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Abstract Photometric stereo aims to reconstruct 
the 3D geometry, by recovering the dense surface 
orientation of a 3D object from multiple images 
with varying illuminations. Traditional methods 
normally adopt simplified reflectance models to make 
the surface orientation computable. However, the 
general reflectance of surfaces greatly limits their 
applications on real-world objects. Despite deep neural 
networks have been employed to handle the non-

Lambertian surfaces, these methods subject to 
blurriness and error, especially in high-frequency regions 
(such as crinkles and edges), caused by the spectral bias 
that the neural network favors low-frequency 
representations hence they exhibit a bias towards 
smooth functions. In this paper, therefore, we propose a 
self-learning conditional network with multi-scale 
features for photometric stereo, avoiding blurry 
reconstruction in the above regions. Our explorations 
include: (1) We employ a multi-scale feature fusion 
architecture, which keeps high-resolution 
representations and deep feature extraction, 
simultaneously. (2) We propose an improved gradient-

motivated conditionally parameterized convolutions 
(GM-CondConv) in our photometric stereo network 
and provide different combinations of convolution 
kernels for the diversities of surfaces. Extensive
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experiments on public benchmark datasets show that

our calibrated photometric stereo method outperforms

state-of-the-art methods.

Keywords Photometric stereo, Normal estimation,

Deep neural networks, 3D reconstruction.

1 Introduction

The goal of photometric stereo is to recover the

dense surface orientation of a 3D object from varying

shading cues, with a fixed camera, by establishing

the relationship between two-dimensional images and

the object geometry [16]. The earliest photometric

stereo algorithm reconstructed the surface normal

based on Lambertian assumption [44]. Unfortunately,

the real-world objects hardly have the property of

Lambertian reflectance, and therefore robust methods

are needed to deal with general objects with flexible

reflectance properties [21]. Traditional photometric

stereo methods mainly address this problem by

treating the non-Lambertian regions as the outlier [14,

45], or adopting bidirectional reflectance distribution

functions (BRDFs) to model general reflectance [11,

13]. However, these traditional models are only

accurate for limited categories of materials and suffer

from unstable optimization.

Recently, deep learning frameworks have shown

powerful abilities in various tasks [18, 41, 42].

In particular, researchers have made efforts to

learn general reflectance models through deep neural

networks to solve the problem of photometric

stereo. DPSN [30] first addressed the non-Lambertian

photometric stereo using a deep fully-connected

network, to learn the surface normal in a per-pixel

manner. Later, a series of methods employed the

convolutional neural networks (CNNs) to better utilize

the adjacent information embedded in images, such as

1
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PS-FCN [4], SDPS-Net [3], Manifold-PSN [19], and 
IRPS [38]. However, these methods suffer from the 
blurriness, especially in high-frequency regions (e.g. 
crinkles and edges). This phenomenon is caused by the 
spectral bias [29], where the neural network favors low-

frequency representations hence they exhibit a bias 
towards smooth functions. Unfortunately, these regions 
are always where the human visual system pay attention 
and consequently require to be reconstructed accurately. 
Existing photometric stereo networks pass the input 
through high-to-low resolution subnetworks that are 
connected in series, and then raise the resolution; these 
procedures cause the information lost of the estimated 
resolution and result in the blurry. Furthermore, 
existing photometric stereo networks employ the same 
learning strategy in all surface regions. The patterns we 
need to learn essentially vary from plain surfaces to 
high-frequency surfaces, and thus the error is produced 
due to the same learning strategy. Therefore, it remains 
urgent yet challenging to develop a robust and efficient 
photometric stereo method that can avoid the blurry 
and accurately reconstruct of objects’ surface 
orientation.

In this paper, we propose a conditional (C) deep 
neural network with a high-resolution (HR) structure, 
called CHR-PSN, for estimating the surface normal 
of objects. In contrast to existing methods, our 
framework reduces the error and blurriness, especially 
in those surfaces with high-frequency details. Extensive 
experiments on public datasets show that the our 
CHR-PSN achieves state-of-the-art performance. Our 
contributions are:

First, inspired by the High-resolution Net [36] in 
human pose estimation, we employ the parallel network 
structure for maintaining both the deep features and 
high-resolution details of surface normals, for the first 
time. We illustrate that the high-resolution of extracted 
features are essential to the per-pixel surface normal 
estimation task, which has not been explored in the 
learning-based or data-driven photometric stereo.

Second, we investigate an improved gradient-

motivated conditionally parameterized convolutions 
module (GM-CondConv) [47] in the regression stage of 
our network, where the frequency information of surface 
representations is integrated into the routing function. 
We illustrate that the GM-CondConV module can 
regress the surface normal, with high-frequency details.

2 Related work

The imaging model establishes the relationship

between the surface normal n ∈ R3 and visual

observations I in a per-pixel manner. By introducing

the general BRDFs ρ of the object and illumination

direction l with intensity e, photometric stereo recovers

the surface orientation from a combination of multiple

images with varying illumination directions, as follows:

Ij = ejρ (n, lj) max
(
n>lj , 0

)
+ εj , (1)

where the subscript j represents the index of input,

max
(
n>lj , 0

)
accounts for attached shadows, and ε

accounts for noise (such as inter-reflections). To extend

photometric stereo to work with unknown general

BRDFs ρ in practice, researchers investigated different

strategies. We divide them into non learning-based

methods and deep leaning-based methods.

2.1 Non learning-based methods

Generally, traditional photometric stereo

technologies aim to solve the ill-posed surface

normal under unknown reflectance. Here, we briefly

introduce these non learning-based photometric

stereo techniques, divided as sophisticated reflectance

methods and outlier rejection methods. More

comprehensive surveys can be found in [10, 32]

Sophisticated reflectance methods are applied to

model and approximate non-Lambertian reflectance.

Along this direction, many models were proposed

to fit the nonlinear analytic BRDFs, such as the

bivariate functions [1, 33], the Ward reflectance model

[6, 9], specular spike reflectance model [5, 48], Blinn-

Phong reflectance model [39], the Torrance-Sparrow

reflectance model [8], etc. However, these sophisticated

reflectance methods are generally useful for limited

categories of surfaces as the reflectance properties are

significantly changing from materials to materials.

Outlier rejection methods treat non-Lambertian

regions (such as specularity and cast shadows) as

outliers that should be discarded. A range of outlier

rejection based photometric stereo algorithms have

been proposed such as maximum-likelihood estimation

[40], low rank [14, 45], RANSAC [37], and maximum

feasible subsystem [49], etc. However, these methods

assume the outliers are local and sparse, hardly

handling the surface with broad and soft specularity.

2.2 Deep learning-based methods

Inspired by the powerful fitting ability of deep

neural networks, deep learning-based methods have

been introduced to solving the non-Lambertian

photometric stereo problem. DPSN [30] first applied
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a fully-connected architecture for the non-Lambertian

photometric stereo in a per-pixel manner. Some works

introduced the observation map, which rearranges

per-pixel’s observation intensity according to light

direction, to recover the surface normals, such as

CNN-PS [12], LMPS [23], and SPLINE-Net [50]. PS-

FCN [4], SDPS [3] employed the fully-convolutional

network to learn the surface normal from input patches

with neighborhood embedding. IRPS [38] further

proposed an unsupervised learning framework that

predicts the surface normals by minimizing the loss of

reconstruction images. However, existing networks pass

the input through high-to-low resolution subnetworks

that are connected in series, and then raise the

resolution, while these approaches cause the blurry of

predicted surface normals.

Recently, Attention-PSN [20] proposed an adaptive

attention-weighted loss to improve the performance of

various surface regions. By the self-supervised weights

of detail-preserving gradient loss, the method achieves

better reconstruction results on high-frequency surface

regions. However, we argue that the detail-preserving

gradient loss can only constrain the high-frequency

of surface structure but it is useless to the accuracy

of predicted normal, i.e., the gradient loss dilutes

the supervision of normal. Furthermore, Attention-

PSN only takes adaptive loss function to improve the

details but ignores the impact of unsuitable kernels and

receptive fields in convolutional layers, which is the 
essential problem of blurry in high-frequency regions.

Besides, some other reconstruction tasks also address 
the frequency problem into consideration. Mildenhall 
et al. [26] proposed a method for synthesizing novel 
views of complex scenes by optimizing an underlying 
continuous volumetric scene function. This method 
represents high-frequency scene content, by using a 
positional encoding to map each input 5D coordinate 
into a higher dimensional space. Liu et al. [24] 
introduces a wavelet-based network to remove moiré 
patterns, by the fact that high-frequency features might 
be highlighted in wavelet subbands.

3 Proposed Method

In this section, we will present the details of the 
proposed conditional deep photometric stereo network 
with high-resolution features. Our goal is to improve 
the accuracy and remove the blurriness of surface 
normal estimation. The architecture of the proposed 
CHR-PSN is shown in Figure 1.

3.1 Network architecture

3.1.1 Feature extraction stage

As shown in Figure 1, we first fuse the input images 
with its illumination direction in the feature fusion

stage. For an object captured under j illumination

directions, we expand each direction lj to form a 3-
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Fig. 1 The architecture of our CHR-PSN. Reg. Conv. = regular convolution, Down Samp. = down-sampling operation, Up Samp.

= up-sampling operation, and Trans. Conv = transposed convolution. We apply the Leaky-ReLU as the activation function of each

layer. Our network consists of three stages, called feature extraction stage, fusion stage, and regression stage. Given an arbitrary

number of images under different light directions, the feature extraction stage first extracts the multi-scale feature and representations

the edge feature. Then, multi-resolution max-pooling operations are applied in the fusion stage. Finally, the regression stage with

an improved GM-CondConv module infers the surface normal of the target.
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channel image that has the same spatial dimension as

the input image (H ×W × 3), and concatenate it with

its corresponding image Ij as the Φj ∈ RH×W×6.

The feature extraction stage of our network can

be seen as the jth multi-branch shared-weight feature

extraction network, which can be expressed as:

ΨFR
j ,ΨHR

j ,ΨQR
j = Fext(Φj ; θext) , (2)

where Fext is the multi-scale feature architecture

with learnable parameters θext, inspired by the

High-resolution Net [36]. We employ the parallel

network structure for extracting three scales feature,

avoiding the feature map from low-resolution to

high-resolution. Therefore, our feature extraction

maintains both the deep features and high-resolution

details of surface normals. As shown in Figure 1,

the down-sampling operations are executed through

convolutional layers with stride = 2 (double down-

sampling) or 4 (twice double down-sampling), and the

up-sampling operations are executed through bilinear-

upsampling and 1×1 convolutional layers to adjust the

channel of the feature same as high-resolution feature’s

channel. The fusion of high-to-low and low-to-high

processes into the same-resolution features are executed

through skip connections. Therefore, our feature

extraction outputs three different resolution features, as

full resolution (FR): ΨAR
j ∈ RH×W×64, half resolution

(HR): ΨHR
j ∈ R 1

2H×
1
2W×128, and quarter resolution

(QR): ΨQR
j ∈ R 1

4H×
1
4W×256.

Besides, we also introduce a edge-preserving layer for

each Ij as:

ΩFR
j = Fedge(Ij) , (3)

where Fedge is the edge-preserving layer, calculated by

the gradient of input image Ij . ΩFR
j ∈ RH×W×3

is the output having high-frequency edge information,

which is used in the improved CondConv module of the

regression stage.

3.1.2 Fusion stage

In the fusion stage, we apply multi-scale max-pooling

operations [4, 20] for fuse the j feature to one, which

makes our network can handle the arbitrary number of

inputs and backpropagate the parameters. We argue

that max-pooling extracts the most salient information

from all features, while average-pooling may smooth

out useful features and be impacted by non-activated

features. Here, we choose the subscript p to denote the

index of position in feature as follows:

ΩFR
max =

H×W⋃
p

max(ΩFR
1p ,ΩFR

2p , . . . ,ΩFR
jp ) , (4)

ΨFR
max =

H×W⋃
p

max(ΨFR
1p ,ΨFR

2p , . . . ,ΨFR
jp ) , (5)

ΨHR
max =

1
2H×

1
2W⋃

p

max(ΨHR
1p ,ΨHR

2p , . . . ,ΨHR
jp ) , (6)

ΨQR
max =

1
4H×

1
4W⋃

p

max(ΨQR
1p ,ΨQR

2p , . . . ,ΨQR
jp ) , (7)

where ΩFR
max, ΨFR

max, ΨHR
max, and ΨQR

max are the fused

features.

3.1.3 Regression stage

The normal regression stage takes ΩFR
max, ΨFR

max,

ΨHR
max, and ΨQR

max as inputs and regresses the predicted

surface normals N̄ , by Freg with learnable parameters

θreg, as follows:

N̄ = Freg(ΩFR
max,Ψ

FR
max,Ψ

HR
max,Ψ

QR
max; θext) , (8)

In the regress stage, we first employ the transposed

convolution operations to up-sample the low-resolution

feature ΨHR
max and ΨQR

max to the full resolution of

H ×W (twice transposed convolution and once regular

convolution operations for ΨQR
max, once transposed

convolution operation for ΨHR
max). As shown in Figure

1, we here employ the concatenation operation to fuse

the two up-sampled features and the full resolution

feature, instead of using the skip connections in the

feature extraction stage.

For better reconstructing the details of objects and

removing the blurry in high-frequency regions, we

propose an improved GM-CondConv module in the

regression stage [47], with the motivation that previous

methods put the same learning strategy in all of

the surface regions caused the blurry and error. By

parameterizing the convolutional kernel conditionally

on the input, the network can predict fine estimation for

both plain surface regions and high-frequency surface

regions (crinkles, edges). Particularly, we concatenate

the high-frequency edge information ΩFR
max with the

previous layer feature x. We argue that the frequency

information is beneficial to the classification of each

learned kernel, which is better used in predict different

surface normal regions. Therefore, the convolutional

kernels in our GM-CondConv are parameterized as:

GM-CondConv(x,ΩFR
max) =

σ
(
(α1 ·W1 + . . .+αn ·Wn) ∗ (x,ΩFR

max)
)
,

(9)

where each αi = ri(x,Ω
FR
max) is an example-dependent

scalar weight computed using a routing function with

learned parameters, n is the number of weights (n= 5 in

our default setting), and σ is the Leaky-ReLu activation

function. Similar as CondConv [47], we compute the
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example-dependent routing weights αi = ri(x,Ω
FR
max)

from the layer input in three steps: global average

pooling, fully-connected layer, and Sigmoid activation,

as:
r(x,ΩFR

max) =

Sigmoid(GlobalAveragePool(x,ΩFR
max) R) ,

(10)

where R is a matrix of learned routing weights mapping

the pooled inputs to n expert weights. We eventually

employ an L2 normalization that makes prediction N̄

be unitized.

3.2 Loss function and training procedure

The learning of our network is supervised by the

angular error between the estimated and the ground-

truth surface normals. We optimize the networks

parameters θext and θreg by minimizing the cosine

similarity loss function as:

Lnormal =
1

HW

HW∑
p

(
1− N̄p ·Np

)
, (11)

where N̄p andNp denote the estimated normal and the

ground-truth, respectively, at pixel p. If the estimated

normal N̄p at pixel p has a similar orientation as the

ground-truth Np, then the N̄p ·Np will be close to 1

and the loss Lnormal will approach 0.

Our network is implemented in PyTorch [28] on a

RTX 2080Ti GPU, and the Adam optimizer [22] is used

with default settings, where the learning rate is initially

set to 0.001 and divided by 2 every 5 epochs. We train

the model using a batch size of 32 for 40 epochs, with

the j = 32 for each sample in training, whereas our

network can accept an arbitrary number of j in testing.

Also, we set the resolution H and W = 32 in training,

and an arbitrary resolution in testing.

3.3 Datasets

3.3.1 Training and validation datasets

We adopt two public synthetic blobby shape [17]

and sculpture shape datasets [43] to train our network.

Following the setup in PS-FCN [4], we render these

two shape datasets with the MERL dataset [25], which

contains 100 different BRDFs of real-world materials,

by the physically-based raytracer Mitsuba [15]. The

resolution of them is 128 × 128. Image patches

of size 32 × 32 are randomly cropped for data

augmentation. Eventually, we get 85212 samples in

total, each sample contains 64 images with different

illumination directions (random illumination directions

in a space of upper semisphere). We split the samples

in the dataset into the training set (84360 samples) and

the validation set (852 samples).

3.3.2 Testing datasets

We apply public non-Lambertian photometric stereo

datasets, for evaluating our method. First, we employ

the DiLiGenT benchmark dataset [32] that contains

10 objects of various shapes with complex materials.

For each objects, the dataset provides 96 images under

different illumination directions, with the resolution

of 612 × 512. Then, we employ the Light Stage

Data Gallery dataset [7] that contains six complex

objects with larger resolution. Each object has up

to 253 images under different illumination directions.

Note that this dataset is without the ground-truth

surface normal. Therefore we qualitatively evaluate our

method on it.

4 Experimental Results

We present experiments and analysis in this section.

To verify the quantitative performance of our method,

we employ some widely used metrics to measure

accuracy. We adopt the mean angular error (MAE) in

degree to evaluate the performance of estimated surface

normal, as follows:

MAE =
1

HW

H×W∑
p

(arccos(N̄p ·Np)) . (12)

We also measure the percentage (%) that the pixels

with angular error less than 20◦, which is denoted by

<err20◦ . <err20◦ is a metric that better measure high-

frequency error terms, because the normal error in high-

frequency regions are bigger.

4.1 Ablation Experiments and Network

Analysis

We take quantitative ablation experiments on the

validation. For the validation set, we report the average

MAE of 852 samples (tested with 32 images).

As shown in Table 1, we summarize the results of

ablation experiments. Our default method is marked as

D0, with full resolution features + 1
2 resolution features

+ 1
4 resolution features in the high-resolution feature

extraction stage [36], as well as the fusion of high-

frequency edge information ΩFR
max and weights number

= 5 in the GM-CondConv module of the regression

stage. We first evaluate the effectiveness of multi-

scale features (Experiments with IDs D0, M1, M2,

M3, and M4), where the different combinations of

resolution features are employed. For M1, M2, M3,

and M4, we adjust the architecture of the feature

extraction network, the corresponding multi-scale max-

pooling fusion, and the number of concatenation in

the regression stage, but maintain the GM-CondConv
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Tab. 1 MAE and < err20◦ results comparison with respect

to different components of the CHR-PSN on the validation set

(with 32 input images).

ID Variants MAE <err20◦

D0 Our default settings 11.91 85.38%

M1 Full Resolution 12.15 83.49%

M2 Full Resolution + 1
2 Resolution 11.97 84.13%

M3 1
2 Resolution + 1

4 Resolution 12.69 80.83%

M4
Full Resolution + 1

2 Resolution

+ 1
4 Resolution+ 1

8 Resolution
11.90 85.35%

C5 Without ΩFR
max 11.99 84.65%

C6
Weights number = 1

(Regular Conv)
12.02 84.79%

C7 Weights number = 3 11.95 85.05%

C8 Weights number = 7 11.92 85.21%

L9 Element add 14.52 75.30%

module unchanged. Note that the 1
8 resolution feature

in M4 has the dimensions ∈ R 1
8H×

1
8W×512. For the

network without full resolution feature, we take down

sampling at the beginning. We then evaluate the

effectiveness of the improved GM-CondConv module

(Experiments with IDs D0, C5, C6, C7, and C8). We

test the impact of whether it fuses the edge information,

and the number of weights of routing function in the

GM-CondConv module. For C5, C6, C7, and C8, we

only adjust the GM-CondConv module but maintain

the architecture of high-resolution network unchanged.

Finally, we evaluate the different fusion methods of

illumination direction (Experiments with IDs D0 and

L9). Our default setting uses a concatenation operation

to fuse the input images and illumination directions.

For L9, we test the performance of adding the value

of each element instead of concatenation operation,

in this case, we adjust the input channel of the first

convolutional layer from 6 to 3, in the feature extraction

stage.

4.1.1 Effectiveness of different multi-scale

features

Experiments with IDs D0, M1, M2, M3, and M4

compare the performance of different combinations

of feature resolution. Note that M1 has only full

resolution feature, which can be seen as a fully

convolutional network without up and down sampling.

It can be seen that multi-scale resolution features are

beneficial to the accuracy of prediction. Especially,

when the network has not full resolution features (M3),

the performance is obviously worse. It illustrates that

the resolution of features has a crucial impact on

the performance of the model in the per-pixel surface

normal recovery task. Unfortunately, previous deep

learning-based photometric stereo methods belong to

the classification of M3 (without the branch of high-

resolution feature). Also, compared D0 with M1, M2

and M4, we can see that the deep features improve the

performance of prediction to some extent. However, the

improvement is quite slight after adding 1
8 resolution

feature, and the 1
8 resolution feature significantly

increases the parameters and training time. This might

be because such deep feature contains less detailed

information but high-level semantic information, which

is useless for the per-pixel prediction task. Therefore,

we select full resolution features + 1
2 resolution features

+ 1
4 resolution features in the high-resolution feature

extraction stage [36].

4.1.2 Effectiveness of fusing high-frequency

information in routing function

Experiment with IDs D0 and C5 show the influence

of fusing high-frequency edge information ΩFR
max in

the routing function of GM-CondConv module. We 
can see that the angular error and < err20◦ of the 
validation set are lower when the edge information is 
taken into account. This might be explained by the fact 
that the improved routing function will take the high-

frequency information into the self-learned weights, 
which is beneficial to the GM-CondConv module for 
estimating different frequency surface regions (such as 
crinkle and plain).We also show a visualized sample of 
“Buddha” in Fig. 2. The comparisons between the 
CondConv (ID = C5) and GM-CondConv (ID = D0) 
show that using GM-CondConv will further improve the 
performance of high-frequency areas.

4.1.3 Effectiveness of weights number in

GM-CondConv module

Referring to the experiments with IDs D0, C6, C7, 
our method increased with the number of weights in 
GM-CondConv. Note that weights number = 1 means 
there are only one convolution kernel and no dynamic 
weight. These comparisons show the effectiveness of our 
improved GM-CondConv module. Also, compared with 
default settings, more weights in GM-CondConv can 
not improve the accuracy continuously. Our method 
performs better when the number of the weights is 5, 
according to the above experiments.

4.1.4 Effectiveness of illumination direction

fusion methods

Experiment with IDs D0 L9 show the influence 
of different fusing methods. We can see that the 
angular error and < err20◦ of the validation set

6
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Tab. 2 Comparison of different methods on the DiLiGenT benchmark dataset. All methods are evaluated with 96 images. Here,

we measure MAE in degrees.

Method Ball Bear Buddha Cat Cow Goblet Harvest Pot1 Pot2 Reading Avg.

Baseline 4.10 8.39 14.92 8.41 25.60 18.50 30.62 8.89 14.65 19.80 15.39

Matrix rank = 3 2.54 7.32 11.11 7.21 25.70 16.25 29.26 7.74 14.09 16.17 13.74

Rank minimization 2.06 6.50 10.91 6.73 25.89 15.70 30.01 7.18 13.12 15.39 13.35

Multi-Ward models 3.21 6.62 14.85 8.22 9.55 14.22 27.84 8.53 7.90 19.07 12.00

Bivariate BRDF 3.34 7.11 10.47 6.74 13.05 9.71 25.95 6.64 8.77 14.19 10.60

Bi-polynomial 1.74 6.12 10.60 6.12 13.93 10.09 25.44 6.51 8.78 13.63 10.30

DPSN 2.02 6.31 12.68 6.54 8.01 11.28 16.86 7.05 7.86 15.51 9.41

IRPS 1.47 5.79 10.36 5.44 6.32 11.47 22.59 6.09 7.76 11.03 8.83

PS-FCN 2.82 7.55 7.91 6.16 7.33 8.60 15.85 7.13 7.25 13.33 8.39

Attention-PSN 2.93 4.86 7.75 6.14 6.86 8.42 15.44 6.92 6.97 12.90 7.92

CHR-PSN (Ours) 2.26 6.35 7.15 5.97 6.05 8.32 15.32 7.04 6.76 12.52 7.77

are best when using concatenation operation (our

default settings). Also, the performance of prediction

is severely decreased when using the add operation

between the input image and the illumination direction.

We argue that the network can hardly decouple the

feature that is numerically added between image and

illumination.

4.2 Evaluation on the DiLiGenT benchmark

dataset

4.2.1 Evaluation on the 96 number of input

images

DPSN IRPS    Att.-PSN CondConv GM-CondConv

90

45

0E
rr

o
r 

m
a
p

s 
  
P

re
d
ic

ti
o
n
s

Fig. 2 An enlarged sample “Buddha” from DiLiGenT dataset 
[32]. Att.-PSN is short for Attention-PSN. CondConv represents 
using original CondConv module [47] (ID = C5 in Tab. 1), while

GM-CondConv represents our default model.

We compare our method with both non learning-

based methods and recently deep learning-based 
methods in terms of achievable MAE, on the DiLiGenT 
benchmark dataset [32]. For non learning-based 
methods, we evaluate the Least squares (baseline) 
method [44], Rank minimization[45] and Matrix rank 
= 3 [14] of outlier rejection method. We also

max

evaluate the sophisticated reflectance methods, such 
as Multi-Ward models [9], Bivariate BRDF [13], and 
Bi-polynomial [34]. For deep learning-based methods, 
we compared our method with DPSN [30], IRPS 
[38], PS-FCN [4], and Attention-PSN [20] in 96 input 
images. Quantitative results are reported on Table 2. 
Figure 3 presents the visualized results with the top 
four accuracy deep learning-based photometric stereo 
methods, including Attention-PSN [20], PS-FCN [4], 
IRPS [38], and DPSN [30], as well as the Baseline 
method (Least square) [44]. As shown in Figure 3, 
we illustrate the performance of our method on high-

frequency regions, such as the face of “Buddha” and 
the flower of “Pot2”, and cast shadows regions, such as 
the shoulder of “Buddha” and the base of “Goblet”. It 
can be seen that our method is more accurate on those 
regions with cast shadows and crinkles.

We also show an enlarged sample of “Buddha” in Fig. 
2, with details. We can see that the last three 
comparisons, which take the high-frequency information 
into consideration, achieve much better accuracy on 
crinkles and edges. Specifically, our default settings 
(using improved GM-CondConv) recover less error in 
high-frequency areas, compared using CondConv 
module (without high-frequency information ΩF R in 
routing function, ID = C5 in Tab.1).

4.2.2 Discussion on limitations

We notice that the proposed CHR-PSN does not 
achieve the best performance on some objects, such as 
“Ball”and “Bear”. We also illustrate some failed cases 
in Figure 4. In these objects, our method only obtains

7
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Img. & GT    Ours & Err.   Att.-PSN. & Err.    PS-FCN & Err.   IRPS & Err.  DPSN & Err.    Base. & Err.

Buddha  7.15  7.75  7.91   10.36  12.68  14.92 

Cow  6.05   6.86  7.33   6.32  8.01   25.60 

Goblet  8.32   8.42   8.60    11.47  11.28  18.50

90

45

0

Pot2  6.76  6.97 7.25  7.76  7.86 14.65

Fig. 3 Comparisons on the Buddha, Cow, Goblet, and Pot2 of DiLiGenT benchmark dataset. The yellow boxes in the observed

images and ground-truth surface normals are regions with high-frequency surface (such as crinkles), while the red boxes are regions

with cast shadows. Att.-PSN is short for Attention-PSN [20]. Base. is short for Baseline least square method [44] The contrast of

observations is adjusted for easy viewing.

sub-optimal performance. We argue that the objects like Ball and Bear have the plain surface normal and

8
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approximate Lambertian reflectance. In these cases,

we argue that the high-resolution feature extraction

of our method and GM-CondConv module are excess.

IRPS [38] performs very well on these objects because

it introduces the reconstruction loss to learn the surface

normal, where an approximate Lambertian surface and

simple structure is beneficial to the inverse rendering.

However, we can see that our method still outperform

Attention-PSN and IRPS on non-Lambertian regions

(such as the specularity of “Ball”) and cast shadows

regions (such as the chin of “Bear”).

Img. & GT  Ours & Err.    Att.-PSN. & Err.    IRPS & Err. 

Ball    2.26    2.73   1.47

Bear        6.35 4.86           5.79

90

45

0

Fig. 4 Quantitative results on Ball and Bear from the

DiLiGenT benchmark dataset. The contrast of observations is

adjusted for easy viewing.

4.2.3 Evaluation on the less number of input

images

We further evaluated our method against several

methods with sparse inputs (with 10 input images).

Our method employ the max-pooling operation to

handle arbitrary input number of image, which is of

piratical use. For non learning-based methods, we

evaluate the Least squares (baseline) method [44], Bi-

polynomial [34], and Matrix rank = 3 [14]. For deep

learning-based method, we evaluate the CNN-PS [12],

SPLINE-Net [50], LMPS [23], and PS-FCN [4]. We

summarize the comparisons in Table 3.

It can be seen that our method outperforms others

on average MAE of the DiLiGenT dataset and achieves

state-of-the-art accuracy on most objects. We also

visualize the average MAE of the DiLiGenT dataset

16 32 48 64 80 96
The number of input images

7
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9

10

11

12

M
A

E
 (

in
 d

eg
re

e)

PS-FCN
CHR-PSN (Ours)

Fig. 5 The comparison of MAE under different numbers of 
input images.

from sparse input (8) to dense input (96), as shown in 
Figure 5. We compare our method with PS-FCN [4], 
which also uses the max-pooling operation to handle the 
different numbers of input images with once training. 
We can see that our method outperforms PS-FCN on 
all numbers of input image (Both methods are trained 
with 32 input images).

4.2.4 Extension on uncalibrated

photometric stereo

Furthermore, we report the superior performance 
of our method on uncalibrated conditions. In actual 
applications, there are conditions where the directions 
of illuminations lj are unknown. Our method can 
be easily extended to handle uncalibrated photometric 
stereo by removing the illumination direction from

the input (as the Φj ∈ RH×W×3, which only 
includes the RGB-channel image). To verify the 
potential of our method, we train the model without 
illumination direction (aslo use 32 images for one 
sample) and test it on the DiLiGenT benchmark 
dataset [32] with 96 images. The results are reported 
in Table 4. We compare our method (uncalibrated) 
with several uncalibrated photometric stereo methods, 
such as entropy minimization [2], self-calibrating 
[31], reflectance symmetry [46], diffuse maxima [27], 
and UPS-FCN (for uncalibrated)[3]. Our method 
(uncalibrated) outperformed existing methods in terms 
of the average MAE, except SDPS-Net [3]. SDPS-Net is 
specially designed for uncalibrated condition (learn the 
illumination direction solely), while our method can be 
both used in the calibrated and uncalibrated conditions, 
which is not designed for calibrated condition.

9
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Tab. 3 Comparison of different methods on the DiLiGenT benchmark dataset. We note that all methods are evaluated with 10

images for MAE in degrees.

Method Ball Bear Buddha Cat Cow Goblet Harvest Pot1 Pot2 Reading Avg.

Baseline 5.09 11.59 16.25 9.66 27.90 19.97 33.41 11.32 18.03 19.86 17.31

Bi-polynomial 5.24 9.39 15.79 9.34 26.08 19.71 30.85 9.76 15.57 20.08 16.18

Matrix rank = 3 3.33 7.62 13.36 8.13 25.01 18.01 29.37 8.73 14.60 16.63 14.48

CNN-PS 9.11 14.08 14.58 11.71 14.04 15.48 19.56 13.23 14.65 16.99 14.34

PS-FCN 4.02 7.18 9.79 8.80 10.51 11.58 18.70 10.14 9.85 15.03 10.51

SPLINE-Net 4.96 5.99 10.07 7.52 8.80 10.43 19.05 8.77 11.79 16.13 10.35

LMPS 3.97 8.73 11.36 6.69 10.19 10.46 17.33 7.30 9.74 14.37 10.02

CHR-PSN (Ours) 3.91 7.84 9.59 8.10 8.54 10.36 17.21 9.65 9.61 14.35 9.92

Tab. 4 Comparison of results for uncalibrated photometric stereo on the DiLiGenT benchmark dataset. All the methods are

evaluated with 96 images for MAE in degrees.

Method Ball Bear Buddha Cat Cow Goblet Harvest Pot1 Pot2 Reading Avg.

Entropy minimization 7.27 16.81 32.81 31.45 54.72 46.54 61.70 18.37 49.16 53.65 37.25

Self-calibrating 8.90 11.98 15.54 19.84 22.73 48.79 73.86 16.68 50.68 26.93 29.59

Reflectance symmetry 4.39 6.42 13.19 36.55 19.75 20.57 55.51 9.39 14.52 58.96 23.93

Diffuse maxima 4.77 9.07 14.92 9.54 19.53 29.93 29.21 9.51 15.90 24.18 16.66

UPS-FCN 6.62 11.23 15.87 14.68 11.91 20.72 27.79 13.98 14.19 23.26 16.02

Ours (Uncalibrated) 5.61 10.80 12.48 13.95 12.44 17.84 23.39 13.62 13.79 20.78 14.47

SDPS-Net 2.77 6.89 8.97 8.06 8.48 11.91 17.43 8.14 7.50 14.90 9.51

4.3 Evaluation on the Light Stage Data

Gallery dataset

We further qualitatively evaluated our method on

a more complex dataset with general non-Lambertian

materials. Figure 6 shows the results of our method

(test with random 150 of 253 total images) on objects

Kneeling, Helmet, and Standing. We show the

qualitative outcomes in this experiment, due to the

absence of ground-truth surface normals. Owing to the

memory limit of GPU, we test the Light Stage Data

Gallery with 64 input images (calibrated illumination

directions).

As shown in Fig. 6, the estimated normal keeps the

details without blur, such as the hair of the Kneeling,

and the screws of the Helmet. The predicted surface

normal and 3D reconstruction convincingly reflect the

shapes of the objects, with accurate detail. Besides,

the belt of the Kneeling illustrates our performance

on cast shadows. However, we also notice that the

predicted surface normal of the object Kneeling meets

some blurry and noise. We argue that the poor quality

of the observations of Kneeling with noise, where the

high-frequency noise existing in observation may affect

the GM-CondConv module of our method.

5 Conclusions

In this paper, we have proposed a conditional

photometric stereo network with high-resolution

feature extraction architecture. Compared with

previous deep learning approaches regress the surface

normals from the down-sampled feature map, we

employ the multi-scale parallel architecture which

enhances the details of prediction. Furthermore,

we employ an improved GM-ConvCond module in

the regression stage which considers the frequency

of surfaces. Therefore, our method outperforms

others in high-frequency regions such as crinkles and

edges. Ablation experiments have illustrated that

our method performs more accurate reconstruction.

Extensive quantitative and qualitative comparisons on

the DiLiGenT benchmark and the Light Stage Data

Gallery have shown that our method outperforms

the state-of-the-art methods. Despite offering state-

of-the-art performance, our method can be further

improved. Firstly, our method only achieves sub-

10
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Kneeling

Helmet

Standing

Fig. 6 Qualitative results of our method on objects Kneeling,

Helmet, and Standing. The yellow boxes in the observed

images and ground-truth surface normals are regions with

high-frequency surface (such as crinkles), while the red boxes

are regions with cast shadows. The contrast of observations

is adjusted for easy viewing. The 3D reconstructions after

predicted surface normals are recovered by [35].

optimal performance on some objects with very simple

structure, where the high-resolution feature extraction

and GM-CondConv are excess in these cases. Secondly,

the training time of our method is longer than other

deep learning-based photometric stereo, which is due to

our much bigger network architecture. In the future, we

will further design the architecture of feature extractor

to better and fast predict the surface normal.
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