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Our BPA-GAN transfers the motion of the source person to a target person. The visual components of the target images,
such as the background, the body shape, the facial expressions are successfully preserved after the motion retargeting.

Abstract

Human motion transfer has many applications in hu-
man behavior analysis, training data augmentation, and
personalization in mixed reality. We propose a Body-
Parts-Aware Generative Adversarial Network (BPA-
GAN) for image-based human motion transfer. Our key
idea is to take advantage of the human body with seg-
mented parts instead of using the human skeleton like
most of existing methods to encode the human motion
information. As a result, we improve the reconstruction
quality, the training efficiency, and the temporal con-
sistency via training multiple GANs in a local-to-global
manner and adding regularization on the source motion.
Extensive experiments show that our method outper-
forms the baseline and the state-of-the-art techniques in
preserving the details of body parts.

1. Introduction

Human motion transfer is crucial in creating human-
centric visual content such as making animations about a
human acting complex motions, synthesizing training data

for learning autonomous driving, personalizing an avatar in
virtual reality, etc. On the other hand, as it is expensive and
tedious to produce a large amount of human motion data,
transferring the motion of a source video to any target per-
son is of great significance for computer graphics and vision
communities [8, 1].

Human motion transfer aims to migrate the motion from
a source image (video) to a target image (video) while pre-
serving both the background and the the visual appearance
of the target person. The main technical challenges include
(1) extracting the motion information from the source, (2)
encoding the visual information of the target, and (3) syn-
thesizing a new image that combines the above motion and
visual information.

Deep neural networks have shown its superiority in high-
level image manipulation tasks. A lot of methods [8, 1, 24]
correspondingly adopt a three-component framework to ad-
dress the issue. First, the pose information from the source
and target images are extracted. Then, a Conditional Gen-
erative Adversarial Network (CGAN) [19] is employed to
learn a latent space that encodes the visual information of
the target images. Finally, the trained model predicts the
motion-retargeted images by using source poses as the con-
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dition. Though these methods have achieved stunning mo-
tion transfer results, they usually require training on a large
dataset in order to recover crisp details of the human body
parts.

This paper introduces a body-part-aware generative ad-
versarial network (BPA-GAN) that improves the aforemen-
tioned human motion transfer framework by considering the
body part information. The improvement includes three as-
pect: (1) instead of extracting a simple skeleton represen-
tation from images, we segment the 2D human body into a
map of rigid parts that provide valuable conditions, such as
the shapes of and the boundaries between different visual
components; (2) rather than encoding the entire image at
once, we train GANs that first predict the body parts locally
before combining them together globally; (3) we improve
the temporal consistency of the output video by regularizing
the motion extracted from the source. As a result, our BPA-
GAN allows reconstructing the target person’s fine-grained
details using only a handful of target images.

The core of our method is detecting and segmenting hu-
man body parts in RGB images, which are actually an ill-
posed problem due to the ambiguity in human body shape,
dressing, occlusion, and lighting condition [5, 3, 17]. Our
main idea is to leverage the power of data-driven human
body fitting methods [28, 29, 30] to estimate a full 3D body
model from the images, and then project the 3D model onto
these images to guide their segmentation.

We perform extensive experiments and show that our
method outperforms the state-of-the-art methods in both de-
tail preservation and training efficiency. Our ablation study
justifies that our network design is appropriate. The code,
the dataset, and the trained models will be publicly available
for future research.

2. Related Work

Most of the deep learning based human motion trans-
fer methods train a Generative Adversarial Network (GAN)
[13] to generate new poses of the target person. These ap-
proaches can be roughly put into two categories according
to their generalization ability. The first category is based on
a generic model and designed to transfer poses of sources
to arbitrary targets [4, 36, 24, 40] without having to retrain
or fine-tune the model for an unseen target. The second cat-
egory is based on a personalized model, which focuses on
learning the appearance of a specific person and only gen-
erates new poses of the same person [8, 38, 1, 23, 33].

2.1. Methods based on generic models

Generic methods are generally trained on a large dataset
consisting of images/videos from a couple of people. They
usually suffer difficulty in preserving fine details due to lack
of information on the target person’s appearance.

Balakrishnan et al. [4] segment a scene into the back-
ground and a set of body parts by using UNet [31] and warp
the body parts into final results. Neverova et al. [27] em-
ploy DensePose [2] to map pixels of images onto a common
surface and design a blending module to mix the predicted
images and warped images. Zhao et al. [45] propose a
framework consisting of three networks, a motion condition
network for predicting the future poses, a motion forecast-
ing network for transferring the current pose, and a motion
refinement network for smoothing the generated sequence.
Bellini et al. [6] introduce a video-based post-processing
method that maximizes the number of suitable matches be-
tween motions and music beats.

Cheng et al. [10] extract background features and six
residual network blocks [15] and a self-attention block [43]
to merge the information from multiple perspectives. Wang
et al. [35] synthesize an image which have the same style
with the style image. To preserve the consistency of the
style, they use a style consistency discriminator, an adap-
tive semantic consistency loss and trained the model with a
data sampling strategy. Chen et al. [9] take a local-to-global
approach to synthesize the face images from sketches. They
first learn the feature embeddings of key face components
and then map the embedded features to realistic images.
Wang et al. [36] dynamically configure the video synthe-
sis through the network weight generation to generalize the
network to other target persons.

Wei et al. [40] exploit the body part information to
achieve an appearance-controllable video motion transfer,
where an instance-level human parsing network [12] is used
to extract body pasts semantic layouts from an input frame.

Noting that the aforementioned methods only exploit the
2D information during transferring, some researchers try to
utilize 3D information. Guan et al. [14] employ HMR [21]
to fit the image with human body parametric model SMPL
[25] and combine the corresponding relationship between
images pixels and feature points provided by DensePose [2]
to add texture to the SMPL mesh model and generate the fi-
nal result through VUnet [11]. Liu et al. [24] first fit the
human body model by HMR and interpolate the images ac-
cording to the model vertices to obtain rough results. Then
they refine the rough results by Liquid Warping GAN. In-
spired by these works, our method employs the SMPLify-X
[29] model to extract the 3D information from the input im-
ages.

2.2. Methods based on personalized models

For better detail preservation, personalized models are
only trained with one target person. These kind of methods
usually require more training data about the target person.

Isola et al [19] propose pix2pix using condition gener-
ators and patch discriminators for image-to-image trans-
lation. Wang et al. [38] improve pix2pix by propos-
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ing pix2pixHD for generating high-resolution images with
a coarse-to-fine generator and a multi-scale discriminator.
Zhou et al. [46] use STN [20] to transfer texture of the tar-
get person onto the the body parts and then fuse the parts
together. These methods get good results in images, while
some methods try to generate temporally coherent videos.
Chan et al. [8] make use of two adjacent frames to train
pix2pixHD to improve the temporal coherence and employ
an additional face GAN to improve facial details. Wang
et al. [37] propose vid2vid for video-to-video translation
based on pix2pixHD with the optical flow loss extracted by
Flownet2 [18]. Aberman et al. [1] take advantage of paired
data to train the network and employ the optical flow be-
tween unpaired data to improve the temporal coherence.

Some methods exploit 3D space information to improve
results. Liu et al. [23] reconstruct a textured human mesh
and combine the mesh with a human parametric model [42].
Then, they render the model to get intermediate results and
use a re-weighted PatchGAN [19] to refine these results.
Sun et al. [33] leverage the approach in [41] to get human
models, and input the projection images of models as well
as appearance images into MT-Net and DE-Net for generat-
ing and refining the outputs. We refer to a survey by Wang
et al. [34] for relevant works that use deep learning methods
for VR content creation and exploration.

Our method is also based on personalized models, but
we focus on exploiting the body-parts prior knowledge to
improve the training efficiency and the quality of results.

3. Method

As having been mentioned, our BPA-GAN is a personal-
ized approach. Given a set of images of a target person, we
train a model to learn a latent space that encodes the visual
information of these images. In the inference stage, given
a source image of arbitrary people, BPA-GAN generates a
new image of the target person but with the same pose as
the source human. Instead of using the conventional skele-
ton representation, we view the human pose as a 2D human
segmented into 16 body parts. Therefore, our method re-
quires a preprocessing step to generate body-part maps from
given images. Compared with 2D skeletons, the marks of
body-parts contain more information about the body shape
and the occlusion relationship between body parts. It also
allows us to add additional supervision to body part levels.

3.1. Body-part segmentation

Parsing the human body into different parts plays a cru-
cial role in our method, which is rather challenging since the
body region usually occupies a small area in an image. We
propose a segmentation approach based on a 3D geometric
agent.

As shown in Figure 1, it first employs SMPL-X [29],
a human parametric representation, to fit body shape and

pose, facial expression, hand gesture as well as camera ori-
entation from the input image. This process is also known
as SMPLify-X in [29]. We render the reconstructed 3D
model to obtain a pose image, in which each body part is
in unique pseudo color. The body region of the input image
can then be segmented into 16 parts according to pixel color
labels of the pose image.

Human model fitting. SMPL-X is a human body para-
metric model that consists of an average human body mesh
template M and three sets of control parameters. Template
M includes 10475 vertices and K = 54 joints. The three
sets of parameters are respectively shape parameters β
in R10, pose parameters θ ∈ R3(K+1), and facial expres-
sion parameters ψ ∈ R10. The parametric model can be de-
noted as M(β, θ, φ). It indicates that we can use it to eval-
uate the new positions of mesh vertices for arbitrary given
parameters.

It is often required to evaluate the above shape and
motion parameters for a given 3D or 2D shape and pose
information as an inverse problem. We directly employ
SMPLify-X in [29] to estimate parameters β, θ, φ of SMPL-
X and camera parameters c ∈ R3 from a given image. In
SMPLify-X, fitting SMPL-X to the image is cast into mini-
mizing the following energy [29]:

E ({β}, {θ}, {ϕ}) = EJ + λθbEθb + λθfEθf + λθhEθh
+λαEα + λβEβ + λψEψ + λCEC

(1)
where the first item in the righthand side is losses of 2D
joints; items 2-5,7 are respectively priors for body pose, fa-
cial pose, hand pose, elbow and knee bending, and facial
expression; item 6 penalizes the deviation of shape param-
eters from the distribution.

Human model fitting for videos. SMPLify-X is de-
signed for dealing with a single image. Using it to indepen-
dently fit SMPL-X to each frame in a video usually leads
to temporally inconsistent and flickering output. This is be-
cause (1) the shape parameters are not fixed for the same
video (see the blue curve in the top of Figure 10 for ex-
ample), and (2) pose parameters fail to transition between
adjacent frames smoothly (see the blue curve in the bottom
of Figure 10. To address the issues and simultaneously sus-
tain simplicity, we still employ the frame-by-frame fitting
strategy, but add temporal constraints on the current frame
parameters using the estimated values of its two previous
ones.

Specifically, we employ the original SMPLify-X to fit
the first frame of the video. Let β1 be the recovered shape
parameters. Eβ (β) in Equation 1 The following soft con-
straint which forces the shape parameters β of the current
frame changing as small as possible:

Eβ (β) = ‖β − β1‖2 (2)
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Figure 1. Pipeline of human body part segmentation: (1) SMPL-X fitting; (2) 3D model rendering with pseudo colors Ip; (3) Segmentation
of body region; (4) Body part layout.

As for pose and expression parameters, we employ
the Laplacian operator to constrain the parameters of
the current frame. With parameters of its two previous
frames given, denoted by θx−2, θ

x
−1, x ∈ {′b′,′ f ′,′ h′} and

ψ−2, ψ−1 respectively, we use the following energy to re-
place the corresponding energy in Equation 1

Eθx =
∥∥θx−2 − 2θx−1 + θx

∥∥2 , x ∈ {′b′,′ f ′,′ h′}
Eψ = ‖ψ−2 − 2ψ−1 + ψ‖2

(3)

Human model rendering and body part segmenta-
tion. As a preprocessing step, we assume the mesh tem-
plateM of SMPL-X has been segmented into 16 body parts,
which are labeled by using 16 selected colors. We use extra
six selected colors to label feature points of eyebrows, eyes,
nose, and mouth for further capturing facial details. With
these specified colors, we can visualize a pseudo color im-
age, including these body parts and feature points, as shown
in Figure 2 in which a standard pose is depicted, and subse-
quently, all body parts and facial feature points are visible.

For different shapes, poses, and views, the rendered images
will look completely different.

To parse the human body in real image I , we employ
the above improved SMPLify-X to recover the 3D human
model, i.e., estimating the shape, pose, and expression pa-
rameters of SMPL-X, as well as camera parameters. Then
we segment the human body in I to 16 parts to obtain
pseudo color image Ip with six types of feature points on
the face part, which we call the pose map. Note that, at
the training stage, both shape and pose parameters of the
SMPL-X model are from the target person. However, at in-
ference stage, we combine the shape parameters from the
target person, the pose and expression parameters of the
source person, and the scaled camera parameters of the
source person according to the depth to generate the seg-
mented pose. This guarantees that the body scale of the
inference input is accordant with that of the training inputs.

Body part re-layout: dataset generation. We gather
training data from Internet videos. The original images have
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Figure 2. Different body parts are corresponding to different colors
of the pose images.

1920×1080 pixels, and we rescale them to 256×256 images
as input. Directly resizing the original images to 512× 256
resolution will make small body parts such as the face losing
detailed information seriously.

The face is an essential part of human appearance; it is
vital for a pose transfer algorithm to a composite clear and
real face. We segment the head region out and up-scale it
before saving it in an independent image.

As shown in Figure 1, we first segment out head image
Ih from I and the corresponding head pose image Ihp , and
then cut the head region to obtain the resized head image
Ihr and the resized head pose map Ihpr, both of which are of
256× 256.

Similarly, the rest 15 body parts are also segmented out
to obtain part images, and the corresponding pose maps
Ii, Iip, i = 1, 2, · · · , 15. We use the bounding boxes to cut
each part and calculate the angle to rotate these bounding
boxes to horizontal or vertical. The orientations depend on
different parts. Then, we use these angle to rotate the part
images Ii and the corresponding pose maps Iip. In the final
layout, 256× 256 pixels are for the upper body, 256× 192
pixels are for the waist, and 128 × 64 pixels are for each
rest 13 body parts. So, we rescale these parts by the smaller
scaling ratios between the width and height. We then use
zero paddings to fill the images to the size we design. We
splice these parts to get a body part image Ibr and the cor-
responding pose map Ibpr. Besides, we record the positions
and rotation angle of all the human parts in the original im-
ages in order to reposition them, as shown in the mid-output
of Figure 1. Finally, each of the training images yields a tex-
ture image and a pose map for the head, and a texture image
and a pose map for other parts.

3.2. BPA-GAN

Unlike most existing approaches that generate the entire
image containing humans, BPA-GAN only predicts human
body parts and then combine them into a full human body.
Particularly, it contains three modules as shown in Figure 3:
the part generation module estimates the head image Îhr and
the body part images Îbr from the input pose maps; the in-
termediate model recovers body parts to their original size,
and the fusion module stitches the body parts as well as the
given background together to yield a full image. Î .

Generators. BPA-GAN includes three generators, as
shown in Figure 3. The two generators of the part gen-
eration module are responsible for dealing with head and
other body parts separately, which we denote by Gh and
Gb, respectively. Both are an encoder-decoder network with
skip connections but use different parametric values. As our
training data is generated from a video that usually contains
frames of different views and poses of the target person, the
encoders can extract features of different poses. Further-
more, the appearance of the target is encoded in the network
under the supervision of real images. Another generator, de-
noted by Gf , is designed to fuse the body parts generated
by the above two generators and resized by the mid-output
module into the final result Î that it has the same pose of
the input while preserves the appearance of the target. In
the inference stage, the input of the network is a pose map
extracted from the source image (video). The background
used for composing the final output also comes from the
source.

Discriminators. Corresponding to three generators,
BPA-GAN employs three discriminators, denoted by Dh,
Db, and Df , to justify their output Îh, Îb and Î separately.
We directly adopt the discriminator described in PatchGAN
[19] in our network.

Loss functions. Three loss functions Lh, Lb and Lf are
respectively designed to the deviation of Îh, Îb and Îh from
their ground truth, respectively. And each of them is made
up of three terms: data loss Lxdat, perceptual loss Lxper and
adversarial loss Lxadv:

Lx = Lhl1 + λperL
h
per + λadvL

h
adv, x ∈ {′h′,′ b′,′ f ′} (4)

where λper and λadv are two blending coefficients.

The data loss measures the difference between the pixels
of the predicted images and those of the ground-truth im-
ages. The perceptual loss penalizes the deviation of the pre-
dicted images and the ground-truth images in the VGG[32]
feature space. The adversarial loss encourages the distribu-
tion of the predicted images to be close to the ground-truth.
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Figure 3. The architecture of BPA-GAN. The part generation module consists of two encoder-decoder structures which respectively take
head pose map Ihpr and body pose map Ibpr as input,and correspondingly generate head image Îhr and body image Îbr . The mid-output
module recovers the body parts to their original size. And the fusion module combines the Îh and Îb to yield the final result If . Three
discriminators are used to justify the generated head, body, and fused images, respectively.

They are respectively calculated as

Lxdat =
∥∥∥ Ixr − Îxr ∥∥∥

1
, (5)

Lxper =
∥∥∥ fV GG(Ixr )− fV GG(Îr)∥∥∥

1
, (6)

Lxadv =
∑

(Dx
(
Ixr , Î

x
r

)
− 1)2, x ∈ {′h′,′ b′,′ f ′} (7)

where fV GG denotes the VGG feature and Dx represents
one of the three discriminator Dh, Db and Df . The for-
mulas of Lb and Lf are similar with Lh. Lb are the losses
between the fake scaled body images If b r and the target
scaled body images It b r.

The discriminator losses are LhD, LbD, and LfD, which are
designed for discriminators Dh, Db, and Df respectively.
These losses have the same form as that of LSGANs[26].
Nevertheless, we use the form in the PatchGAN[19] man-
ner, namely, first uniformly partition the image into a set of
small patches and then evaluate the loss patch by patch:

LxD =
∑

Dx(Ixpr, Î
h
r )

2 +
∑

(Dx
(
Ixpr, I

x
r

)
− 1)2 (8)

4. Results

Datasets. We downloaded 10 clips of dancing videos
from the Internet among which the subjects in different
videos are different. Furthermore, each subject wears dif-
ferent clothes. We call the subject in each video the target
person. We randomly extracted 500 frames for each video
and partition the 500 frames into the training set and the

testing set with a ratio of 4 : 1 without overlapping. Namely,
we totally have 10 datasets.

We also created a cross-person test dataset containing
110 images among which 100 images are extracted from
the above testing set with 10 images for per target person,
and rest 10 images from the internet. This test dataset is
used to quantitatively evaluate the transfer results between
different people by our method. For more details, please see
Subsection 4.1 and refer to the supplementary videos.

Implementation details. We first preprocessing the data
as described in section 3.1. The encoders and decoders’ ar-
chitecture is the same as UNet [31], and we add three resid-
ual blocks behind the encoders and in the front of the de-
coders. The architecture of three discriminators is the same
as PatchGAN [19]. While training, we set the batch size as
4, λp as 10, λr as 100. We use Adam [22] to optimize pa-
rameters of the generators and the discriminators with the
hyperparameters β1 = 0.5, β2 = 0.999 and learning rate
as 0.0002. To stabilize the training process, we train our
end-to-end network in two stages. At the first stage, we only
train the networks in the parts generating module till they
converge. At the second stage, we fix the network parame-
ters of the parts generating module and focus on training the
fusion module. Empirically, such two-stages training leads
to better performance.
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Figure 4. The qualitative results on the test datasets of our method and the other three methods. Our method performs better in detail
preservation, such as hands and face. GT means the ground truth.

Figure 5. Comparison of motion transfer results. Our method outperforms than the other methods in the accuracy of the poses and the
detail of the target person.

4.1. Quantitative results

We first evaluate the quantitative results which are ob-
tained by using the test data which is extracted from the
same video as the training dataset. This indicates that
the source subject and target subject are the same. The
evaluation metrics we used are SSIM, PSNR, LPIPS, and
SSIM [39] among which PSNR measures the similarity
between two images at the pixel level while LPIPS [44]
measures the similarity between two images by the trained
model.

We also quantitatively evaluate the transfer results from
a source person different from the target one over the cross-
person test dataset with 110 frames. We finally obtain 100
transfer results for each training dataset (correspondingly

each target person) on the cross-person test dataset because
we abandon 10 frames which are extracted from the same
video as the training dataset. FID described in [16] is intro-
duced to measure the similarity between two sets of images
by the trained model. In our setting, we employ FID to mea-
sure the similarity between the set of cross-person transfer
results and the ground-truth test dataset.

Our method is compared with PoseWarp [4], LW-
GAN [24] and pix2pixHD [38]. For PSNR and SSIM, the
higher the score, the better the method. For LPIPS and
FID, the lower the score, the better the method. As shown
in Table 1, our method obviously outperforms existing ap-
proaches in all indices. Visually, our method also exhibits
stronger ability to preserve the target person’s features even
in small parts like faces. This is because our GAN generates
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Figure 6. Images from the front side and back side of the same
pose. The first row shows the pose images and the green boxes
depict the body parts with significant differences. The second row
shows the generated results.

the results part by part and therefore can sufficiently exploit
the resolution of the original videos.

Table 1. Quantitative results of different methods and our method
with different discriminators or different datasets. The higher
score of PSNR and SSIM are, the better. The lower score of LPIPS
and FID are, the better.

PSNR SSIM LPIPS FID

PoseWarp[2018] 29.368 0.795 0.115 134.547
Pix2pixHD[2018] 32.077 0.853 0.065 101.581
LWGAN[2019] 30.875 0.804 0.095 116.196

Baseline 35.176 0.888 0.045 79.377
Baseline+H 35.221 0.889 0.044 68.492
Baseline+HB 35.613 0.892 0.042 66.511
ours:Baseline+HBO 36.099 0.904 0.041 60.468

4.2. Qualitative results

The teaser figure shows some results of the motion trans-
fer from the source person to the target person. We also
make a qualitative evaluation of our method and the three
methods mentioned above. In Figure 4, we show some re-
sults on our test datasets. We can see that our method out-
performs the other methods with better details such as face
and hands. In Figure 5, we transfer the pose of the source
person into the target person. For the four cases, we have
the best details on faces and bodies. The first row shows
that we can better recover the details while the hands or legs
are overlapped. The second row shows that our method has
more accurate poses than other methods. We assign a spe-
cific color for each body part without explicitly marking the
front and back of the body part. Fortunately, the extracted
front and back body parts have slightly different shape. In
addition, We will extract feature points for the front head

Figure 7. A quantitative comparison over time. The X-axis denotes
training time in minutes. At the first stage, i.e., before 360 minutes,
we train the part generating module only; therefore, the recon-
struction error is high. Then, we start training the fusion module,
where our method quickly outperforms Pix2pixHD in both PSNR
and SSIM metrics.

while nothing is extracted for the back head. These make
our approach have good ability to discriminate the front and
back sides. Figure 6 shows that our approach can correctly
generate transfer results for each side.

4.3. Training efficiency

To demonstrate the training efficiency of BPA-GAN, we
train both our method and Pix2pixHD on the same dataset
and compare their performances over time, as shown in Fig-
ure 7. While training, we calculate the quantitative scores
on the test set every 30 minutes. Because we train our
parts generating module and fusion module one by one, our
method’s reconstruction error is high before 360 minutes,
i.e., only training the first module. Once we begin to train
the fusion module, our quantitative results improve rapidly
and outperform the Pix2pixHD method.

4.4. Ablation studies

Additional supervision. We individually train our net-
work with a different number of the discriminators to verify
the additional supervision’s impact. For our Baseline net-
work, we only use fusion discriminator. Next, we add the
supervision of the head discriminator for our Baseline+H
networks. Then, we use all three discriminators for our
Baseline+HB networks. Note that we train the three net-
works with the dataset without additional operations while
rescaling. The quantitative results are shown in Table 1.
As the number of discriminators grows, our trained model
performs better and better. We can see the baseline results
and the Baseline+H in Figure 8; the generated images have
better head details while using head discriminator. And our
Baseline+HB networks perform best with three discrimina-
tors.

Datasets rescaling. In section 3.1, we introduce the ad-
ditional operation while rescaling the images. To verify the
effectiveness of these operations, we train our network by
the dataset without the operations, which means we rescale
It h, Ip h, It b and Ip b into 512×256 directly. The quantita-
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tive results are shown in Table 1. Baseline+HBO means we
train the networks with the datasets rescaled with additional
operations like cutting for the head, cutting, and splicing
body parts. The quantitative results show our Basline+HBO
performs the best. In Figure 9, with the additional oper-
ations: 1) the red boxes of the first row show them help
improve the results when the heads are deflected; 2) the
red boxes of the second row show the network can gener-
ate better results when the organs of the faces are not clear;
3) the green boxes of the first row show the better detail of
the body organs like hands; 4) the green boxed of the sec-
ond row shows the better detail of the clothes like pants and
belts.

Model sequence smooth. As we can see in Figure 11,
the upper body and the right leg of the real frames are static.
But in the pose guidance frames before smooth, the body’s
orientation and the right leg pose are not static, and the pos-
ture of left hands changes significantly in the third frame.
With the constraints between frames, the body orientation,
and the left leg pose, the pose guidance images keep static
between frames. Besides, we can see that the left-hand mo-
tion is smoother. In Figure 10, we show the changes of
the shape parameters and the pose parameters in the se-
quence. The left chart shows that the shape parameters are
almost fixed. The right chart shows that the difference of
the pose parameters between adjacent frames is smaller af-
ter smooth, suggesting that the model motion sequence is
smoother.

5. Conclusion

This paper proposes BPA-GAN for human motion trans-
fer. It introduces a body part map to represent human poses
to support independently generating human body parts. To-
gether with backgrounds, these parts are then seamlessly
fused into an entire human body image with the specified
pose via a fusing GAN. The part based mechanism has two
merits. First, it can reduce mutual influence among different
body parts during the composition of the new pose. Second,
it enables partitioning a high-resolution image that con-
tains the whole human body region into several moderate-
resolution images as network input and therefore avoids
compressing the high-resolution image to feed the network.
To generate the body part map of an image, we use a 3D
human model, which has been pre-segmented into 16 body
parts, to fit the human pose in the image and then render
the model using pseudo colors assigned to body parts. Ex-
tensive experiments show that our method outperforms the
existing techniques to generate a more coherent human mo-
tion video and preserve more details of the target person.

The quality of the transfer results by the proposed
method heavily depends on the accuracy of the body part
map. Currently, we use a naked 3D human model as a
geometric agent to segment the human body region in an

Figure 8. The results of the networks with different discrimina-
tor. GT denotes ground truth. Baseline denotes that we only use
the fuse discriminator. Baseline+H means we add the head dis-
criminator on the baseline. Baseline+HB means we use all three
discriminators. The red boxes show the head details, and the green
boxes show the body details.

image. For scenes in which a person wears loose clothes
such as skirts, the quality the composite results will dras-
tically decrease. It is also a challenge to deal with human
motions with very large-scale pose changes, which we con-
sider to tackle in future work. In addition, as having exerted
smoothness constraints on adjacent poses when reconstruct-
ing the 3D mesh sequence, we get a smooth pose sequence
as inputs of the network in the inference stage. Unfortu-
nately, the target images used in the training stage are usu-
ally not adjacent. This makes it difficult to add constraints
on the appearance of the network output. Therefore, the
texture of our video results is not guaranteed temporally
smooth. We would like to use the pre-trained models of
some existing methods to improve our video results, as done
in [7], and investigate how to improve the texture smooth-
ness of the video even using a frame-by-frame training strat-
egy.
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