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Abstract

Well-designed indoor scenes contain interior design
knowledge, which has been an essential prior for most of
the indoor scene modeling methods. However, the layout
qualities of the dataset indoor scenes are always uneven,
while most of the proposed data-driven methods do not
discriminate the indoor scene examples in terms of their
qualities. In this work, we intend to explore an approach
that leverages datasets with differentiated indoor scene
examples for indoor scene modeling. Our solution is to
conduct a subjective evaluation on lightweight datasets
that have various room configurations and furniture lay-
outs, via pairwise comparisons based on fuzzy set the-
ory. We also develop a system to use such dataset ex-
amples to guide indoor scene modeling according to the
user-specified objects. Specifically, we focus on object
groups associated with certain human activities, and de-
fine room features to encode the relations between the
position/direction of an object group and the room con-
figuration. Given an empty room, our system first as-
sesses it in terms of the user-specified object groups, and
then places the associated objects in the room guided by
the assessment results thus completing the indoor scene
modeling. A series of experimental results and com-
parisons with the state-of-the-art indoor scene synthe-
sis methods are presented to validate the usefulness and
effectiveness of our approach.

Keywords: Indoor scene modeling, modeling by exam-
Dles, fuzzy measurement, membership degree

1. Introduction

The problem of indoor scene modeling has been ex-
tensively studied in the past decades. From the early
guideline-based approaches [30, 18] to example-based ap-
proaches [3, 5], as well as the latest activity-centric methods
[11,7,22,9,20] and deep learning models [27, 26], their
capability advances steadily in generating visually pleasing
and functionally valid 3D indoor scenes that benefit many
applications including games and interior design.

To obtain plausible indoor layout and object arrange-
ment, most of the existing indoor scene modeling ap-
proaches rely on either expert-designed guidelines or ex-
amples. For data-driven methods, large-scale datasets of
indoor scenes could improve the quality of the synthesized
scenes as a result of abundant examples. However, the lay-
out qualities of the indoor scene examples in large-scale
datasets may not be at the same level. Due to the lacking of
metrics to evaluate the quality of indoor scenes based on the
associated functionalities, low-quality examples have the
same weights as high-quality ones for indoor scene model-
ing in most existing methods. Intuitively, the dataset indoor
scenes with different qualities, what we call differentiated
examples, should play different roles in indoor scene mod-
eling, i.e., the impacts of the high-quality examples should
be enhanced while the others should be weakened.

To address the above issues, methods that exploit dif-
ferentiated examples for indoor scene modeling need to be
investigated. We observe that the layouts of high-quality in-
door scenes typically well support their assumed functional-
ities. Even for rooms with specially-designed layouts, their
furniture layouts can still have some common relations to
the room configurations including room size and shape, po-



High probability

(c) (d)

Figure 1. Our method collects differentiated examples of indoor
scenes to facilitate indoor scene modeling (a). Given input rooms
and the assigned activity labels representing certain object groups
(b), the per-room assessment is conducted guided by the dif-
ferentiated examples which have been labeled through subjec-
tive evaluation. The assessment is to determine the proper posi-
tions/directions of the object groups, representing by the human
agents (c). Based on the room assessment results, object groups
associated with the activity labels are then placed into the rooms
to synthesize 3D scenes with plausible indoor layouts (d).

sitions of windows and doors, etc. For example, since a TV
set is rarely placed in front of a window, the layout of an
object group with a TV set, a couch, and a tea table could
be influenced by the window positions in a room. These
observations motivate us to exploit the common layout rela-
tions as the metrics to differentiate examples in the datasets.
Besides handling a variety of room layouts, the evaluation
metrics need to be also associated with object functionali-
ties. Therefore, examples in an ideal interior design dataset
should have the following: i) they can be classified into
functionality-associated object groups; ii) they include dif-
ferentiated layout examples and the associated evaluations;
and iii) they include sufficient layout variations to support
generality and robustness.

In this paper, we propose a new method that uses datasets
with differentiated samples as priors for room assessment,
and then further use the assessment results to generate in-
door scenes. The collected differentiated samples have var-
ious room layouts with respect to certain object groups.
Since quantitative analysis on indoor scenes is challenging,
we leverage fuzzy measures and subjective comparisons to

evaluate the layout quality of the differentiated samples.
Specifically, we adopt the membership degree, a concept
borrowed from the fuzzy set theory [21, 12], to evaluate the
samples in the dataset after we conduct pair-wise compar-
isons on the samples. Given an empty room and one or
multiple labels of object groups, our method uses the differ-
entiated examples with evaluation scores to determine suit-
able positions and directions of these object groups (Fig-
ure 1). We first calculate the weighted feature distances of
different room features between the input room and dataset
scenes. Then the given room can be assessed via transfer-
ring the membership degrees of the differentiated examples
based on their room feature distances, with respect to a cer-
tain object group. Since the assessment is performed for
all positions in the given room with four different directions
about the object group, we can place the object group into
the room based on the assessment results. Moreover, we
provide an ease-of-use tool to assist users to design indoor
scenes. It also allows users to merge multiple rooms into a
larger and more complex scene.

In sum, our work makes two novel contributions: i) a
novel metric to assess indoor scenes through differentiated
examples in a dataset, based on the fuzzy set theory, and
ii) a framework to model indoor scenes based on the room
assessment with respect to certain groups of objects. We
demonstrate the advantages of our method for indoor scene
synthesis through various experiments, as well as direct
comparisons with state-of-the-art, data-driven indoor scene
synthesis methods [27, 14].

2. RELATED WORK

Many systems and approaches for indoor scene model-
ing have been developed in the past decades. The first task
is to understand and describe the contextual scenes and their
hierarchical structures. For example, data-driven methods,
which encode semantic scene structures from existing in-
door scene examples, have been well studied in recent years
(e.g., [4, 6, 24]). The co-existence and hierarchical relations
of indoor objects have often been used to describe indoor
scene contexts, e.g., Xu et al. [29] proposed to cluster a set
of co-existing object groups, called focal points, in order to
organize a collection of heterogeneous indoor scenes. Liu et
al. [15] proposed to use probabilistic grammars for hierar-
chical decomposition of a scene into semantic components.
Moreover, some works also leverage action or even natural
language to establish the object relations of indoor scenes
(e.g., [16, 17]). In recent years, deep learning techniques
have been successfully adopted for contextual scene under-
standing. For example, Li et al. [14] presented GRAINS,
which encodes information about objects’ spatial proper-
ties, semantics, and their relative positioning with respect to
other objects in a hierarchy using a variational recursive au-
toencoder (RVNN-VAE), trained on a dataset of annotated



scene hierarchies. The analyzed scene context information
benefits indoor scene modeling and can be used as con-
straints to determine object categories and locations inside
a synthesized scene[28, 2, 23]. In our work, for simplicity,
the relationships within a group of objects for a certain ac-
tivity are pre-defined, so that we can focus on how to place
the objects into the given room in terms of their associated
activity.

On the other hand, how to evaluate the quality of indoor
scenes is a challenging yet widely-open problem. Analyz-
ing the effect of indoor environmental factors on subjective
human perception is a long-standing topic in both architec-
ture and environmental psychology. In general, some major
environmental factors, including illumination, air quality,
temperature, noise, and space, are utilized to measure the
quality of an indoor environment [8]. Researchers have re-
vealed that indoor environment can impact the comfort and
cognitive performance of human beings, and there exist ac-
ceptable ranges to keep people comfortable [10]. Thus, a
task to explore proper environmental factor ranges is then
raised for indoor scene design. For example, Konis [13]
provided a system to predict the visual comfort of indoor
scene core zones, based on high dynamic range images that
capture the indoor illumination. Ochoa and Capeluto [19]
proposed a similar analysis on indoor illumination with sim-
ulated indoor environments to evaluate visual comfort. In
our work, we extract expert knowledge from datasets of
differentiated indoor scene examples. The evaluations on
the differentiated examples are through subjective compar-
isons, and we use the evaluation results, i.e., the fuzzy mem-
bership degrees, as the assessment scores to label the indoor
scenes in our datasets. These examples are used to assess
input rooms for placing certain object groups.

Based on various scene representations, a large num-
ber of indoor scene synthesis methods have been proposed.
Most of these works rely on pre-defined guidelines or rela-
tions learned from 3D scene datasets (e.g., [30, 18]). To in-
crease the efficiency of indoor scene synthesis, some works
adopt example-driven methods to transfer interior design
styles from existing indoor scenes [5], or indoor images [3]
to a given room. Human-centric approaches provide an-
other way to make indoor scene synthesis more automated.
Jiang et al. [11] proposed to use human context for ob-
ject arrangement by learning how objects relate to human
poses. Fisher et al. [7] proposed to generate 3D scenes
given noisy and incomplete 3D scans, by arranging objects
based on certain activities. Savva et al. [22] proposed to
learn a probabilistic model to connect human poses and the
arrangement of object geometry, for jointly generating 3D
scenes and interaction poses. These works motivate us to
gather certain activity-related objects into groups, and place
such a group into the given room as a whole. More specifi-
cally, our work relies on methods such as [22] to determine

the relevant object positions/directions in a group (e.g., a
group of the couch, tea table, and TV set). Our method
focuses on the next task, i.e., how to place such a group
in a given room. Different from the human-centric meth-
ods (e.g., [1'1, 7]) that directly measure the probability of
various activities on a certain region in a room, we leverage
the subjective experiments and fuzzy metrics to evaluate the
dataset indoor scene examples with respect to certain activ-
ities. We adopt a data-driven strategy that uses the dataset
indoor scenes weighted by the fuzzy metrics to guide the
scene synthesis.

Some recent works tackle large-scale interior design by
utilizing deep neural networks for indoor scene synthesis.
For example, Wang et al. [27] employ a deep convolu-
tional neural network to learn priors from a large-scale in-
door scene database for indoor scene synthesis. Zhang et
al. [31] proposed a generative model using a feed-forward
neural network that maps a prior distribution like normal
distribution to the distribution of primary objects in indoor
scenes. This work focused on the 3D object arrangement
representation within a group of objects. Our work focuses
more on the global layout of object groups in a given room,
so the local arrangement for objects in a group can be pre-
assigned. We also consider the relations between the lay-
out of a certain object group and the room configuration,
aiming to create scenes more suitable for performing cer-
tain human activities. To describe such relations, we de-
fine the room features in terms of the environment-related
components like windows and doors. Moreover, comparing
to these deep-learning-based methods, our method does not
rely on a large-scale indoor scene dataset.

3. Data Preprocessing

In this section, we first introduce how to construct differ-
entiated scene datasets and the room features we adopt, and
then we give the details on how to label the scenes in the
datasets through fuzzy-based subjective comparisons.

Scene data collection and representation. To verify
the usability of differentiated examples as priors for indoor
scene modeling, we collect lightweight datasets in which
each scene example only has one object group, so that
each type of indoor scene dataset is associated with a sin-
gle group of objects. Namely, scenes in the same dataset
have the same kind of object group. Considering the ob-
ject groups are generally associated with certain activities,
we choose the activity name as the object group label in the
user interfaces of our system. To establish the relations be-
tween room configuration and furniture layout, we first nor-
malize the sizes of the objects, based on a human agent with
a fixed body size. Then set the human agent on the object
group to represent its front direction and position. Note that,
for the given room, the user could specify multiple activity
labels to generate an indoor scene with more than one ob-



Figure 2. Object groups and the associated agents with respect to

various activities.
7

A

‘f\m P k ¥ =t
; N EHRAE

¢ P
- \b_

Figure 3. Examples of dataset scenes with different room config-
urations or furniture layouts. We preserve the relative positions
of the objects in the group, but change the positions of the object
groups, windows, and artificial lights to make variations.
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Figure 4. Top: the 2D plan of an empty room (Left) and the cor-
responding 3D scene (Right). Bottom: room features and param-
eters which are related to the human agent (representing object
groups).

ject group. As a preliminary attempt, we only focus on six
types of common object groups. As shown in Figure 2, each
object group is associated with a certain activity including
lying and watching TV (a), sitting and watching TV (b),
working at home (c), having dinner (d), conferencing (e),
and working in office (f).

For each type of scene dataset, we first choose a well-
designed indoor scene and then change its room size, the
positions of windows, doors, or artificial lights, and the po-

sitions/directions of the object groups (e.g., Figure 3). This
would lead to differentiated examples with various room
configurations and layout quality differences. The room
configuration variations ensure that the constructed datasets
can be used to assess more kinds of indoor scenes, while
the layout quality differences ensure that meaningful as-
sessment results can be obtained from subjective compar-
isons. Note that we use the left-bottom corner of the floor
as the origin of its associated coordinate system to encode
the room size and the positions of windows, doors, artifi-
cial lights, and object groups. The directions of the object
groups are limited to four directions (i.e., up, down, left, and
right). We also limit the range of room sizes to avoid too
small or too large rooms in the datasets. In our lightweight
datasets, we totally have 48 scene examples in all 6 types
with different layouts. On this basis, we also duplicate the
well-designed scene example two or three times in each
type, aiming at balancing the quantities between good- and
poor-quality scene examples. Since these datasets are small,
we can conduct subjective comparisons on them to label
their assessment scores. We generate a snapshot for each
scene example with the same view of the human agent in
the scene for comparison.

We define the room features that focus on the rela-
tions between furniture layout and room components (i.e.,
wall/window/door), rather than only use the whole shape of
the room. Specifically, we consider four types of room fea-
tures to establish such relations. The features of windows
and doors are associated with the relative directions, espe-
cially the angles between the direction of the object group
and the vector from the object group to the windows and
doors. This is mainly because such included angles gen-
erally determine the front view of the agent on the object
group, and thus impacting the subjective perception of hu-
mans on the associated activity. Considering the symmetry,
we use the sine-squared functions of the included angles as
the features. The features of artificial lights and walls are
associated with their relative distances to the object group.
We directly use the Euclidean distance to represent the fea-
tures of artificial lights; while for walls, we use the room
size to normalize the distances between the object group
and walls.

As illustrated in Figure 4-(Bottom), we define the room
features based on the front direction and the position of an
object group (where we set the agent). Here we first focus
on the case of a room with a single window, a door, and a
light (Figure 4-(Top)), and will discuss general cases later.
We assume that d denotes the front direction and (x, y) de-
notes the position of the object group, respectively. Let d,
and d,, be the distances from the object group to the front
and right-side walls; L, and L, are the corresponding side
lengths of a rectangular room (or the oriented bounding box
of a non-rectangular room); (2., Yu ), (€d, Ya), and (4, Yo )



denote the respective positions of the window, door, and
artificial light. To describe the relations between the ob-
ject group and room components including windows, doors,
walls, and lights, the room features consist of the angles be-
tween the front direction of the object group and the object-
to-window/-door direction that measures the relations to
windows and doors, and the relative positions between the
object group and walls and lights. Specifically, the sine-
squared functions of the included angles (denoted as F),
and Fy, respectively) between d and the directions from
(z,y) to (2w, Yw) and from (z,y) to (x4, y4), the distance
F, from (x,y) to (24, ya), and the relative position F; of
the object group in the room, are described as follows:

d- (2 — 2w, Y — Yuw) 2
Idll2 - (2 = 2w,y — yu)ll2”
d-(z—a,y — ya) )2
2 [z = za,y —ya)ll2” 7 (1)
Fo(z,y) = ||(z — 2o,y — Ya)|l2s

d, d
F‘l(l‘7yad) = (fv Li)
z Ly

Fy(z,y,d)=1—(

Fd(xﬂ:%d):l_(

Fuzzy-based Subjective Comparisons. Due to the lack
of quantitative metrics for layout quality evaluation, we aim
to leverage subjective evaluations to discriminate the indoor
scene examples in the datasets. Inspired by the fuzzy set
theory [12], especially the analytic hierarchy process [21],
we employ pairwise comparisons to label the assessment
scores of the differentiated indoor scene examples by cal-
culating their membership degrees. To reduce the impacts
from individual biases, we recruited 32 participants to com-
pare the randomly chosen scene pairs from our datasets.
The participants were informed of the related object group
for each type of scene, and asked to compare the snap-
shots of each scene pair by choosing the one they pre-
ferred. We collect such intuitive but fuzzy comparisons in-
stead of accurate and professional evaluations due to two
reasons: 1) such comparisons do not require professional
interior designers thus making it easy to conduct; 2) the
non-experienced users can still judge the quality of the in-
door scene based on their perspective, even they might not
know the hows and whys, that is mainly because the high-
quality scenes will always make people feel comfortable
in visual. In total, we collected 2,962 comparisons includ-
ing sitting and watching TV (496), lying and watching TV
(713), having dinners (372), working at home (544), con-
ferencing (310), and working in office (527).

LetS = {s1, s2, - - s) } be a set of scenes with the same
type, we construct the pairwise comparison matrix G as fol-

lows:
p(81\81) p(51|82) p(81|5M)
G p(s2]s1)  p(s2ls2) p(s2]sn)

p(s3|s1)  p(ss]s2) p(sslsar)| - @

Different from [21], which uses intensity of importance
(from 1 to 9) to construct the pairwise compassion matrix,
the entries of the above matrix in our method are defined be-
low: each entry p(s;|s;) represents the degree of preference
of s; over s;. Since the comparison in our implementation
is either-or, we simply define the matrix entries using the
following equation:

Ps; (31)

— 2 Vs;,8; €8, 3
s, (55) + ps; (1) ! )

p(silsj) =

where p,, (s;) represents the count of the votes where the
participants felt the scene s; is better than the scene s;.
Since each participant only compared a portion of the
dataset scene pairs to avoid fatigue, we use the weighted av-
erage of each row of GG as the membership degree function.
The weight is the squared root of the comparison frequency

t(i,j) = y/ "%+, where N is the total number of the partic-

ipants and n; ; is the number of comparisons for the pair of
the scenes s; and s;. Note (4, j) = 0 if scene pair (7, j) has
not been compared (e.g., t(i,7) = 0). Mathematically, for
each dataset scene s;, the membership degree function on
the scene quality is defined as:

1
Mo(si) = Y G(i.0) t(i.), “)
j=1,-,\M

where T'= 3., (i, j). Based on this definition, we
can calculate all membership degrees M¢(s;) € [0,1] for
all dataset scenes. The better a scene, the larger its mem-
bership degree Mc(s;).

4. Indoor Scene Modeling

Given an empty room with specified activity labels that
indicate the user-expected object groups, our method first
assesses the given room by transferring the assessment
scores of the dataset scene examples, and then places the
object groups into the room guided by the assessment re-
sults to synthesize an indoor scene.

Room Assessment. The continuous variations of the
room configurations form a space containing all possible
scenes for a certain group of objects, denoted as domain U,
and the differentiated scene examples in our datasets can be
considered as some sparsely sampled examples in /. The
mapping A(U) — V is to assess scenes in &/ and output
V € [0,1]. From the aforementioned user study result, we
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Figure 5. Left: A room with the activity label of “sitting and watching TV”. Middle: The assessment results with respect to the up direction
of the associated object group about different room features (Equation (5)). Right: The compound assessment results with four different
directions (Equation (6)). We conjointly normalize the four maps to reveal that the proper direction (up or down in this case) has the

extremums of the probabilities.

obtain a sparse set of examples, where A(s;) = Mc(s;)
based on the degree of membership functions for the scenes
in our datasets {s; }. Hence we propose to use them as bases
to establish mapping A for all the scenes in /.

Since the scene examples in our datasets are character-
ized through the room features, with respect to the position
and direction of the object group, we uniformly sample po-
sitions in the given room with four directions to calculate a
series of room features. Then, we use the basis set { A(s;)}
of the assigned activity to get the assessment energy for all
sampled positions of the given room to determine the place-
ment of the object group. For the four types of room fea-
tures {F,, Fy, F1, F,} in Equation (1), let f,(z,y,d) be
the value of the n-th type of feature at the position (z,y)
in the room with the direction d of the object group, and
fn(sk) be the value of the same type of feature calculated
from a scene in our datasets s;. Note that the feature F,
only depends on the positions. To reuse the assessment of
our example scenes on the given room, we define the as-
sessment energy at position (x,y) with the direction d as
follows:

. ||fn(x7y’d) — fn(sk)H?

2= A(sk)) Dik.d) 7
D(k,d) = Z | n(xay7d)_fn(sk)”27
(z,y)

®)

where K is the number of the example scenes with re-
spect to the assigned activity, D(k,d) is the sum of the
feature distances for all possible positions in the room for
the normalization purpose. As a result of Equation 5, ar-
eas in the given room with similar features to the example
scenes would have low energy due to the second term in
E,,. If those similar example scenes have higher assessment
scores, the areas will have even lower energies than others,
due to the first term in E,,. Note that such a calculation is
conducted on the 2D floor plan, which is equivalent to em-
ploy a greedy strategy to traverse all sampled positions in
the given room for assessment.

Further, the given room might have multiple components
(i.e., windows/doors/artificial lights) that are more complex

than the scenes in our datasets. Imagine the scenario that
installing a new window to a room that already has one,
the new window might have either no influence on a certain
object group if that’s too far away, or stacked influence co-
operated with the original window. In the latter case, the
stacked influence leads the probability of a certain position
for object placement to be a weighted sum of the assess-
ments about the two windows. Approximately, we use the
mean assessment score as the stacked result. In this man-
ner, we have two assumptions when using the above en-
ergy function: i) for large-size rooms, the room components
that are not close to the object group will not impact the as-
sessment; ii) the influence of the nearby room components
on the assessment score is linear and stackable. Then, a
compound assessment can be performed by using the ener-
gies in Equation (5) to find the proper position and direc-
tion for placing the object group in a room. Since different
room features might have different effects on the assess-
ment, weights are needed to balance the scores, assuming
the feature that is more correlated to its assessment score
would have a larger weight. For each pair of the dataset
scenes, s; and s;, we calculate the correlation coefficient
between the feature difference || f,,(si) — fn(s;)||2 and the
assessment difference ||A(s;) — A(s;)|]2, denoted as W,
and use its absolute value |WW,,| to describe the effect of the
n-th type of room feature. Note that the weights can be ad-
justed for achieving better effects in practice. To this end,
we obtain a compound assessment for the position (x,y)
and the direction d as follows:

Y,

are mlré; Wal - En(z,y,d),

W, = corr(|[fn(si) = fu(s5)ll2: || A(si) = A(s5)l]2)-
(6)

Since we have traversed all sampled positions in the given
room to calculate the assessment energy, we can easily ob-
tain the minimum value of Equation 6 from these sampled
positions. As a result of the weight W,,, the four kinds
of room features in Equation 3 have different impacts on
different activity-related object groups. In our implemen-
tation, we observe that the weight of Fj (i.e., light-human



up down left

(@

(b) | ‘ '
© ’
-

Figure 6. Assessment results of activity “sitting and watching TV”
in terms of the four directions of three given rooms. The room with
multiple windows in row (c) can be decomposed to two rooms
with a single window ((a) & (b)) for assessment. Note that the
suggested directions in three rows are marked with blue stars, to
illustrate the relation between the final assessment result of the
given room and the assessment results of its decomposed rooms.
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distance) is significantly larger than other features for activ-
ities of “sitting and watching TV” and “lying and watching
TV”, while the weight of Fy; (i.e., door-human angle) is sig-
nificantly smaller than other features for activities of “con-
ferencing” and “working in office”. For other activities, the
differences of room feature weights are not significant.

Based on our assumption that the influences of differ-
ent types of room components are linear and stackable, the
assessment for each type of feature can be done indepen-
dently. Figure 5-(middle) visualizes the assessment results
of a room based on the energies with the up direction of
the object group (represented by the agent): a higher prob-
ability area (redder) that has lower energy is more likely to
place the objects. The assessment with different directions
can also ascertain the proper direction of the placed object
group (see Figure 5-(Right)). Besides, our method can be
used for rooms with partial features, e.g., a room without
windows or a room without artificial lights. Similarly, for
a given room with multiple windows/doors/artificial lights,
we can first decompose the given room into multiple single-
component rooms (i.e., with a single window, door, or arti-
ficial light), and then combine the independent assessments
of these single-component rooms to obtain the compound
assessment of the given room. For example, in Figure 6, we
show the decomposed rooms and their assessment maps in
terms of four directions ((a) & (b)). Since the given room is
decomposed into only two rooms, these maps are combined
with the same weight of 0.5 in terms of each direction, re-
sulting in the final assessment result in (c). Analogously,
rooms with multiple windows/doors can be assessed by our
method.

Assessment-guided Synthesis. We have developed a
user interface that assists users to easily construct an empty
room, by specifying the size of the room, the positions of

%

Figure 7. Scene synthesis with multiple activity label inputs. After
the object group for the first activity label is placed in the room
(Top-right), the occupied area is then masked for the assessment
about the next activity label (Bottom-right).

a window, door, and/or artificial light (e.g., droplight), and
then assigning one or multiple activity labels to each room.
Based on the assessment of an input room, our system can
find the appropriate positions and directions of the object
group, as well as its member objects with proper areas from
our object database (collected from a well-known 3D Ware-
house [1]). Our system can then generate 2D floor plans by
applying the 2D projections of these objects. We can easily
transfer 2D plans to 3D scenes, benefited from the 3D in-
formation of the objects in the database. For some furniture
types like beds and TV sets, we snap them to the wall near
the suggested position as the constraints to refine the layout.

An input room can have multiple activity labels for the
placement of more than one object group. As illustrated
in Figure 7, once an object group has been placed based
on the first assigned activity label, the areas that have been
occupied or too small to place any additional object are
masked out. Then, our system assesses the remaining space
in the room to place the next object group. Although so
far our method focuses on single room modeling, large in-
door scenes with multiple rooms can also be tackled by
our method room by room. Moreover, aiming at relieving
the workload of manually specifying activity labels, we can
adopt a similar strategy for adaptive indoor scene modeling
as [9], in which the area ratio between objects and room is
used to measure whether more objects could be allowed to
place in a room. In this way, the user can make a long list of
activity labels, but how many labels are available depends
on the size of the given room. Namely, a small room would
only have few object groups in the list while a large room
would have more. We show some application examples in
Section 5.

5. Results and Discussion

In this section, we first show various indoor scene mod-
eling results by our approach, and then evaluate our method
through an ablation experiment, a user study in real-world
scenes, and comparisons two data-driven indoor scene mod-
eling methods [27, 14].

Modeling Results. In Figure 8, we show the syn-
thesized indoor scenes along with the assessment results of
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Figure 8. Galleries of synthesized indoor scenes. In each case we show the input empty room with the assigned activity label(s), the
assessment results of the suggested directions in 2D projections, and the 3D scenes generated by our method.

their corresponding rooms computed by our method, with
respect to the user-specified activity labels. In case (a), we
choose the assessment results with four different directions
to place the same object group in a large room. We can
see from the energy map (middle) that the four directions
have different probability distributions and suggested posi-
tions. Note that we intend to show the relations between the
suggested positions of objects and the four directions we fo-
cused on in this case. For the synthesis of large rooms with
multiple objects of the same kind, symmetry should be con-
sidered, e.g., flip half or quarter of the designed scene to ob-
tain symmetrical layouts. The other four cases show more
complex scenes with multiple object groups, given different
activity labels. In the last two cases ((d) & (e)), we test our
method on non-rectangular rooms. Each non-rectangular
room is tackled as a whole, with the areas outside the room
masked out. It can be seen that, thanks to the defined room
features, even though we do not have any non-rectangular
scenes in our datasets, our method can still be used for the
synthesis of plausible non-rectangular scenes.

In Figure 9-Top, using three cases we show how to com-
bine multiple rooms into larger indoor scenes. For each

case, the indoor scene modeling is conducted per room. Fig-
ure 9-Bottom shows three cases of adaptive indoor scene
modeling. For each row, the sizes of the input rooms deter-
mine how many activity labels from the user-specified list
(Left) can be adopted for indoor scene modeling. Note that
the TV set is manually removed in the large room of the
middle case for a better passageway. In this manner, our
method can be used for both interactive and automated in-
door scene modeling. In addition, our metrics for the room
assessment with respect to certain object groups can also be
used to evaluate indoor scenes. For example, in Figure 10,
we normalize the compound assessment result of the object
group in each scene in the range of 0 and 1. The scenes
in the left column have better paths according to the door
positions (e.g., the first and third cases), do not block the
windows (e.g., the first and second cases), and better sense
of privacy (e.g., the last office). We can see that scenes
with good layouts would have high scores. This demon-
strates that our method can refine large-scale indoor scene
datasets via filtering out the examples with low assessment
scores. On average, the generation of one indoor scene took
less than 5 seconds per activity label for assessment and 10
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seconds for object placement and system I/O, on an off-the-
shelf computer with Intel Core i7-8550U 1.80GHz CPU and
8GB RAM.

Evaluations. In Equation 5, we set A(s;) = M¢(s;) to
encourage the high-quality indoor scene examples to play
more important roles than the low-quality ones in indoor
scene synthesis. We conducted an ablation experiment to
evaluate the usability of the weighted indoor scene exam-
ples in our datasets. In Figure 11, the first row of energy
maps are directly calculated by Equation 5, while the energy
maps in the second row are calculated by setting A(s;) =0
in Equation 5. Four energy maps in each row are corre-
sponding to the up, down, left, and right directions for plac-
ing the object groups, respectively. At the bottom of Figure
11, we show two 3D scenes corresponding to energy maps
(a) and (b). Since the position of the window might lead

- A @
.u \“.ﬂ- [

Figure 9. Top: Large indoor scenes that are combined by the per-room modeling results. Bottom: Indoor scene modeling with adaptive
groups of objects. In each row, we show the candidate activity labels and the synthesized scenes with small and large room inputs.

backlight problem to scene (b) for watching TV, scene (a)
has a relatively better layout than scene (b). If we do not
weight the dataset indoor scenes (i.e., set A(s;) = 0), Equa-
tion 5 can hardly generate scenes like (a) when the quantity
of the scene examples similar to (a) is smaller than the ex-
amples similar to (b). Therefore, our method that weights
the dataset is effective for the small dataset with differenti-
ated examples.

On the other hand, we conducted a user study to demon-
strate that the dataset weights (i.e., the fuzzy measurement
M (s;) in 1) are consistent with the subjective perceptions.
Since our method can provide common-seen layouts in the
real world for most residential scenes, we only conducted
the user study on office scenes that always have various lay-
outs. We recruited 10 volunteers (postgraduate students) as
two groups (5 participants in each group) to evaluate two
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Figure 10. Indoor scenes evaluated by our metrics and the assess-
ment scores, with respect to the layouts of the groups of objects.

W, \‘

(a) A .
/i \ 4

; Lb) : . :

|

3D scene of (a)

= Mc(si)

Al)

A(s:) =0

"

Ili,
® -

3D scene of (b)

Figure 11. Top: Two rows of the calculated energy maps in terms
of four directions, given the same room in an ablation experiment.
Bottom: 3D scenes corresponding to energy maps (a) and (b).

office scenes (Figure 12-Left) in terms of six different po-
sitions for the activity label “working in office”, by giving
scores from O (worst) to 1 (best). We also used our method
to assess the same two scenes, based on the participants’
positions and directions. To normalize the assessment re-
sults of our method and make them comparable with the
participants’ scores. We proportionally mapped our results
to the range between the maximum and minimum partici-
pants’ scores. We post the assessment results of ours and
participants’ in Figure 12-Right. Even though the percep-
tions are too subjective to be precisely measured, the com-
parison results still show that the priors extracted from our

Figure 12. Comparison of the subjective assessments of humans on
two offices with six desks in the real-world and the corresponding
assessment results of our method.

dataset are similar to what we can obtain from real-world
experience.

Moreover, we compared our modeling results with the
state-of-the-art methods [27, 14] to demonstrate the effec-
tiveness of our method. In Figure 13-Top, we show the
comparison between our results and results of [27]. The
model of [27] is based on a convolutional neural network
and trained by a large-scale indoor scene database [25]. The
comparison results show that both of the methods can gen-
erate plausible indoor layouts for the given room. Note the
given room may not be similar to any scene examples in the
datasets used in the two methods. In Figure 13-Bottom, we
compare the synthesized indoor scenes given rectangular
rooms by our method and by the method in [14]. Since the
method in [14] does not consider the impact of windows or
doors, even though their generated scenes could have richer
content, our results look more appropriate for the environ-
ment of the given room. Comparing the layouts between
ours and methods [27, 14] in terms of the given environ-
ment, furniture in their methods might block the window
while ours do not, e.g., the second row in Figure 13-Top
and the first column in Figure 13-Bottom. Our results can
have better door paths that would not impact the activity of
the object groups, e.g., the third row in Figure 13-Top and
the second column in Figure 13-Bottom. Note that since
the influence of the environmental factors and their mixed
effects on the quality of the synthesized scenes are subjec-
tive, using fuzzy measurement to collect such priors could
be more flexible than directly using hard constraints such
as setting the relevant positions/directions between object
groups and windows/doors. However, methods of [27, 14]
can make more layout variations in their synthesized indoor
scenes, benefiting from the large-scale training datasets.

We also conducted a user study to compare the quality
of the generated layouts between our method and the above
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Figure 13. Comparisons of the synthesized indoor scenes between
Wang et al. 2018 [27] and ours (Top), and between Li et al. 2019
[14] and ours (Bottom).
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Figure 14. Our result and the professional design for a room with
a cambered edge.

two methods [27, 14]. 17 participants (undergraduate stu-
dents majored in digital media technology) were recruited
to compare 16 pairs of scenes (8 pairs for our method and
[27], and 8 for our method and [14]), and choose the bet-
ter layout from each pair (the order of the two scenes in
each pair was randomized). Note such two comparisons

were separately conducted. The result of the first one shows
that, in 136 comparisons (17*8) our results won 67 times
(49.3%), while [27] won 69. The result of the second one
shows that our results won 70 times (51.5%) in 136 compar-
isons, while [14] won 66. These results demonstrate that our
method can generate indoor layouts with comparable qual-
ity to the two indoor scene synthesis methods [27, 14]. It
is noteworthy that, taking a sharp turn from the state-of-the-
art methods that generally train deep-learning-based models
with large-scale indoor scene datasets, our method only uti-
lizes much smaller datasets of differentiated examples for
indoor scene synthesis and can produce comparable results.

Limitations. Our current approach has several limita-
tions. First, our method is based on several simplified as-
sumptions: utilizing doors and windows as spots in the
room features; ignoring the cross effects between object
groups when collecting the indoor scene datasets; and as-
suming the impacts of windows/doors/artificial lights on
room assessment are linear and stackable. Second, new sub-
jective comparisons need to be conducted if we add new
data, especially with respect to new object groups, to the
datasets. This might somewhat limit the scalability of our
current method. As future work, we plan to study the trans-
ferability of the subjective evaluations between different ob-
ject groups. Besides, our method needs pre-defined rela-
tionships within an object group. For some decorations like
potting and mural, it still demands user assistance for the
manual placement of objects into a scene. Third, since
the activity labels are assigned by users, improper user-
specified object groups might lead to unnatural results (e.g.,
dining room with a bed). This can be relieved by employing
priors such as relation graphs which indicate the co-existing
possibility between different object groups. Lastly, since we
only consider four different directions, our current imple-
mentation can only generate axis-aligned layouts even given
non-rectangular rooms (e.g., Figure 8(d & e)). However,
for non-axis-aligned rooms or rooms with cambered edges,
there may always exist better object arrangement solutions
rather than axis-aligned layouts. For example, in Figure 14,
given a room with a cambered bay window and the assigned
activity of conferencing, we show a scene synthesized by
our method (Left) and one by an interior designer (Right).
Our method suggests a small conference table and places it
to cover a small part of the room, while the interior designer
chooses a larger table with an oblique direction, making bet-
ter use of both the space and light. To alleviate this problem,
our approach assists the user to slightly adjust the position
and direction of the objects to refine the indoor layout.

6. Conclusion

In this paper, we present a new approach to using
datasets of differentiated examples to support indoor scene
modeling. To construct such datasets, we conduct subjec-



tive comparisons on special-designed indoor scenes with
different room features in terms of certain object groups,
and then compute the membership degrees of scene quality
for the example scenes in our datasets as their assessment
scores. Given a new room and user-specified activity la-
bel(s), our approach uses the labeled dataset scenes as priors
to assess the given room, and suggests the appropriate posi-
tions and directions for the placement of the object groups
that are pre-associated with the activity labels. In this way,
our approach is able to differentiate the qualities of the in-
door scene examples when using them to guide scene mod-
eling. It can open up new research opportunities towards
example-driven indoor scene modeling.

In the future we plan to further extend our room features
to tackle more types of factors including colors, decora-
tions, and furniture styles, to handle rooms with more com-
plex shapes (e.g., with cambered edges), and to enable the
automation of designing more comfortable indoor scenes
for target activities. We are also interested in exploring the
cross-activity influences on indoor layouts to increase the
practicality of our method, especially the scenarios that an
object group is associated with multiple activities. This in-
volves the priorities of different activities, which could also
be collected from the subjective comparison experiments.
Such priorities would enable the weighted superposition of
the energy maps for all specified activities on a single object
group, thus jointly impacting the output layout. To improve
the scalability of our approach, we also plan to study the
similarities of different kinds of object groups, to extend
a limited number of labeled data for more types of indoor
scenes in the future.
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