

many false depth values in low-textured areas are corrected

and a cleaner depth map is obtained after introducing local

consistency. Quantitative comparisons are summarized in

Table 1. Our method without local consistency is denoted as

w/o LC. It can be seen that F1 score and completeness are

reduced in this case.

Page 15 of 20 Journal of Computer Science and Technology       http://jcst.ict.ac.cn





12 J. Comput. Sci. & Technol.

Fig.9. Qualitative point cloud comparison on some high-resolution datasets of ETH3D benchmark.

Fig.10. Completeness comparison on some high-resolution training datasets of ETH3D benchmark with threshold of 5 cm.

and λ was set to 7. We evaluated our method by comparing

with the baseline method [12] (COLMAP), a leaning-based

method [7] (DeepMVS), and other state-of-the-art meth-

ods for improving completeness (TAPA [30], ACMH [14],

ACMM [14], and ACMP [31]). Qualitative point cloud com-

parisons and completeness comparison results are shown in

Figure 9 and Figure 10, respectively. The reconstructed

models by the proposed CNLPA-MVS are more complete

than those obtained by other methods. Table 2 lists the quan-

titative comparisons on the test datasets with thresholds of 5

cm and 10 cm. In the term of completeness, CNLPA outper-

forms other methods in both indoor and outdoor scenarios.

In the term of F1 score, for a threshold of 5 cm, CNLPA

ranks second over high-resolution test datasets with only

0.07 points less than the first. For a threshold of 10 cm,

CNLPA ranks first over high-resolution test datasets.

Table 3. Results (F1 score, accuracy, and completeness) of high-resolution
multi-view training datasets of ETH3D benchmark with different thresh-
olds and λ coefficients.

method
1 cm 2 cm 5 cm

F1 A C F1 A C F1 A C
λ = 5 62.63 77.15 53.49 77.08 85.80 70.91 88.43 93.33 84.54
λ = 6 62.72 76.97 53.74 77.12 85.68 71.10 88.41 93.28 84.47
λ = 7 62.78 76.67 54.00 77.20 85.50 71.37 88.40 93.14 84.72
λ = 8 62.72 76.34 54.11 77.16 85.27 71.49 88.24 93.00 84.59
λ = 10 62.47 75.43 54.22 76.95 84.61 71.64 88.08 92.58 84.70

Strecha Benchmark. We further tested our method on

fountain-P11 and HerzJesu-P8 [6]. Note that fountain-P11

and HerzJesu-P8 have 11 and 8 images, respectively, with a
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resolution of 3072 × 2048. We set λ = 1 for reconstruct-

ing the two relatively well-textured scenes. Since the online

service is not available, we compared our method with the

two open-source algorithms (COLMAP [12] and DeepMVS

[7]) among the above state-of-the-art methods. As shown

in Figure 11, we calculated the ratio of pixels with error

less than different thresholds from the ground truth. It can

be observed that even for well-textured scenes, our method

possess the best performance and still slightly improves the

depth-map results of COLMAP.

Fig.11. Depth error distributions with different thresholds on fountain-P11
and HerzJesu-P8 datasets.

6.3 Discussion

Parameter Analysis. We analyzed the performance of

CNLPA-MVS with different λ coefficients. As shown in Ta-

ble 3, the accuracy of the models reconstructed by CNLPA-

MVS decreased with increasing λ as some details may have

been smoothed by an over-weighted penalty. With increas-

ing λ, the completeness increased. The reason is that the

increasing penalty will give a stronger constraint between

the adjacent pixels, which is conducive to the reconstruc-

tion in low-textured regions. Thus, balancing the accuracy

and the completeness, the F1 score first increased and then

decreased with increasing λ.

Versatility. The above evaluations demonstrate that

CNLPA-MVS is suitable for most planes, such as curved

or slanted planes. Particularly, as shown in the first and

last rows of Figure 9, CNLPA-MVS has a great power to

alleviate the matching uncertainty problem under strong oc-

clusions in low-textured regions. Theses problems are com-

mon in indoor and outdoor scenarios, such as libraries, game

halls, gardens, and crowded streets. Therefore, CNLPA-

MVS can be widely applied for reconstructing generic sce-

narios.

Limitations. For accuracy, since the optimization strat-

egy of our method is limited in a scanline, some recon-

structed low-textured regions are inaccurate (e.g., the col-

ored rectangles shown in Figure 12), such that the overall

accuracy is decreased. A more global optimization strategy

can alleviate this limitation and will be further considered

for a better reconstructed result. For efficiency, although

the consuming time of CNLPA-MVS was dramatically less

than that of other global PatchMatch methods, the efficiency

is still limited in that it is difficult to process real-time tasks

by our method. We will account for a better algorithm par-

allelism strategy to further improve the performance.

Fig.12. Accuracy comparisons on ETH3D benchmark with threshold of 2
cm. The ground-truth values in blue regions are missed. The green and red
regions represent the accurate and inaccurate regions, respectively.

7 Conclusions

In this paper, we proposed a coarse-hypotheses guided

non-local PatchMatch MVS method. This method can effi-

ciently alleviate the matching uncertainty problem in low-

textured regions. The proposed parallel non-local depth

and normal inference algorithm optimized by DP introduces

more information that helps achieve accurate matching

for low-textured regions. The proposed coarse-hypotheses

guidance strategy is conducive to reduce stripe artifacts

caused by simple DP and to improve the completeness of

low-textured regions by leveraging the coarse WTA infer-
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ence. Finally, a new local consistency strategy was pro-

posed to further improve the completeness by assuming ad-

jacent pixels sharing approximate depth values. Experi-

ments showed that CNLPA-MVS achieves state-of-the-art

performance with high completeness and can be widely used

for reconstructing low-textured regions under strong occlu-

sions.

CNLPA-MVS offers a new solution to improve the effi-

ciency of optimization in the global MRF methods. In future

works, we will combine the diffusion-like propagation and

a global optimizer to further improve the computational ef-

ficiency and the quality of reconstructed models.
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