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A Character Flow Framework for Multi-oriented Scene Text Detection

Abstract Scene text detection plays a significant role in various applications, such as object recognition, document

management, and visual navigation. The instance segmentation-based method has been mostly used in existing research due to
its advantages in dealing with multi-oriented texts. However, a large number of non-text pixels exist in the labels during the

model training, leading to text mis-segmentation. In this paper, we propose a novel multi-oriented scene text detection

framework, which includes two main modules: character instance segmentation (one instance corresponds to one character),

and character flow construction (one character flow corresponds to one word). We use feature pyramid network (FPN) to
predict character and non-character instances with arbitrary directions. A joint network of FPN and bidirectional long short-

term memory (BLSTM) is developed to explore the context information among isolated characters, which are finally grouped

into character flows. Extensive experiments are conducted on ICDAR2013, ICDAR2015, MSRA-TD500 and MLT datasets to
demonstrate the effectiveness of our approach. The F-measures are 92.62%, 88.02%, 83.69% and 77.81%, respectively.

Keywords multi-oriented scene text detection, character instance segmentation, character flow, FPN, BLSTM

1 Introduction1

Multi-oriented scene text detection in the wild has2

gained increasing attention with the popularization of3

mobile devices. It is challenging to detect texts from4

natural scene images, since the texts are usually in arbi-5

trary orientations and scales, and various completeness6

and tightness.7

Recently, up-to-date deep learning methods have8

been reported to achieve promising performance for9

multi-oriented scene text detection, which can be di-10

vided into two categories: bounding box regression-11

based and instance segmentation-based. In the first12

13 category, anchors need to be appropriately designed,

14 considering their significant impact on the performance

15 of text detection. The rectangular box is not always

16 suitable for matching scene text [1], so that researchers

handcraft multi-scale anchor boxes to regress multi-17

oriented text proposals. Liao et al. [2] presented a text18

box descriptor based on single shot multi-box detector19

(SSD) [3] to output diverse text boxes. The perfor-20

21 mance improvement lies in quadrilateral or oriented-

rectangular anchors. Liu et al. [4] developed a deep22

matching prior network, and then applied quadrilateral23

boxes during the proposal generation to adapt to multi-24

oriented texts. Ma et al. [5] proposed rotation region25

proposal networks (RRPN) with a set of rotated anchor26

27 boxes to localize text regions. These methods can ef-

fectively address texts with long space between words28

or low contrast to the background; the downside is that29

the intensive manual work is inevitable.30

The instance segmentation-based approach does not31

require handcrafted anchors during multi-oriented text32

proposal generation. Instead, it extracts text line in-33

stances directly without considering their directions.34

For example, EAST [6] uses fully convolutional net-35

36 works (FCN) [7] and multi-channel feature map fu-

37 sion to train a model, which can directly predict words

38 or lines in any direction and quadrilateral shape from

39 natural scene images. Mask TextSpotter [8] designs

a mask text spotter based on MaskRCNN [9] to pre-40

dict a character-level probability map for text spot41

recognition. The utilization of popular object segmen-42

tation methods may fail to distinguish different in-43

stances, therein inspiring efforts to solve the problem.44

45 In PSENet [10], after initial segmentation of text in-
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1 stances, the progressive scaling algorithm is used to 2 

regenerate different instances, in order to handle text 3 lines

with short distance. The inaccurate labels may 4 also affect

the segmentation results, since the rectan- 5 gular

calibration box contains too many background 6 pixels for

multi-oriented text. Therefore, SPCNet [11] 7 uses

outsourcing polygons to reduce the background 8 pixels in

ground truth, and advance the segmenta- 9 tion accuracy in

the training stage. Another solu- 10 tion is to explore the

relationship between characters 11 separately; in other

words, the segmentation of char- 12 acter instances rather

than text lines. SegLink [12] 13 uses SSD to detect text

segments and text links si- 14 multaneously. Those segments

are then combined into 15 text lines by text links. PixelLink

[13] applies feature 16 pyramid network (FPN) [14] to predict

text/non-text 17 pixels and links, where text instances are

grouped to 18 words by links. CRAFT [15] also uses FPN to

pre- 19 dict character-center and non-character-center pixels

20 and affinity among characters. It introduces an effective 21 

weakly supervised learning method to enlarge the train- 22 

ing dataset, and achieves outstanding performance.

Several related works based on other methods have23

recently been reported. Tian et al. [16] presented a24

connectionist text proposal network (CTPN) to detect25

the fixed-width text fragments. A bi-directional long26

short-term memory (BLSTM) network [17] was utilized27

to extract context information and combine the frag-28

ments into text lines. Lyu et al. [18] extracted can-29

didate text proposals by corner point detection, and30

segmented position-sensitive text instances by FCN.31

32

Fig.1. Construction of a character flow. (a) input image, (b) the
segmented character instances (top) and the affinity of adjacent
characters (bottom), (c) a character flow

33

34

In this paper, we apply FPN to segment the multi-35

oriented and multi-scale character instances, rather36

than text line instances. The advantage is that the com-37

bination of character instances into text line instances38

could facilitate the detection of different text lines from39

a real image. On the other hand, we integrate FPN40

and BLSTM to explore the sequential context between41

characters. It effectively groups single characters into42

character flows, i.e., words, which include all the indi-43

vidual characters in a word. Fig. 1 gives an example of44

character flow construction, where the affinity between45

adjacent characters is evaluated by their connection and46

context, so as to group the sequence of isolated charac-47

ters into a character flow. Experimental results on four48

benchmark datasets demonstrate the superiority of our49

approach. The main contributions of this work are as50

follows:51

• In order to detect multi-oriented texts from wild52

images, we propose a new text detection frame-53

work to localize text regions by character instance54

segmentation, and derive text lines by character55

flow construction.56

•57

58

59

In order to reduce the background pixel

interfer-ence during training, we focus on the

segmenta-tion of character instances instead of

text line in-stances.60
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• In order to construct character flows from charac-1

ter instances, we present a unified FPN-BLSTM2

network to measure the affinity of characters,3

without manual grouping rules.4

2 Related Work5

2.1 Connected components-based text detec-6

tion7

Detecting texts by extracting connected compo-8

9 nents from natural scene images has been developed 10 over

the years. Epshtein et al. [19] proposed a stroke 11 width

transform algorithm to calculate minimum path 12 distance

of two border pixels, and then group pixels 13 with similar

values into character candidates. Wu et 14 al. [20] proposed a

multi-scale adaptive color clustering 15 scheme for text

extraction. They assumed similar col- 16 ors between

characters in the same text line, and used a 17 K-means color

clustering algorithm to extract character 18 candidates. In

the work [21], maximally stable extremal 19 regions (MSER)

[22] were employed to detect text from 20 natural images

with low contrast and complex back- 21 ground. However,

many overlapped text components 22 could be generated,

resulting in low detection accuracy 23 and high

computational cost. In order to eliminate re- 24 dundant

components, Yin et al. [23] proposed a MSER 25 pruning

algorithm by replacing the minimal variation 26 with

regularized variation, and improved character ex- 27 traction

accuracy and efficiency.

2.2 Regression-based text detection28

Most methods in this category are inspired by the29

popular object detectors. Unlike objects in general,30

texts usually exhibit in arbitrary scales, orientations,31

and irregular shapes. To address these problems, Ma et32

al. [5] designed a set of rotated anchors in three sizes,33

three ratios and six directions, to extract text candi-34

dates with different directions and scales. Liao et al. [1]35

36 used large aspect ratio anchor boxes and irregular con- 37 

volutional kernels to fit for scene text with different 38 aspect

ratios. They also combined a text recognition 39 network

named convolutional recurrent neural network 40 (CRNN)

[24] to improve text detection accuracy. Liu et 41 al. [4] used

quadrilateral sliding windows to locate text 42 regions, and

designed a sequential protocol to regress 43 four vertices of

polygon text box, so as to detect texts 44 with perspective

distortion. Liao et al. [25] used rotat- 45 ing filters to active

convolution features with rotation- 46 sensitive, which can

detect multi-oriented texts.

2.3 Segmentation-based text detection47

Many segmentation-based text detection frame-48

works are derived from instance segmentation, so as49

to deal with multi-oriented, multi-scale and arbitrary-50

shaped texts. Zhang et al. [26] generated saliency maps51

by FCN to predict text blocks, from which character52

candidates were extracted by MSER. The FCN was also53

applied to detect various angled discs, which were fur-54

ther concatenated into text lines [27]. Lyu et al. [8]55

applied MaskRCNN to detect text, consisting of four56

main networks: feature extraction network, text candi-57

date region generation network, text bounding box re-58

gression network, and text instance and character seg-59

mentation network, which improved accuracy of text60

detection, especially for curved texts. Since inaccurate61

labels could lead to the generation of wrong samples,62

Xie et al. [11] proposed a text context module and re-63

score module to suppress false sample detection. Deng64

et al. [13] predicted text instances and links by FPN,65

however, the instance segmentation may result in in-66

correct classification. Therefore, Li et al. [10] proposed67

a progressive scale expansion algorithm to distinguish68

different text instances. A full word is constructed by69

a series of ordered characters; although characters have70

less receptive field, they not only maintain the advan-71
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Fig.2. The proposed framework. Given an input image, a FPN model is trained to predict character/non-character instances, then a
joint network is trained to combine the high affinity characters into character flows.

1 tages of text instance segmentation, but also overcome

2 the difficulty to distinguish text instances. Motivated

3 by this, Baek et al. [15] segmented every single charac-

4 ter using FPN, then predicted the affinity among them.

3 Proposed Method5

The overview of our framework for multi-oriented6

scene text detection is illustrated in Fig. 2. It consists7

of two major parts: character instance segmentation8

and character flow construction.9

3.1 Character instance segmentation10

Character instance segmentation is to separate text11

pixels from image background. Unlike other objects in12

natural scene images, texts often appear in arbitrary13

scales and orientations, as well as various colors and14

languages. Some traditional methods use the water-15

shed algorithm [28] to extract text proposals. However,16

17 a large number of non-text proposals could also be gen-

18        erated, leading to difficulties for subsequent text classi-

19       fication. Although there are some excellent pruning al-

20 gorithms like [23], it is still challenging to obtain a high-

performance text classifier. With the development of21

object detection and instance segmentation algorithms22

that are based on deep learning, many practical frame-23

works have been proposed to effectively improve the24

25 text detection accuracy. The direct utilization of in-

26 stance segmentation on the inclined texts may fail to

27 classify multiple text instances [10], therein inspiring

28 research on character instance segmentation.

In order to distinguish the text and non-text pixels,29

we utilize a FPN with ResNet-50 [29] to extract charac-30

ter instances. It is a top-down architecture that unifies31

both high-level and low-level semantic feature maps at32

all scales. As shown in Fig. 3, the network takes h × w33

× 3 sized inputs, and the convolutional stage1–stage5 is34

the infrastructure of residual network. Each stage has35

an up-sampling operation via bilinear interpolation and36

37 a skip connection. After adding feature maps bit by bit,

38 each fused map is fed into Kernel(3 × 3)-BN-ReLU lay-

39 ers and reduced to 256 channels. Then it passes through

40 n Kernel(1 × 1)-Up-Sigmoid layers, where the text re-

gion proposals are extracted. A BLSTM network is41

applied subsequently, resulting in an end-to-end train-42

able model. It is pre-trained on SynthText dataset [30],43

and automatically learns character features like fonts,44

color, size, stroke, etc. When the distributions of dif-45

ferent types of character data have been learned, the46

character pixels can be gradually separated from the47

background. Fig. 4 shows the results of character in-48

stance segmentation.49
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⊕
and C○ represent the convolution operation, bitwise additionFig.3. The detailed illustration of our network architecture, where →, 

and fusion map of prediction results, respectively.

Fig.4. Character instances extracted at different epochs.
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Fig.5. The context learning by BLSTM structure. A character sequence is input into bi-directional LSTM networks separately, 
where the sequential context information is learned to facilitate the text line construction.

3.2 Character flow construction1

In order to combine the isolated characters, the2

measurement of their intrinsic connection is essential.3

Conventional grouping rules of text lines include spac-4

ing, aspect ratio, color clustering, etc. For example,5

Text Flow [31] uses a cost function to unify the geo-6

metrical features among characters. The minimal cost7

flow corresponds to a text line. CTPN [16] designs8

three rules (horizontal distance, vertical overlap, and9

proposal pairing) to join text segments into a text line.10

Those handcrafted rules could reduce the flexibility of11

deriving text lines, therefore, SegLink [12] traines a link12

model to connect adjacent characters.13

Sequential context information exists in the char-14

acter instances, which contributes to the construc-15

tion of text lines. The BLSTM [17] is bi-directional16

LSTMs [32], a recurrent architecture to encode the con-17

text in opposite directions along the input sequence.18

It can effectively distinguish texts of arbitrary length19

from the background. As shown in Fig. 5, we apply a20

BLSTM, followed by a fully connected layer and a soft-21

max classifier, to evaluate the character affinity and22

then construct character flows. A character flow corre-23

sponds to a complete word, i.e., a sequence of charac-24

ters. The sequential features between adjacent charac-25

ters, regarding to the color, space and orientation, are26

exploited to predict the connection relationship. Fig. 627

shows the affinity of adjacent characters. As can be28

seen, their connection becomes more and more obvious29

during the training procedure.30

3.3 Label generation31

Given an input image, its corresponding ground32

truth contains C = {c1 = (cc1, cl1), c2 =33

(cc2, cl2), . . . , cm = (ccm, clm)}, where ci is a horizon-34

35 tal rectangular box that represents the localization of a

36 character region, cci and cli are the category and loca-

37 tion of a character, respectively.

Here two types of mask maps are generated for38

39 segmentation network. One is the character instance

Page 14 of 25Journal of Computer Science and Technology       http://jcst.ict.ac.cn



Character Flow Text Detection 7

Fig.6. The affinity between characters at different epochs.

1 mask, where the coordinates of character boxes are de-

2         fined by the ground truth C. We generate this mask

3 by drawing the normalized horizontal rectangles on a

4         zero-initialized mask and filling the rectangles with the

5 value of 1. In other words, pixels inside the bounding

6 boxes are labeled positive; if overlap exists, only non-

7 overlapping pixels are positive.

The other is the character affinity mask, where the8

9       coordinates of character affinity boxes can be computed

10      by Eq. 1 and Eq. 2. To be more specific, for an affin-

11 ity box, its center, width and height are the midpoint

of adjacent character centers, the distance between ad-12

jacent character centers, and half of the larger height13

of adjacent character boxes, respectively. Similar pixel14

annotation is performed in order to construct character15

flows. The label generation for segmentation of char-16

acter instances and character affinity is illustrated in17

Fig. 7.18

Ax = Center(cci, ccj)x (1)

Ay = Center(cci, ccj)y ±Widthsum(cci, ccj)/2 (2)

19         where Ax and Ay are the coordinates of character affin-

20 ity box, Center(cci, ccj ) represents the center point

21 of two adjacent characters in ground truth C, and

W idthsum(cci, ccj ) represents the sum of two adjacent22

23 character widths.

3.4 Optimization24

Our loss function defined on each proposal is the25

sum of two quantities: the character/non-character26

pixel classification loss Lclass, and the adjacent/non-27

adjacent character pair connection loss Lconnect. It is28

29 designed to jointly optimize the model weights in multi-

30 task learning. The overall loss is given as:

Ltotal =
∑
p

(λLclass + Lconnect) (3)

where λ is the weight to balance the two losses, and is31

set to 2.32

According to PixelLink [13], Lclass is the matrix of33

instance-balanced cross-entropy loss on character and34

non-character prediction, computed as:35
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Fig.7. Annotation of (a) character instances and (b) character affinity. For this input image, 4 character boxes and 3 character affinity 
boxes are generated for “BEER”, and 6 character boxes and 5 character affinity boxes for “GARDEN”.

Lclass =
W

4NS

∑
p

−(yp · log(Pp) +

(1− yp) · log(1− Pp))

(4)

where S, W and N are the area of character instances,1

weight matrix [13] and the sum of pixels for a image,2

respectively, p is the pixel, yp is the label of pixel de-3

4 fined as Eq. 5, and Pp is the probability of predicting a

5 positive pixel.

yp =

{
1 if p ∈ positive
0 otherwise

(5)

Lconnect is computed as Eq. 6, where S∗
p is the confi-6

dence map of the ground truth defined as Eq. 7, and Sp7

is the predicted region score. The parameters c, R(c),8

and p denote the ground truth of character, the an-9

notated region of character affinity box, and the pixel10

in R(c), respectively. The generation of ground-truth11

label for S∗
p is presented in Sec. 3.3.12

Lconnect = −||S∗
p − Sp||22 (6)

S∗
p =

{
1 if p ∈ R(c)

0 otherwise
(7)

4 Experiments and Discussions13

4.1 Datasets14

ICDAR2013 dataset [33] contains 462 real scene15

images. Among them, 229 images are selected for train-16

ing and the remaining 233 images for testing. It is the17

benchmark in the 2013 Robust Reading Competition,18

which focuses on the horizontal text detection in the19

wild. The ground truth is annotated at both word level20

and character level. All text regions are annotated by21

4 vertices of a quadrangle.22

ICDAR2015 dataset [34] contains 1500 real scene23

images. Among them, 1000 images are selected for24

training and the remaining 500 images for testing. It25

is the benchmark in the 2015 Robust Reading Com-26

petition, which focuses on the arbitrary-oriented text27

detection in the wild. The ground truth is annotated28

at the word level, and the text regions are annotated29

by 4 vertices of a quadrangle.30

MSRA-TD500 dataset [35] contains 500 real scene31

images. Among them, 300 images are selected for train-32

ing and the remaining 200 images for testing. It is a33

multi-language dataset that focuses on English and Chi-34

nese. The ground truth is annotated at the word level,35

and the text regions are annotated by 4 vertices of a36

quadrangle.37

MLT dataset [36] contains 18000 real scene im-38

ages. Among them, 9000 images are selected for train-39

ing and the remaining 9000 images for testing. It40

is the benchmark of the 2017 Robust Reading Com-41

petition, which focuses on the multi-oriented, multi-42

scripting, and multi-lingual text detection in the wild.43

The ground truth is annotated at the word level, and44

the text regions are annotated by 4 vertices of a quad-45
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Table 1. Performance of different network settings on four benchmarks.

Networks
ICDAR2013 ICDAR2015 MSRA-TD500 MLT

R P F R P F R P F R P F
FPN

85.61% 92.44% 88.89% 74.15% 85.04% 82.66% 74.92% 77.48% 76.18% 66.24% 77.41% 71.39%
(with ResNet-50)
FPN-BLSTM

87.95% 92.64% 90.23% 83.73% 86.60% 85.14% 79.01% 81.33% 80.16% 69.11% 79.24% 73.83%
(with VGGNet-16)
FPN-BLSTM

91.01% 94.29% 92.62% 86.86% 89.22% 88.02% 82.08% 85.37% 83.69% 73.93% 82.13% 77.81%
(with ResNet-50)

rangle.1

4.2 Implementation details2

Our model is pre-trained on SynthText dataset [30],3

which contains around 857,500 synthetic images, with4

both word-level and character-level annotations. Text5

regions are annotated by 4 vertices of the quadrangle.6

The batch size is set to 128 on 4 GPUs for 50K itera-7

tions. The initial learning rate is 0.00003 and decreased8

to 0.000024 at 20K iterations. All the images are resized9

to 768×768. We use a weight decay of 5×10−4and the10

training processes are optimized using the ADAM [37]11

optimizer. In order to quantitatively evaluate the per-12

formance, three metrics, namely, Recall (R), precision13

(P ) and F-measure (F ), are used.14

4.3 Ablation study15

4.3.1 Different backbone networks16

To investigate the influence of backbone networks17

in our framework, both ResNet-50 and VGGNet-16 [38]18

are applied as the backbone of FPN. It is not surpris-19

ing that with the deeper architecture and the residual20

structure, ResNet is expected to be effectively trained21

and derive discriminative text features, thus performing22

better than VGGNet (shown in Table 1). This exper-23

iment demonstrates that other different networks can24

also be embedded into our framework.25

4.3.2 Influence of the BLSTM network26

We verify the effectiveness of context learning in27

28 scene text detection by removing the BLSTM from our

framework. Table 1 tabulates its behaviors on four29

datasets, where all three metrics decrease substantially30

without BLSTM. The possible reason lies in its special31

structure, which enables to discover more connection32

information between characters, so as to evaluate their33

affinity more accurately. Thus, we set BLSTM as an34

in-network architecture in the following experiments.35

4.4 Comparison with the state of the art36

We evaluate the proposed approach on ICDAR2013,37

ICDAR2015, MSRA-TD500 and MLT benchmarks.38

Some randomly chosen results are shown in Fig. 8– 11,39

respectively. It can be observed that our method is40

effective in detecting multi-oriented and multi-lingual41

texts. The comparison against several recent works is42

given in Table 2–4.43

Table 2. Comparison results on ICDAR2013.44

Methods R P F
RRPN [5] 71.89% 90.22% 80.02%
SegLink [12] 83.00% 87.70% 85.30%
R2NN [39] 82.60% 93.60% 87.70%
CTPN [16] 83.00% 93.00% 88.00%
SSTD [40] 86.00% 89.00% 88.00%
PixelLink [13] 87.50% 88.60% 88.10%
TextBoxes++ [2] 86.00% 92.00% 89.00%
SPCNet [11] 90.50% 93.80% 92.10%
CRAFT [15] 93.10% 97.40% 95.20%
Ours 91.01% 94.29% 92.62%

45

4.4.1 Horizontal text detection46

To evaluate the performance of horizontal text de-47

tection, we initialize the network with a pre-trained48

model and then fine-tune it on ICDAR2013 dataset.49

The model requires 12K iterations of training. As can50

be seen Table 2, our approach achieves competitive re-51

sults: R, P and F are 91.01%, 94.29% and 92.62%,52
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Fig.8. Examples of text detection results on ICDAR2013.

Fig.9. Examples of text detection results on ICDAR2015.

Fig.10. Examples of text detection results on MSRA-TD500.
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Fig.11. Examples of text detection results on MLT.

Table 3. Comparison results on ICDAR2015 and MSRA-TD500.

Methods
ICDAR2015 MSRA-TD500

R P F R P F
RRPN [5] 73.23% 82.17% 77.44% 68.00% 82.00% 74.00%
SegLink [12] 76.80% 73.10% 75.00% 70.00% 86.00% 77.00%
R2NN [39] 85.62% 79.68% 82.54% – – –
CTPN [16] 51.56% 74.22% 60.85% – – –
SSTD [40] 73.00% 80.00% 77.00% – – –
EAST [6] 78.30% 83.30% 80.70% 67.40% 87.30% 76.10%
MaskTextSpotter [8] 81.20% 85.80% 83.40% – – –
PixelLink [13] 82.00% 85.50% 83.70% 73.20% 83.0% 77.8%
TextSnake [27] 80.40% 84.90% 82.60% 73.90% 83.20% 78.30%
TextBoxes++ [2] 78.50% 87.80% 82.90% – – –
SPCNet [11] 85.80% 88.70% 87.20% – – –
CRAFT [15] 84.30% 89.80% 86.90% 78.20% 88.20% 82.90%
SAE [41] 84.50% 85.10% 84.80% 81.70% 84.20% 82.90%
DB [42] 82.70% 88.20% 85.40% 73.20% 85.70% 79.00%
PSENet [10] 84.50% 86.92% 85.69% – – –
Ours 86.86% 89.22% 88.02% 82.08% 85.37% 83.69%
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1 respectively. Compared with the bounding box regres-

2         sion methods [5, 39, 2], our work shows a significant im-

3 provement on all metrics, indicating that most of char-

4 acter instances have been detected. This may be be-

5 cause we do not need to deal with large amount of can-

6 didate proposals generated by the anchor boxes, which

may have a lot of overlap, leading to a decrease in detec-7

tion rate. Compared with the instance segmentation-8

based methods [12, 13, 11], we also achieve an im-9

provement on all the metrics. Similar observations10

can be found from the comparison with the text seg-11

ment connection method [16]. This may be because12

the instance-based segmentation method produces mis-13

classification, for example, multiple text instances are14

mistakenly classified as one text instance. We can effec-15

tively avoid such situation by dividing a single character16

17 instance and then combining it into a line of text. By

18 taking advantages of weakly supervised learning and

19 pixel-level character connection, CRAFT [15] achieves

20 superior performance in horizontal text detection.

21 4.4.2 Oriented text detection

To evaluate the performance of multi-oriented text22

detection, we initialize the network with a pre-trained23

model and then fine-tune it on ICDAR2015 and MSRA-24

TD500 datasets. The model requires 19K iterations of25

training. From Table 3, we can see that our approach26

achieves almost the best results. Compared with the27

bounding box regression methods [5, 39, 2], our work28

detects the inclined character instances automatically29

without handcrafted anchors, and receives a significant30

increase. Compared with the instance segmentation-31

based methods [12, 13, 11, 27, 41, 10], ours shows an32

33 improvement on all metrics, resulting from extracting

text features by applying the pyramid network struc-34

ture, which enables to take advantage of the global fea-35

ture information to locate character regions. Besides,36

37 high resolution feature map can focus more on the infor-

38 mation of small character areas. Both our method and

39 CRAFT [15] segment a single character, but our overall

40 performance is better on both datasets. It is because

41 the character context information facilitates the combi-

42 nation of isolated texts, which improves the detection

43 effect of characters in multiple directions.

4.4.3 Multi-language text detection44

To evaluate the performance of multi-language text45

detection, we initialize the network with a pre-trained46

model and then fine-tune it on MLT dataset. As shown47

in Table 4, our method surpasses the previous state-of-48

the-art method, where R, P and F are 73.93%, 82.13%49

and 77.81%, respectively. Compared with the instance50

51 segmentation based methods [43, 44, 45, 10, 15, 46, 11,

52 47], our work shows an improvement on all the met-

53 rics. Most of text instance segmentation methods split

54 complete words or text lines, but there are gaps between

55 words and characters, which will accumulate errors dur-

56 ing the training process continuously. Our method can

57 directly segment individual characters, so that natu-

58 rally avoid those problems. Therefore, we obtain the

59 highest text segmentation results.

Table 4. Comparison results on MLT.60

Methods R P F
He et al. [48] 57.90% 76.70% 66.00%
Border [49] 60.60% 73.90% 66.60%
FOTS [43] 57.50% 79.50% 66.70%
DRRG [44] 61.04% 74.99% 67.31%
LOMO [45] 60.60% 78.80% 68.50%
Corner [18] 55.60% 83.80% 66.80%
PSENet [10] 68.40% 77.01% 72.45%
CRAFT [15] 68.20% 80.60% 73.90%
Pixel-Anchor [46] 59.54% 79.54% 68.10%
DB [42] 63.8% 81.90% 71.70%
SPCNet [11] 68.60% 80.60% 74.10%
Huang et al. [47] 69.80% 80.00% 74.30%
Ours 73.93% 82.13% 77.81%

61

62 4.5 Failure cases

Our method may fail to detect scene text when:63

64 (1) objects that appear like texts (e.g., telephone pole,
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Fig.12. Examples of failure cases.

1 leaves, window) occupy most of the image; (2) only one

2 word-art character exists and occupies most of the im-

3 age; (3) character pixels are largely split. Examples of

4 failure cases are given in Fig. 12.

5 Conclusion and Future Work5

In this paper, we present an effective multi-oriented6

scene text detection approach, which can detect in-7

dividual characters as well as character flows. We8

separate the characters regardless of their directions9

through a feature pyramid network. Then the connec-10

tion relationship of adjacent characters is predicted by11

a joint network, and thus constructing character flows.12

In summary, our approach is able to extract character13

regions without handcrafted anchor boxes, and derive14

text lines without heuristics grouping rules.15

Challenges still remain in the research of natural16

scene text detection, especially for the distorted, long,17

and multi-lingual texts. There are several interest-18

ing directions we would like to expand upon, such as19

arbitrary-shaped text detection by mask segmentation,20

text dataset augmentation, and text recognition.21
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J A, Heras L P. ICDAR 2013 robust reading com-

petition. In Proceedings of International Confer-

ence on Document Analysis and Recognition, 2013,

pp. 1484–1493.

[34] Karatzas D, Gomez-Bigorda L, Nicolaou A, Ghosh

S, Bagdanov A, Iwamura M, Matas J, Neumann

L, Chandrasekhar V R, Lu S, Shafait F, Uchida

S, Valveny E. ICDAR 2015 competition on robust

reading. In Proceedings of International Confer-

ence on Document Analysis and Recognition, 2015,

pp. 1156–1160.

Page 23 of 25 Journal of Computer Science and Technology       http://jcst.ict.ac.cn



16 J. Comput. Sci. & Technol.

[35] Yao C, Bai X, Liu W, Ma Y, Tu Z. Detecting

texts of arbitrary orientations in natural images.

In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, 2012, pp.

1083?–1090.

[36] Nayef N, Yin F, Bizid I, Choi H, Feng Y, Karatzas

D, Luo Z, Pal U, Rigaud C, Chazalon J, Khlif

W, Luqman M M, Burie J C, Liu C, Ogier

J M. ICDAR 2017 robust reading challenge

on multi-lingual scene text detection and script

identification-rrc-mlt. In Proceedings of the IEEE

Conference on International Conference on Doc-

ument Analysis and Recognition, 2017, pp. 1454–

1459.

[37] Kingma D P, Ba J. Adam: A method for stochas-

tic optimization. In Proceedings of International

Conference on Learning Representations, 2015.

[38] Simonyan K, Zisserman A. Very deep convo-

lutional networks for large-scale image recogni-

tion. In Proceedings of International Conference

on Learning Representations, 2015.

[39] Jiang Y, Zhu X, Wang X, Yang S, Li W, Wang

H, Fu P, Luo Z. R2CNN: rotational region cnn

for orientation robust scene text detection. arXiv

preprint arXiv:1706.09579, 2017.

[40] He P, Huang W, He T, Zhu Q, Qiao Y, Li X. Sin-

gle shot text detector with regional attention. In

Proceedings of the IEEE International Conference

on Computer Vision, 2017, pp. 3047–3055.

[41] Tian Z, Shu M, Lyu P, Li R, Zhou C, Shen X, Jia J.

Learning shape-aware embedding for scene text de-

tection. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, 2019,

pp. 4234–4243.

[42] Liao M, Wan Z, Yao C, Chen K, Bai X. Real-time

scene text detection with differentiable binariza-

tion. In Proceedings of the AAAI Conference on

Artificial Intelligence, 2020, pp. 11474–11481.

[43] Liu X, Liang D, Yan S, Chen D, Qiao Y, Yan

J. Fots: Fast oriented text spotting with a uni-

fied network. In Proceedings of the IEEE Confer-

ence on Computer Vision and Pattern Recognition,

2018, pp. 5676–5685.

[44] Zhang S X, Zhu X, Hou J B, Liu C, Yang C, Wang

H, Yin X C. Deep relational reasoning graph net-

work for arbitrary shape text detection. In Pro-

ceedings of the IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition, 2020, pp.

9699–9708.

[45] Zhang C, Liang B, Huang Z, En M, Han J, Ding

E, Ding X. Look more than once: An accurate de-

tector for text of arbitrary shapes. In Proceedings

of the IEEE Conference on Computer Vision and

Pattern Recognition, 2019, pp. 10552–10561.

[46] Li Y, Yu Y, Li Z, Lin Y, Xu M, Li J, Zhou

X. Pixel-anchor: A fast oriented scene text de-

tector with combined networks. arXiv preprint

arXiv:1811.07432, 2018.

[47] Huang Z, Zhong Z, Sun L, Huo Q. Mask r-cnn

with pyramid attention network for scene text de-

tection. In Proceedings of 2019 IEEE Winter Con-

ference on Applications of Computer Vision, 2019,

pp. 764–772.

[48] He W, Zhang X Y, Yin F, Liu C L. Multi-oriented

and multi-lingual scene text detection with direct

regression. Journal of IEEE Transactions on Im-

age Processing, 2018, 27(11):5406–5419.

Page 24 of 25Journal of Computer Science and Technology       http://jcst.ict.ac.cn



Character Flow Text Detection 17

[49] Xue C, Lu S, Zhan F. Accurate scene text detec-

tion through border semantics awareness and boot-

strapping. In Proceedings of the European Confer-

ence on Computer Vision, 2018, pp. 355–372.

Page 25 of 25 Journal of Computer Science and Technology       http://jcst.ict.ac.cn




