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Abstract Humans regularly interact with their surrounding 
objects. Such interactions often result in strongly correlated 
motion between humans and the interacting objects. We 
thus ask:“Is it possible to infer object properties from 
skeletal motion alone, even without seeing the interacting 
object itself?” In this paper, we present a fine-grained 
action recognition method that learns to infer such latent 
object properties from human interaction motion alone. This 
inference allows us to disentangle the motion from the 
object property and transfer object properties to a given 
motion. We collected a large number of videos and 3D 
skeletal motions of the performing actors using an inertial 
motion capture device. We analyze similar actions and learn 
subtle differences among them to reveal latent properties of 
the interacting objects. In particular, we learn to identify the 
interacting object, by estimating its weight, or its fragility or 
delicacy. Our results clearly demonstrate that the interaction 
motions and interacting objects are highly correlated and 
indeed relative object latent properties can be inferred from 
the 3D skeleton sequences alone, leading to new synthesis 
possibilities for human interaction motions. Dataset is 
available at http://vcc.szu.edu.cn/research/ 
2020/IT.
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1 Introduction

Digitizing and understanding our physical world are
important goals of both computer graphics and computer
vision. In natural environments, humans regularly interact
with their surrounding objects and, as an effect, such
interactions result in strongly correlated motion between
humans and the interacting objects. Researchers in
experimental psychology show that observers not only can
recognize motion categories, but also infer object properties
by observing corresponding human motion alone, even
without directly seeing the object itself [4]. For example, we
humans, regularly estimate object properties like the weight,
fragility, path width, or shape, by observing either the real
action of a human or even a pantomimed or virtual avatar
action [39, 40, 50].

One way to computationally exploit such correlated
human-object motions under interactions would be to
learn object properties by learning correlation with human
skeletal motion over time. However, the available datasets
for human activity recognition [31, 44] are RGB-D videos,
which in general contain significant occlusions that hamper
the extraction of unseen acting skeletons. While these
videos can be used to broadly classify different actions [34],
we still lack suitable datasets specifically designed for
inferring fine-scale variations of object properties. Unlike
previous efforts on action recognition, we analyze similar
actions and hence have to learn subtle differences among
the same type of the action that reveal latent properties
of interacting objects. Inspired by previous works on
motion style transfer, which transform an input motion into
a new style while keeping its content, we use these latent
properties to edit a given motion. For example, given the
skeletal motion of a person walking on a wide path, we
would like to synthesize the person’s skeletal motion when
walking on a narrow path.

In our work, we focus on eight typical types of human-
object interaction, including lifting a box, moving a bowl,
and walking on a path. We collected video and 3D skeletal
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motions of the performing actors using an inertial motion
capture device, which do not suffer from occlusions that
are unavoidable from video-based recordings. For these
interactions, we learn to infer latent properties of the
interacting object from the 3D skeleton sequences alone.
In particular, we learn to identify the interacting object,
by estimating its property value, i.e., a particular value
of a property, such as 0kg/15kg/25kg for box weight, or
empty/full for bowl fragility.

For the inference task, we treat objects’ latent property
estimation as a fine-grained classification problem by
analyzing similar input skeletal motions. Although some
properties (e.g. the weight) may vary continuously, treating
it as a regression problem requires more training samples.
We represent a skeleton sequence as a time sequence of
graph structure, which encodes the position and speed
information of all joints with temporal dynamics. After
analyzing per-joint features, we feed it into a recurrent
network to recognize the latent object properties. The
results obtained demonstrate that the interaction motions
and interacting objects are highly correlated, where object
property values can indeed be inferred, to a certain accuracy,
by just observing human movements. We will show that,
comparing with existing works for action recognition, our
method achieves higher inference accuracy.

For the synthesis task, we develop a network architecture
to disentangle object property from the abstract motion,
which allows to create novel skeletal motions by mixing
new object properties on target skeletons. We train a deep
neural network with a simple encoder-decoder structure to
conduct the disentanglement, i.e., the latent space encodes
the motion content without object property. A motion can
then be synthesized given a specific property value.

In summary, we claim the following contributions:
• Learning subtle differences among the same type of

motions of humans interacting with an object;
• A property and motion disentanglement network

that allows motion synthesis conditioned on target
interactions;

• Introducing an extensive interaction dataset for object
property inference from motions with 4k+ samples
collected from 100 participants, including eight daily
interactions (i.e., lifting a box, moving a bowl, walking,
fishing, pouring liquid, bending, sitting, and drinking),
which will be released.

2 Related Work

Our work analyzes human interaction motion to detect
object properties. Therefore, we briefly describe previous
approaches that exploit human-object interactions from
visual inputs, with a focus on object property inference.

Since we use skeleton sequences to represent motions, we
also review those related works on skeleton-based action
recognition.

Human-object interaction. Human-object interaction
detection itself is an important scientific problem [58] with
wide practical uses. Recent methods can successfully detect
<human, verb, object> triplets from visual inputs [11, 26].

A variety of techniques in shape analysis have been
developed to extract functional information of objects
and scenes using human-object interaction as cues. An
appropriate human pose or action map can be created
from an input object [12, 20, 28] or scene [30, 42]; see
a survey [19] for more information. The hidden human
context was used as a cue for labeling and arranging the
scenes [22, 23]. However, there is no work yet solving this
inverse problem: inferring object properties from human
motions and/or interactions alone.

The spatial relationship between the characters and
objects in the environment captures the semantics of
interactions. Ho et al. [16] introduced interaction mesh
structure to explicitly represent the spatial relationship for
motion retargeting. Later this representation was used for
motion comparison [45].

Object property inference. Researchers in psychology
reported that observers can make fine discrimination when
presented with human motions in visual form. The weight
of a box can be seen by observing another person lifting
and carrying it [40], and the elasticity of a supporting
surface can be judged by observing a person walking on
that surface [47]. Vaina et al. [50] demonstrated that the
weight of an object was robustly estimated, while size and
shape were harder to estimate by observers. Recently,
Podda et al. [39] showed that participants were able to
identify the weight of the to-be-grasped object from both
occluded real and pantomimed movements, solely using
available kinematic information. Observers seem to focus
most on the duration of the lifting movement to perceptually
judge the weight [10]. Some findings suggest observers may
integrate multiple sources for object property inference; for
example, shape, motion, and optical cues are used when
inferring stiffness [43]. Still, we focus on inference from
motions alone in this work.

The object classes and their 3D locations can be
recovered from motion by exploiting the human-object
spatial relations, used for synthetic scene reconstruction [25]
and scene arrangement recovery [36]. There is not much
effort made to automatically infer other properties. Davis
and Gao [9] presented a computational framework that can
label the effort of an action corresponding to the perceived
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Fig. 1 For each sample, we capture a 3D skeleton sequence by an inertial motion tracking suit, an ego-centric video by a head-mounted camera, two other videos by
two cameras placed outside, and the object’s geometry along with its properties.

(a) Moving (b) Bending (c) Drinking (d) Sitting

(e) Lifting (f) Pouring (g) Fishing (h) Walking

Fig. 2 Eight interaction motions represented in our dataset, which comprises of 4k+ interaction captures across 100 different participants.

level of exertion by the performer. Gupta and Davis [14] did
a classification of heavy/light objects based on the velocity
of ballistic motions detected from video. Integrating a 3D
physics engine is another way to infer physical properties,
including mass, position, 3D shape, and friction etc., from
real-world videos [54, 55].

Action recognition and motion style transfer. With the
availability of large-scale skeleton datasets, deep learning
is popular for action recognition. Skeleton sequences are
indeed the time series of joint positions. The recurrent
neural networks, designed to model long-term temporal
dependency problems, have been well exploited for skeleton
sequences [32, 33, 46]. Skeleton is also a special
graph structure representation, and thus graph convolution
networks are utilized as well for action recognition [57].

CNN models are able to extract high-level information
and have also been used to deal with skeleton sequences. A
skeleton sequence can be converted into an image or a 3D
tensor, and then fed into a CNN to recognize the underlying
action. These methods vary most in the representations of
skeleton sequences and network structures. Ke et al. [27]
represented a skeleton sequence as several images to encode
different spatial relationship in-between joints, and then

applied pre-trained VGG to extract the features. Li et
al. [29] represented a skeleton sequence as a 3D tensor, and
modeled the global co-occurrence patterns with CNN. Most
recently, Aristidou et al. [3] used a triplet loss network to
map short motion clips to an embedding space, where the
distances represent similarity between motion clips. We also
utilize graph convolution and RNN to learn object properties
from skeletal motions. Nonetheless, we propose to use sub-
categorical properties to effectively distinguish fine-grained
differences between the motions of the same class.

Another related topic is motion style, which usually
represents the mood or identity of a particular character’s
motion. By analyzing differences between performances
of the same content in different styles, researchers have
proposed the methods to transform an input motion data into
new styles [18, 56, 59]. The object properties and actions are
significantly correlated. A particular object property can be
only observable in a particular action type, which makes the
existing motion style transfer techniques not suitable for our
synthesis task.

3 Interaction Motion Dataset Collection

Traditionally, human motion is captured using optical
marker-based systems while the markers are placed on
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the performer. With recent success of deep learning, 2D
poses [5, 21, 37, 41, 53] and 3D poses [2, 24, 35, 38, 48,
49] can be extracted directly from RGB or RGB-D video
sequences. Large-scale skeletal motion datasets, such as
CMU [8], NTU RGB+D [44] and PKU-MMD [31]), are
available and driving forces for motion recognition, retrieval
and synthesis. However, although these datasets contain
human-object interaction motions, the object information
are usually unlabeled, and the (partial) joint trajectories
are not sufficient to reliably infer 3D object properties.
For example, some limbs are very likely to be occluded
by the interacting objects. Such occlusions make it very
difficult to robustly extract high-quality skeletal motions
from monocular or RGB-D videos, even with state-of-the-
art pose detection methods. This is particularly true in our
setting where we seek subtle motion differences. Therefore,
we use inertial measurement units (IMUs) to get 3D human
motions that are totally free of occlusions.

Data modalities. We utilize multiple data modalities to
construct our dataset. When performing the actions, each
subject wore an Xsens MVN inertial motion tracking suit
to capture the high-quality 3D skeleton information at 240
frames per second. Each subject was also required to wear a
head-mounted camera to capture ego-centric video. Further,
we used three uncalibrated cameras to record the subject
from three different views, storing three videos at 50 frames
per second. For each interacting object, in addition to
measuring its size and weight, we also scanned its geometry
shape. Fig. 1 presents our capturing scenario and the data
modalities of each motion sample collected. Although in
this work we only use 3D skeletal information to infer the
object properties, we believe that these data modalities are
useful for the future research.

Subjects and object interactions. We carefully selected
human-object interactions to depict the correlation between
human motions and properties of objects. For a good
candidate, object property values could be inferred easily
from the whole interaction motion alone, but difficultly from
a single static frame. Following this rule, we chose eight
daily interaction: Walking for estimating the width of the
path, Fishing for the length of a fishing rod, Pouring for
the type of liquid, Bending for the stiffness of a power
twister, Sitting for estimating the softness of a chair being
sat on, Drinking for estimating the amount of water inside
a cup, LiftingBox for the weight of an object be lifted, and
MovingBowl for the fragility of an object. These motions
are shown in Fig. 2. We have invited 100 different subjects
for our data collection. They vary in age (20–35), gender
(M or F), height (150–195cm) and strength (weak–strong).
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Fig. 3 We represent a skeleton sequence as a tree sequence. The input feature
of each joint is represented by its xyz location and velocity in a local body frame
coordinate. The cyan point indicates the root (pelvis) of the tree. Each block
indicates the joint’s feature at a frame.

Here we briefly describe the setting of Walking. Please refer
to the appendix for the settings of other interactions.
WALKING. Each subject was asked to walk back and forth
on three straight paths of different widths. We simulated the
width of a path using line markers to indicate path borders,
and asked the subjects do not cross the borders. So we have
a total of 3× 2× 100 = 600 motion samples.

4 Object Property Inference

4.1 Skeleton sequence representation

The input skeleton data is a sequence of multi-frame tree
structure with 3D joints as nodes that form an action. As
shown in Fig. 3, a skeleton sequence is denoted as a 3D
tensor of size T × J × D, with T representing the frame
length, J = 23 the total number of joints, and D the feature
dimension of each joint, respectively.

Representing a skeleton sequence by joints in xyz
locations is common [27, 29, 44]. Some researchers also
represent the joints in 3D angles [3]. In our case, the object
properties that we aim to estimate are highly correlated with
the dynamic properties of motions. As we show in results,
joint trajectories (position and velocity representations) can
overall help with object property inference.

Each joint is represented by the x, y, and z coordinate
in a local body coordinate system with its origin on the
pelvis joint (indicated with a blue dot in Fig. 3). As local
coordinate frame we use, the Z axis to be vertical to the
floor, and X axis to be parallel to the 3D vector from the
“right shoulder” to the“left shoulder.” For each frame, we
use the xyz position relative to the current pelvis joint. Note
that in this representation, we ignore the movement of pelvis
in the sequence. We also explicitly encode the velocity of
joints. Let the i-th joint’s position of frame t be J t

i . Then,
the velocity of a joint St

i is approximated as the temporal
difference between two consecutive frames:

St
i = (J t+1

i − J t
i )/δt,

while δt represents the time interval between consecutive

4



Object properties inferring from and transfer for human interaction motions 5

GRU with attention

Reshape

Output

Graph convolution

T×23×D

T×23×16 T×23×16 T×368 128×1 128×1 n ×1c

FC FC

Fig. 4 We represent a skeleton sequence by a 3D tensor of size T × J × D,
T representing the frame length, J the number of joints, and D the feature
dimension of each joint, respectively. Our classifier for object property values
is made of graph convolution layers, GRU, and fully connected layers. The size
of the tensor after each layer is indicated in the figure with nC denoting the
number of classes for an object property, e.g., nC=6 when the input is a lifting
motion and the object property is the weight of box being lifted.

frames.

4.2 Object property classifier

In practice, our object property classifier consists of
two graph convolution layers, a GRU layer [7], and then
two fully connected (FC) layers for the final classification,
i.e., the object property inference; see Fig. 4. The
graph convolution layer computes the per-joint features
considering the known human body skeleton topology. The
GRU layer with attention accumulates the information of
all frames and computes the importance of each joint. The
combination of graph convolution layers and GRU units
enables us to better infer object property values from the
same types of motions.

Graph convolution layer. Graph convolution usually deals
with the undirected graph. As the skeleton is a hierarchical
tree structure, for a given joint, we only consider its
parent, instead of all neighbors, to apply a convolution.
Formally, for the i-th joint of frame t, its feature after graph
convolution x′t,i is:

x′t,i = Relu

(
Wg

[
xt,i

xt,j − xt,i

]
+ bg

)
, (1)

where xt,i represents the feature of this joint fed to this
layer, j is its parent’s index, and Wg,bg are the learnable
weights for a graph convolution layer. Experiments clearly
show that using skeleton topology information can improve
the inference accuracy; see e.g., Fig. 9. We use this
asymmetric edge function as suggested in [52].

The GRU layer with attention. Attention mechanics is
widely used in skeleton-based action recognition. It
can improve action recognition and discover the relative
importance of joints and frames. For example, Zhang et
al. [60] use an element-wise attention gate to a RNN block
to improve action recognition. We also add a joint-wise gate
to the RNN cell. The attention value of each joint of frame

Input motion x Output motion D(E(x) , y’) 

Encoder
E

Decoder
D

Target object property: y’
with object property y’with object property y

Contras�ve loss

(a) Encoder

(b) Decoder
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z
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m

e
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e

Fig. 5 Network for motion transfer driven by object properties. That is, by
changing the object property value y, we may generate human motions that
match well with the given property value.

t is computed based on the hidden state of the RNN cell
Ht−1:

at,i = sigmoid(WhHt−1 +Wxxt,i + ba), (2)

where xt,i represents the feature of the i-th joint fed to the
RNN cell, and Wh,Wx,ba are the learnable weights for an
attention convolution layer. Then, the input fed to the RNN
cell is updated as x̃t,i = (1+at,i)xt,i, where at,i represents
the importance of i-th joint at frame t.

Implementation details. For all experiments presented here,
we use J = 23 major body joints. We use the classic cross
entropy loss as it is a classification problem. For skeletal
representation, we apply a normalization pre-processing
step. The lengths of collected motion samples vary from 3s
to 6s. Additionally, we used data augmentation to increase
the number of samples and to remove the rotation bias. We
rotated each sequence along the Z axis 10 times and cropped
10 sub-sequences from each original and rotated sequence.
The rotation angles were drawn from a uniform distribution
between [0, π), and the cropping ratios were drawn from
a uniform distribution U [0.9, 1]. This data augmentation
enlarged the size of our skeletal motion dataset by 100 times.
We down-sample each sub-sequence to 30 frames. We
used TensorFlow with the network initialized with Adam
optimizer with a batch size of 32 and a learning rate of
0.0001. Training was stopped after 60 epochs by default.

5 Object Property-aware Motion Transfer

In the synthesis content, our goal is to use target
object property values to guide motion transfer for a given
actor. Given an interaction skeletal motion x whose object
property value is y, and a new target object property value
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Fig. 6 Given a fishing motion with a long rod (the green), we transfer the rod
from long to short to get a new motion (the blue).

y′, we want to generate new skeletal motion x′ that matches
the given target property value y′.

Inspired by [1, 17], we use an encoder-decoder structure
to perform this motion retargeting; see Fig. 5. The encoder
E converts an input motion to a latent space z = E(x), and
the decoder D synthesizes a new motion conditioned on the
target property value, denoted as D(E(x), y′). To train the
network, we use a loss function consisting of two terms: a
reconstruction loss and a contrastive loss.

The reconstruction loss aims to constrain the encoder
and decoder. We want the output motion to be similar to
the motion performed by the same subject under the target
property value y′, denoted by x̂. When y′ equals y, x̂ equals
x. We use the Euclidean loss in the local coordinate frame
to measure the quality of the reconstruction:

Lrec(E,D) = Ex,y′‖D(E(x), y′)− x̂‖22. (3)

The exact choice of the reconstruction loss is not
fundamental here. Other reconstruction loss especially
designed for motion frames, such as geodesic loss
measuring the 3D rotation errors of joints [13], could be
used.

Another loss is a contrastive loss that ensures that E(x)

does not have residual information about the input object
property [15]:

Lctr(E) =Ex,x+‖E(x)− E(x+)‖22+

Ex,x−
[
α− ‖E(x)− E(x−)‖2

]2
+
.

(4)

To help disentanglement, we constrain the distance in latent
space between different motion samples. Taking an anchor
motion x, we compare it with a positive motion x+ that
comes from the same performer under a different object
property value, and a negative motion x− that coming
from a different performer under the same property value.
The dissimilarity between the anchor motion and negative
motion should be larger than a margin α, and the distance
between the anchor motion and positive motion should be

small. The full objective functions to optimize the encoder
E and decoder D is a combination of two terms:

L(E,D) = Lrec(E,D) + λLctr(E), (5)

where λ is a hyper-parameter that controls the relative
importance of contrastive loss compared with the
reconstruction loss. We use λ = 0.1, α = 5 in all
our experiments.

Here the skeleton sequence for motion transfer is
represented by the local and global motion as suggested
in [17], which is slightly different from that for object
property inference. For local motion, we use joints
in XYZ locations of a local frame coordinate, just as
the representation for property inference. Global motion
consists of the root’s global velocity and foot contact labels.
See Fig. 5; the rows represent the location of a joint over
time. We down-sample the motion to 64 frames.

The encoder is composed of 4 1D convolutional layers
with the stride size of two for down-sampling the time axis.
The decoder is composed of 4 nearest-neighborhood up-
sampling followed by convolution of stride 1 to restore the
motion; see Fig. 5.

All models are trained using Adam with β1 = 0.9 and
β2 = 0.999. The batch size is set to 32 for all experiments.
We train all models with a learning rate of 0.00001. Training
takes about 10 minutes on a server with an Intel Xeon
2.20GHz CPU 10 cores, 256GB memory, and a NVIDIA
TitanXP GPU.

6 Results and Evaluation

6.1 Evaluation for object property inference

To measure the model performance on the object property
inference, we conducted a cross-subject evaluation. We
split the 100 participants into training (60), validation (20),

Tab. 1 Object property inference accuracy (%) on the cross-subject settings.
The weight has 6 classes (0, 5, 10, 15, 20, and 25kg). The fragility has 3 levels,
implicitly reflected by moving without spill-over an empty bowl, a bowl full of
rice and a bowl full of water, respectively. The width of the path, length of the
rod, type of the liquid, stiffness of the power twister and water amount in the
cup also have 3 levels. The softness of the chair has 4 classes.

Object property
Accuracy (%)

Ours ST-GCN

Lifting a box for weight (6) 61.8 57.3
Moving a bowl for fragility (3) 77.5 78.9

Walking for path width (3) 83.9 73.8
Fishing for length of rod (3) 80.7 77.2

Pouring for type of liquid (3) 62.8 62.1
Bending for stiffness (3) 71.6 44.7

Sitting for softness of chair (4) 73.7 66.4
Drinking for water amount inside the cup (3) 62.5 57.0
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Fig. 7 Estimating the joint-level importance of a fishing motion for inferring the object property. Note that here the color of magenta to cyan indicates the importance
from high to low.

Fig. 8 We show some 2D skeletons extracted from our recorded video at the top, where missing parts are highlighted with red boxes. In comparison, 3D IMU
skeletons captured at the corresponding frames are shown underneath, which are clean and complete.

and testing (20) groups, respectively. Hence the testing is
done with different people rather than the ones who were
employed for training and validation. During training, we
select the network parameters with the smallest validation
error among all the iterations. Then, we evaluate and report
performance on the testing groups.

We implemented several variants to evaluate the impact
of different skeleton representations. As using both position
and speed achieves the best performance, we applied this
representation on other tests. We reported the object
property inference accuracy on all eight types of motions.
To evaluate, we used a state-of-the-art method for action
recognition based on skeletons to set a baseline. We also
evaluate the utility of the graph convolution layer and GRU
units with attention. Furthermore, we test the inference
accuracy regarding the sensitivity of the object property
difference.

Tab. 1 shows the object property inference accuracy
(%) on the cross-subject settings. The performance looks
not very impressive by a first glance at the numbers.
Nonetheless, in consideration of the subtle difference among
motions under different object properties, we believe this
accuracy is reasonable. Furthermore, in most cases, our
method outperforms the baseline. We describe the detail

of lifting motion in the following as an example. Lifting
motion is for the weight estimation from human interaction
motions. We trained a classifier that outputs 6 classes
corresponding to the weights from 0kg to 25kg with a step
of 5kg. The accuracy is about 62% on the cross-subject
setting. Considering that the weight difference among the
classes are relatively small and the lifting motion is also
highly related to the strength of the performer, the resulting
estimation accuracy is effective for such subtle changes.

Baseline. We used a state-of-the-art method for action
recognition based on skeletons [57] (denoted by ST-GCN) to
be a baseline to evaluate the fine-grained motion inference.
ST-GCN consists of 9 layers and has about 0.3 million
parameters, which is about ten times larger than our model.
The original network performed very poorly probably due
to the small size of our motion dataset. Setting the layer
number as three achieved the best performance during
our tuning. We thus reduced the original ST-GCN to
three layers. This also leads to a similar parameter
setting as ours. We also used both position and speed
to represent the skeletal motion. The last column in
Tab. 1 shows its performance on the cross-subject setting.
Overall speaking, our proposed method has achieved higher

7
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Tab. 2 Impact of different skeleton representations for the inference accuracy
(%) on the cross-subject setting.

Lifting (6) Walking (3) Fishing (3)

Position 57.82 76.84 84.21
Euler angles 43.38 81.58 73.68

Speed 59.93 79.82 69.4
Angular speed 47.46 73.16 63.51

Position, Euler angles 55.70 79.65 71.58
Position, speed 61.81 83.93 80.70

Position, angular speed 64.58 79.47 77.54
Speed, angular speed 55.70 84.39 76.49
Speed, Euler angles, 50.56 70.00 66.67

Euler angles, angular speed 56.06 80.53 72.28

Position, Euler angles, angular speed 50.35 78.42 70.18
Position, speed, angular speed 62.32 82.98 78.95

Position, Euler angles, speed 56.55 81.58 71.93

Position, Euler angles, speed, angular speed 58.73 82.98 78.95

Fig. 9 Parallel coordinates representation for inference accuracy with different 
ways of computing per-joint features in the 2 graph convolution layers. Each 
vertical axis represents the inference accuracy from a type of motion. Each line 
represents a setting. Considering all motions types, it seem good to use the 
parent of a joint to compute joint feature (the red solid line).

inference accuracy.

Choices of skeleton representation. To evaluate the impact 
of skeleton representations, we tried several variants. A 
skeleton sequence was represented by the positions of joints, 
or the rotation matrix of bones. Similarly, the motion 
dynamic was measured by the joint speeds or bone angular 
speeds. We represented the skeleton sequence by different 
forms, and then evaluated their performance on object 
property inference of three different motions (i.e., lifting, 
walking, fishing). All other settings were exactly the same. 
Tab. 2 shows that the best representation varies for different 
object properties. Yet overall speaking, using both position 
and speed is a good option. So this representation was used 
in other experiments.

Graph convolution. To evaluate the impact of the graph 
convolution layer regarding per joint feature, we fixed other 
layers and only changed the two graph convolution layers, 
and report its performance on object property inference; see

Tab. 3 The object weight and water amount inference accuracy (%) under
different configurations: two, three, or six classes. See text for more details.

Lifting (kg) Drinking
5/25 (2) 10/15 (2) 5/15/25 (3) (6) Empty/Full (2) (3)

94.7 78.7 81.7 61.8 86.8 62.5

Fig. 9. We evaluated on different settings: ignoring the
connections between joints and only considering the joint
itself to compute per joint feature (similar to PointNet [6]),
or treating the skeleton as a tree whose root is the pelvis
(directed graph), or treating it as an undirected graph. We
also considered different numbers of ancestors (from 1 to 3)
of each joint. For an undirected graph, we also considered its
k-degree neighborhoods using k = 1, 2, 3, or all nodes (FC-
Graph) in our tests. Fig. 9 shows that though the inference
performance varies across the types of motions, considering
a joint’s parent to compute its feature is a good option.

Joint-level attention. The learned attentions marginally
improved the object property inference, especially for the
rod length inference from the Fishing and the softness of
chair inference from Sitting motion, both increased about
4%. We visualized the attention weights on joints by
the color. For better visualization, we linearly mapped
the squared attention values to colors to highlight the
importance. Fig. 7 shows the attention weights on the two
arms are large for the fishing motion, consistent with our
human intuition.

Weight and water amount sensitivity. To evaluate the
inference accuracy regarding to the sensitivity of the object
property difference, we trained and tested the model with
several different subsets of motion samples, i.e., using
samples with only some specific property values. For
example, when evaluating the model’s ability to distinguish
5 kg from 10 kg, only motion samples with these two
weights were used. All other settings were exactly the same.

Tab. 3 shows that the inference performance is related
with the weight label distribution. Note that 2-class
classification accuracy drops dramatically from 94.7 down
to 78.7 when classifying 10/15kg boxes instead of 5/25kg,
even lower than the 3-class classification accuracy of
classifying 5/15/25kg. We argue that this is mainly caused
by the small dynamic motion difference when lifting boxes
are close in weight. The water amount label distribution also
shows a similar trend.
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Fig. 10 Left: The average of predicted weights by our model and human
observers on both 2D and 3D skeletal cases, where the weights vary among
0, 5, 10, 15, 20, and 25kg. The 6-class weight predictions by our model using
3D skeletons are much closer to ground truth indicated by the slant black line.
Right: The F1 score per class of the fragility estimation by our model and human
observers. On both 2D and 3D skeletal cases, our method (see the red and blue
marks) achieves better results.

6.2 Comparison with videos

Property inference from only videos. We additionally
evaluate the weight and fragility inference performance
from different input sources. In particular, we have
tested the performance using 2D skeleton sequences directly
extracted from videos that were recorded from a fixed view.
We used OpenPose detector [5] to extract 25 body keypoints
in 2D to get image-space skeletons using videos. Due
to the fixed camera view and the occlusion of interacting
objects, extracted 2D skeletons may have large missing parts
in some frames; see e.g., Fig. 8 (top). We choose the
most representative 17 body joints, and replace the 3D IMU
skeletons with corresponding 2D video skeletons. Now the
skeleton sequences have only x and y positions without z
dimension. The speed and acceleration attributes are not
used as there are unavoidable flickers in video sequences
and they cannot be easily lifted to 3D.

Fig. 10 presents the evaluation of 6-class weight
classification and 3-class fragility inference on cross-subject
settings, by our model trained on 2D and 3D skeletons and
human observers. Using 2D skeletons instead of 3D causes
some drop in inference accuracy in both weight and fragility
estimation, see the red and blue lines. We believe this
is mainly due to joint estimation errors, depth information
missing, and kinematic flicker artifacts.

Property inference from videos enhanced by 3D skeletons.
The small size of unoccluded 3D skeletons motion samples
may generate thousands of rendered 2D skeletons. Here
we show these 2D projections of 3D data can effectively
improve the performance of property value estimation from
2D videos. We generated these virtual 2D samples by
projecting the 3D joint positions of 3D skeleton sequences

Tab. 4 When adding rendered skeletons into training, the object inference
accuracy (%) (such as the weight by lifting and the fragility by moving) from
videos can be improved significantly as compared below.

Lifting (6) Moving (3)

without 51.6 62.9
with 61.4 71.4

according to different camera view angles. For the virtual
camera setting, we used a weak-perspective camera model,
as suggested by [1], which generates 2D projections of
synthetic 3D skeleton sequences. For every 3D sequence,
we used 8 fixed views, placed a camera every 22.5 degrees
around the actor (covered about 180 degrees in total), and
all cameras were set to be horizontal (pitch angle equals to
0).

Tab. 4 presents the evaluation of 6-class weight
classification and 3-class fragility inference on the cross-
subject setting, by our models trained on 2D skeletons
extracted from videos only, or on 2D extracted skeletons
and rendered 3D skeletons. The trained models were tested
only on 2D extracted skeletons. In the second case, The
ratio of extracted and rendered skeletons was 1 : 8. Clearly
using additional virtual skeletons can effectively improve
the performance.

6.3 Evaluation for property-aware motion transfer

We again split the 100 subjects into training (60),
validation (20), and test (20) groups, respectively. During
training, we select the network parameters with the smallest
validation error among all the iterations. We evaluate and
report performance on the test groups.

Latent space visualization. Fig. 13 shows the latent space of
motion samples after projecting the latent features to a 2D
image using t-SNE. Each point represents a motion sample
of a subject lifting a 0 kg or 25 kg box. The leftmost figure
shows that they are clustered according to object property
values without contrastive loss. This is due to the motion
differences among different subjects are smaller than that
of lifting 0 kg and 25 kg boxes. With the contrastive loss,
the features start to disentangle from object properties and
become more related to the subjects.

Results. Fig. 11, 12, and 14 show three generated motions
by changing the object property values. Please also refer to
the supplementary video for more examples. When the input
is a walking motion on a width path by an unseen subject,
we transfer motion to walk on a narrow path, like a catwalk

9
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Fig. 11 Given a motion sequence of an unseen subject walking on the wide path (in green), we can generate a new sequence that looks like the subject was walking
on a narrow path (in blue).

Fig. 12 Given the motion sequence shown in Fig. ??, we can generate a new sequence that looks like the subject was lifting a heavy box, but it was too heavy to be
lifted. The generated motion is similar to the ground truth as shown with a sequence of RGB images at the bottom.

(a) Without contrastive loss (b) With contrastive loss
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Fig. 13 Latent variables after encoder of several lifting motions with 0 kg and
25 kg boxes are projected to 2D space. Without contrastive loss (a), the left is
colored by object properties, and the right by subjects. With contrastive loss (b),
colored the same way.

model. Given a motion sequence of an unseen subject lifting
a light box from a table to a closet, we generate a new
sequence that looks like the box is too heavy to be lifted
up; see Fig. 12.

In Fig. 14, we show a generated sequence that drinking
from an empty cup, given an unseen motion sequence
drinking from a cup full of water using two hands. As the
unseen motion is considerably different from the training
set, the generated motion deviates from the input. However,
sometimes it is ambiguous what is the correct motion.
Note during training, we constrain the synthesized motion

conditioned on a target property value to be similar to
the motion performed by the same subject of given object
property. Multiple options may likely match the desired
motion property value. It would be desirable if we could
synthesize the one that is most similar to the input motion.

6.4 User study

We conducted two user studies. The first one is to
investigate a human observer’s perception on the weight and
fragility inference from skeleton sequences. We considered
both the 3D skeletons captured and 2D skeletons extracted
from videos. The second user study is conducted to
evaluate the property-aware motion transfer on the sitting
and walking sequences.

The first user study. In the study, a test consisted of
watching a video of skeletal motion of an actor lifting a
box or moving a bowl, then predicting the unseen object’s
property by choosing an answer from multiple choices.
For LiftingBox sequence, six choices were provided: 0, 5,
10, 15, 20, and 25kg. For MovingBowl sequence, three

10
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Fig. 14 Given an unseen motion sequence of drinking from a cup full of water using two hands, we generate a new sequence that drinking from an almost empty
cup (the blue skeletons in second row). In the training set, all the subjects drink water using one hand. The corresponding RGB images of the actor are shown in the
right for a better illustration.

choices were provided: empty, fully filled with rice, and
fully filled with water. There were a total of 12 tests. To help
answering the questions, 4 demos with correct answers were
played before the tests started. These motion samples were
randomly chosen from the testing group. Each video was
about 3–6 seconds long. All participants had full control
over these videos, e.g., start, pause, stop and navigate in
time, etc. A total of 60 participants were recruited. Each
participant did the user study twice. The first time they
predicted the weight from videos of rendered 3D skeletons,
and the second time they predicted the weight from 2D video
skeletons. Note that 2D video skeletons have large missing
parts in some frames due to the occlusions introduced by
human body shape or the objects, while the rendered ones
have much fewer occlusion cases caused by bones. These
skeletons were drawn with the same color encoding. The
total study time for each participant was around 10 minutes.

Fig. 10 (left) shows the average predicted weights by
users and our model for boxes of different physical weights.
The estimated weights by our model using 3D skeletons
as input are much closer to the physical ground truth than
other settings. Note that our reported human performance is
slightly lower than that reported in Runeson and Frykholm’s
work [40]. A possible reason is that a smaller weight step
(5kg) and more weight classes (6) were used in our user
study. Fig. 10 (right) displays the F1 scores of user study and
our model on the fragility inference. Note it is challenging
to distinguish an empty bowl from a bowl full of rice, but
still, our model outperformed on both 2D and 3D skeletal
cases.

The second user study. A total of 60 participants were
recruited and divided into two groups, watching the sitting
and walking sequences, respectively. Every participant did
12 tests, and 4 demos with correct answers were played

Fig. 15 The scatter map of participants’ accuracy (%) on guess the motion’s
source (synthesized or captured), and on the object property inference. Left:
sitting; right: walking. Shades of blue indicate the number of participants,
darker being higher.

before the tests started. A test contained two parts. The
first task is to judge if the given motion was synthesized or
captured. The second task is to select the associated object
property of the given motion, while only 2 choices were
provided. For example, to select the path being walked
on was wide or narrow, or the chair being sit on was
soft or hard. Other settings are similar to the first user
study. Fig. 15 shows the performance of participants on
motion source and object property inference. The lightness
of a square encodes the number of participants with a
particular inference accuracy, the darker the higher. For
majority participants, the source inference accuracy is about
60%, while the property inference accuracy is above 90%,
indicating that our synthesized motions are quite close to
real captured ones.

7 Conclusions and Future Work

The primary goal of this work is to study human
interaction motions represented by skeleton sequences, and
investigate whether and how well a machine can learn to
infer the properties of unseen interacting objects, and to
what extent we can have control on the synthesis of motions

11



12 Q. Zheng, W. Wu, H. Pan et al.

with target object properties. We have built up a large multi-
modal dataset for such object property inference from fine-
grained human interaction motions with 4,000+ samples, 
which consist of 100 participants performing 8 different 
tasks, and thus related to 8 different object properties.

Using 3D skeleton sequences alone, we have learned 
to infer the properties of interacting objects by treating 
it as a classification p roblem, a nd e valuated o ur trained 
model in various settings. The collected 3D skeleton 
sequences allows data-driven learning, and help achieve 
better inference accuracy in comparison with using other 
data sources or even human observers. We have presented 
a network to disentangle object property from the motion. 
The disentangling, in turn, allows the synthesis of modified 
motion with a target object property. This control over the 
actions enriches the dataset on one hand, and optimizes the 
specific animation of particular individuals on the other.

Limitations. Due to the design, our target problem is 
limited in the defined scenarios with pre-defined human 
motions and object properties. The inference and transfer 
tasks are solved separately, while exploiting features 
extracted during inference to guide the synthesis part might 
be possibly better. The main techniques used in both the 
inference and transfer tasks are well established.

Separate classifiers have to be trained for different type 
of motions, and the accuracy is not that high. We focus 
only on the intra-class characteristics for the object property 
inference, but it might be better to address action recognition 
and object property inference altogether, as the action types 
provide more global content information.

The object property-aware motion transfer employs an 
encoder-decoder structure with 1D convolution layers, 
which might not fully capture the spatial-temporal 
information of more human motions, in particular, the 
complex ones. More advanced network structures, such as 
STRNN [51], could be used to better transfer in-between 
independent actions.

Future work. Exciting research directions lay ahead as we 
are only starting to exploit the collected motion data. We 
have made a large-scale interaction dataset public. We 
believe that this dataset will stimulate further research, and 
in the future, we will strive not only to increase the number 
of samples, but also the types of human-object interactions. 
Previous works have shown that some other properties, e.g., 
size and geometric shape, are quite hard to be estimated 
from a pantomimed action [50]. To be able to deal with more 
diverse object properties, we are also considering fusing 
more visual inputs, e.g., videos and depth sequences, with 
3D skeletal motions.

Another promising direction is to discover exactly which 
parts of the skeleton are critical for the specific object 
property inference, by considering more sophisticated 
attention models or computing more advanced skeletal 
features. Further exploration could also focus on designing 
new networks that can learn and encode skeletal motions in 
a learned latent space, instead of being explicitly provided 
parameterization. It is certainly more exciting if we can 
directly predict object properties from 2D video inputs of 
large occlusions with high accuracy using a trained model 
on 3D skeletal motions, eventually leading to new modes of 
authoring video sequences.
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A Interaction motion dataset collection

WALKING. The experiment on Walking aims for
estimating the width of the path. Each subject was
asked to walk back and forth on three straight paths
of different widths. We simulated the width of a path
using line markers to indicate path borders, and asked the
subjects do not cross the borders. So we have a total of
3× 2× 100 = 600 motion samples.
FISHING. The experiment on Fishing aims for
estimating the length of a fishing rod. Each subject was
asked to use a fishing rod to fetch a magnetic object
placed in front. The object would attach to the rod’s
end when being touched. Each subject did 3 trails, with
fishing rods of three different lengths. We have a total of
3× 3× 100 = 900 motion samples.
POURING. The experiment on Pouring aims for
estimating the type of liquid. Each subject was asked to
pour liquid from a cup to other one. Each subject did
3 trails with three different substances (water, shampoo,
and rice). The pouring motions were effected by the
viscosity or particle granularity.
BENDING. The experiment on Bending aims for
estimating the stiffness of a power twister. Each subject
was asked to bend a power twister with three different
setting, from easy to hard mode.
SITTING. The experiment on Sitting aims for estimating
the softness of a chair being sat on. Each subject was
asked to sit on four chairs of same height but different
softness. The hardest chair is made of plastic, and the
softest one is a yoga ball.
DRINKING. The experiment on drinking aims for
estimating the amount of water inside a cup. Each subject
was asked to take a cup from a table and get a sip of water.
Each subject did 3 trails while the amount of water in the
cup changed from almost full, to half full, and to almost
empty.
LIFTINGBOX. The experiment on LiftingBox aims to
estimate the weight of an object from the human motion

interaction. Each subject was asked to perform four
different tasks in a row: (i) lifting a box from the ground
to a sofa; (ii) lifting the box from the sofa to a table;
(iii) lifting the box from the table to the top of a closet;
finally (iv) putting the box back to the floor. Without
letting the subject know, the weight of the carrying box
was randomly changed by putting different weight plates
into the concealed box, ranging from 0kg to 25kg in a step
of 5kg. That is, each subject needed to do 6 trails and did
not know if he/she would lift a heavy or light box before
each trial, so all the captured motions are naturally close
to what happens in our real life. This lifting experiment
provides us 1343 motion samples in total, all annotated
with the specific task and weight. When a subject failed
to lift up a heavy box to somewhere high, he/she did not
need to perform the following tasks along the line with
the same weight.

MOVINGBOWL. The experiment on MovingBowl aims
to judge the fragility of an object from human motion
interactions. While the weight belongs to a physical
property, the fragility leans more to an empirical property.
Each subject was asked to perform the similar four tasks
in a row as described above, but to move a bowl this time
rather than lifting a box. Three same uncovered bowls
were used: one empty, one fully filled with rice, and one
fully filled with water. That is, each subject was needed
to do 3 trails and saw clearly the different states of these
three bowls. They were all required to try their best to
move the bowls without any spillage. We expect this
to capture how cautious the subject was for the target
task and how much that correlates to his/her motion in
the corresponding trial. The degree of caution should be
the highest when moving a bowl full of water, and the
lowest when moving an empty bowl, which in turn relates
to the level of fragility of an object. All action samples
are annotated with one of the three levels of interacting
object fragility.
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