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Abstract

Portraits near the periphery of wide-angle photos of-
ten suffer conspicuous distortion. With the popularity
of wide-angle lenses on mobile phones, portrait correc-
tion, which removes the portrait distortion of wide-angle
images, has been attracting widespread attention in the
field of content-aware warping. Existing portrait correc-
tion methods for wide-angle photos using uniform quad
meshes take a long time solving the correction optimiza-
tion, and most of them focus only on correcting faces,
leading to the inconsistency of heads and bodies after
correction. In this paper, we propose an efficient method
based on triangle mesh to remove portrait distortion in
wide-angle perspective photos. We generate an adaptive
mesh tailored to the image content with fewer vertices.
Relying on the characteristics of the triangle mesh, we
tailor three smooth and intuitive energy terms for the
human area, background area, and boundary to min-
imize portrait distortion. Our algorithm has good ex-
pandability in adding more geometric constraints, such
as line constraint. Experimental results show that our
method is robust for photos with various fields of view.
Comparisons with the state-of-the-art demonstrate that
our method achieves significant improvements in opti-
mization efficiency and consistency of heads and bodies.

1. Introduction

People often record interesting moments by taking pho-
tos with phones that have a wide field of view (FOV). A
natural look can be achieved with a narrow lens FOV, but
with the increase of the lens’ view angle, the distortion be-
comes stronger the closer one is to the image boundary [30].
Zorin et al. proved that single global projection cannot bal-
ance the shapes of salient objects and the straightness of
lines [37]. Doing so would produce serious stretches in per-
spective images and apparent bending lines in fish-eye im-
ages due to their various viewing changes. Photos with ex-
cessive stretch and bending line structure are not consistent
with our subjective perception. Therefore, the correction of
wide-angle photos is necessary.

Many wide-angle portrait distortion methods have been
proposed, such as parametric methods [37, 22], least square
methods [6, 29, 27] and deep learning method [28]. How-
ever, most of them focus only on face correction and do not
take the body into consideration [6, 27, 28, 22]. Some works
need to specify the portrait segmentation by users [29]. In
addition, most wide-angle portrait correction algorithms use
uniform quad mesh, where the vertex distribution in the
non-salient area is as dense as the salient area, leading to
time inefficiency in minimizing distortion.

In this paper, we present an adaptive content-aware cor-
rection approach to correct portrait distortion in wide-angle
perspective photos. We formulate the problem into a non-
linear least square optimization, which measures the distor-
tion based on the adaptive triangle mesh. We adapt stereo-
graphic projection to the portrait regions that contain faces
and bodies to ensure the consistency of the head-to-body
ratio in the result. We also preserve the perspective pro-
jection for background regions. User-specified geometric
constraints, such as line constraint, can be easily incorpo-
rated into our optimization framework to satisfy users’ spe-
cial preferences.

We experimentally demonstrate that our algorithm can
produce high-quality correction results. In addition, our
method significantly improves the effectiveness of the op-
timization process due to the reasonable quantity and distri-
bution of mesh vertices. Specifically, we make the follow-
ing contributions in this paper:

• We adopt the adaptive triangle mesh in wide-angle por-
trait correction. Therefore, we can drive the correction
using fewer vertices to improve the efficiency of the cor-
rection optimization.

• We tailor the smooth and efficient energy function for
the adaptive mesh. Users-specified geometry constraints,
e.g., line constraint, can be easily incorporated into the
energy function.

• We design an appropriate density map to optimize the
adaptive mesh, improving the mesh quality by adjusting
the vertex distribution such that the adaptive mesh fit the
portraits well.
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This paper is organized as follows. In Section 2 , we
discuss related wide-angle correction works. In Section 3,
we describe the portrait correction problem and overview
of our algorithm. In Section 4, we generate the adaptive
triangle mesh based on the density map generated by the
portrait mask. In Section 5, we construct the optimization
problem which measures the distortion using three content-
aware energy terms. In Section 6, we show our results and
comparisons with the state-of-the-art. The conclusion and
future works are shown in Section 7.

2. Related Work

The core issue of this paper is to correct the distortion
of portraits in wide-angle photos. We discuss the most rel-
evant ones to our work: global distortion manipulation and
content-aware portrait correction.

2.1. Global distortion manipulation

Wide-angle photos commonly suffer from conspicuous
distortion due to inherent distortion and specific projection
models. Although many calibration methods have been pro-
posed [36, 3, 24, 16, 14, 2, 4] to remove the inherent distor-
tion, they mainly focus on correcting straight lines to obtain
perspective projection images. When the camera’s FOV in-
creases, the objects near the periphery of perspective pro-
jection photos will stretch significantly. Some works adjust
the image perspective by changing the camera’s pose [17, 9]
or constraining vanish points and lines [5, 25]. However,
these methods mainly reduce the perspective of architecture
and landscape pictures instead of portrait photos. Stere-
ographic [32], Mercator, and Pannini projections [26] are
usually used to alleviate perspective distortion in portrait
regions, but they bend straight lines in the background. The
above-mentioned works are all global distortion manipula-
tion that applies the same transformation for the different
contents in an image. Therefore, they are unsuitable for
moving the distortion of portraits while preserving straight
lines in the background.

2.2. Content-aware portrait correction

Portrait correction in wide-angle photos is a special
content-aware warping that is widely used in image resiz-
ing [15, 7, 8, 31], panorama stitching [13, 19], texture map-
ping [11], and video stabilization [10, 35]. Portrait correc-
tion methods have two categories: mesh-based portrait cor-
rections and learning-based algorithms.

Mesh-based portrait correction. Zorin et al. proved
that it’s impossible to construct a viewing transformation
such that all lines are straight and all spheres are exact cir-
cles in an image [37]. Therefore, Zorin et al. presented a
parametric approach that combines the perceptual charac-
teristics of plane and sphere projection to alleviate the per-
spective distortion. However, their work does not separate

the portrait and background regions during the deformation.
Nguyen et al. established an adaptive polynomial model,
taking the faces into account independently [22]. How-
ever, Nguyen’s model cannot dynamically adjust the vertex
distribution of the transition area between the portrait and
background area.

To optimize the vertex distribution in the transition area,
many works formulated the correction problem as a least
squares optimization by minimizing the energy terms that
measure wide-angle image distortion. Carroll et al. used
the conformality invariance of cylindrical projection and
straight-line constraints specified by users to drive the ver-
tices of the uniform quad mesh to undistort the salient
area [6]. Shih et al. presented an automatic content-aware
algorithm that adopts stereographic projection in face re-
gions and perspective projection in other regions [27].
Tehrani et al. applied object-specific planer transformation
on segmented image plane to minimize distortion [29].

All the above methods drive the correction by using
uniform mesh. The mesh vertices in the non-salient area
are as dense as the salient area, which is why the least
squares problem would have too many variables, thereby
leading to inefficient performance in the optimization pro-
cess [29, 6, 27]. Moreover, these methods mainly focus on
face correction, which often produces results with inconsis-
tent head-to-body ratios.

Learning-based algorithm. Deep learning approaches
for portrait correction have also been proposed, but most of
them focus on the improvement of facial attractiveness [18],
such as face normalization [21], shapely portraits [34], dou-
ble chin removal [33]. Tan et al. first proposed a deep learn-
ing algorithm to correct the portraits for wide-angle pho-
tos [28]. Their work can be viewed as the generalization
of Shih’s work [27] in the deep learning field. Although
the learning method can correct the distortion automatically
without parameters, it needs many training images for learn-
ing.

Therefore, a more efficient method of generating correc-
tive images is necessary. Inspired by previous works, we
apply a portrait correction algorithm that is driven by adap-
tive triangle mesh tailored to the image content, aiming to
reduce the number of mesh vertices and improve algorithm
efficiency. We correct portrait images by taking faces and
bodies into account to avoid inconsistent head-to-body ra-
tios.

3. Problem Statement

In this paper, we try to correct distorted portraits in wide-
angle photos. In this section, we describe the problem and
the overview of our algorithm.



(a) Perspective (b) Stereographic (c) Shih et al.’s [27]
Figure 1. Inconsistent head-to-body ratio with only the face con-
sidered as the salient region. (a) The image rendered with perspec-
tive projection; (b) the image rendered with stereographic projec-
tion; (c) the result generated by the method of [27].

3.1. Wide-angle portrait correction problem

Projecting the 3D scene into a 2D plane using any one
global projection inevitably results in distortion, such as
unnatural portrait stretch or line bending. In this paper,
we mainly discuss the distortions produced by perspective
and stereographic projections. The perspective projection
is based on the similar triangle principle. Therefore, any
straight lines in the real world will be projected into straight
lines in photos rendered by perspective projection. How-
ever, when the FOV is too wide, a serious stretch in the
perspective image would occur in the periphery. As shown
in Figure 1(a), the people in the yellow box have unnatu-
ral distortion. Different from perspective projection, stere-
ographic projection first projects the objects into a virtual
sphere, then projects the virtual point in the sphere into the
imaging plane. The image rendered by stereographic pro-
jection cannot guarantee that the straight line would not be
bent, but it can preserve natural portraits, as shown in red
box of Figure 1(b).

Photos with stretching portraits or bending lines do not
match the viewing experience of our own eyes. Therefore,
we try to correct the photos rendered by one global projec-
tion. We can easily obtain wide-angle perspective photos
from mobile phones with wide-FOV cameras. Thus, we
focus on solving the problem of portrait distortion in the
periphery of wide-angle perspective photos.

The inputs of our problem are photos with portraits taken
by phones with wide-angle cameras and the corresponding
35 mm equivalent focal length f35, where f35 is the param-
eter to measure the FOV of the camera. The input photos
are rendered with perspective projection, where the person
located in the periphery has serious stretching. The output
is an image with the same resolution as the input, where the
portrait distortion in the periphery of the image is corrected,
and the background maintains the effect of perspective pro-
jection.

3.2. Algorithm overview

Taking the portrait-preserving of perspective projection
and the line-preserving of stereographic projection, we ap-
ply stereographic projection into the human area and per-
spective projection into the background area to correct the

wide-angle photos. Previous works focused on face correc-
tion and ignored the coordination between the bodies and
the faces [27, 28], leading to inconsistent head-to-body ra-
tios (Figure 1(c)). To overcome this problem, we select the
whole portrait area for deformation. To ensure the conti-
nuity of the deformation, previous works used dense uni-
form quad mesh to drive the correction. The mesh vertex
coordinates are regarded as variables in the least squares
optimization, which measures the distortion. Therefore,
too many mesh vertices would reduce the optimization effi-
ciency. Wide-angle portrait photos are special images with
clear subjects, which is why the adaptive mesh is conducive
to improving efficiency by reducing vertices in the non-
salient area.

We propose a novel method that corrects wide-angle per-
spective photos with portraits automatically. Figure 2 gives
an overview of the algorithmic pipeline. Given a wide-
angle perspective image (Figure 2(a)). We first generate
the density map based on the portrait mask (Figure 2(b)),
and then generate the adaptive triangle mesh (Figure 2(c))
based on the density map. Afterward, we perform content-
aware optimization that contains the portrait, background,
and boundary energy terms, obtaining the optimized mesh
without distortion (Figure 2(d)). Finally, we obtain the re-
sult (Figure 2(e)) by warping Figure 2(a) using the opti-
mized mesh. The details of the process will be described
in Sections 4 and 5.

4. Adaptive Mesh Generation

Uniform quad meshes are simple but more inefficient
than adaptive mesh in driving the image deformation be-
cause of their uniform dense vertex distribution. In contrast,
the triangle mesh has a great potential to adapt to the image
content using few vertices while guaranteeing dense vertex
distribution in the salient area due to its adaptability. In this
section, we generate the density map based on the portrait
mask to guide the adaptive triangle mesh generation.

4.1. Density map generation

Our purpose is to correct the distortion of the portraits,
which means the portrait areas should be salient. In our
algorithm, we should segment the whole human area apart
from the background. Instance-level human parsing [12] is
the body semantic part segmentation that satisfies our re-
quirement.

First, We obtain the initial segmentation of people as the
original mask M0. Second, we calculate the portrait mask
Mt with the transition area to prevent the portrait segmen-
tation from being insufficiently accurate. We set the bright-
ness of portrait areas in the original mask to 100% and oth-
ers to 0. The brightness is reduced the further away one is
from the boundary of the portrait. The brightness calcula-



(a) Input (f35 = 13mm) (b) Density map (c) Adaptive triangle mesh (d) Correction mesh (e) Output

Figure 2. Correction pipeline.

tion equation of the transition area is as follows:

Mt(pi) = (1− di
max
pj∈I

dj
)10 , (1)

where di is the closest distance between arbitrary pixel pi in
the image I and portrait edges in the original mask M0. For
the convenience of calculation, we magnify the pixel value
of Mt to 0-255 linearly. Then we obtain the portrait mask
Mt with transition area by using Equation (1).

Third, to guide the generation of adaptive triangle mesh,
we calculate the probability density for each pixel in the
image to generate the density map Md to adjust the vertex
distribution. More severe distortion of the area corresponds
to a more drastic change of the mesh vertices in the corre-
sponding area. The mesh in distortion area should be denser
to ensure the smooth transition of deformation. Because the
distortion strength is proportional to the radial distance and
we concentrate on the portrait distortion, we set the density
map Md as follows:

Md(pi) = e
ln(10)ri

Rm eln(Dm)
Mt(pi)

255 , (2)

where ri is the radial distance between pi and the im-
age center, Rm is the maximum radial distance, and Dm

is the maximum probability density. In this paper we set
Dm = 1000. Then we obtain the density map Md by using
Equation (2). The process is shown in Figure 3.

4.2. Mesh generation

We discretize the image into the adaptive triangle mesh
based on the density map Md generated in Section 4.1, such
that it has denser vertex distribution in the portrait areas than
background areas.

We sample the portrait area and the background area of
the image with different sampling distances to obtain the
initial adaptive Delaunay triangle mesh, the sampling pro-
cess is shown in Figure 4. First, we sample the sparse
points with background sampling distance (Figure 4(b)).
Then we sample the dense points with portrait sampling
distance (Figure 4(c)). Finally, we take the sparse sam-
pling points in the background areas and the dense sam-
pling points in the portrait areas to obtain the initial sam-
pling points (Figure 4(d)). Assume wmax and wmin are the

(a) Input (f35 = 13mm) (b) Semantic segmentation

(c) Portrait mask (d) Density map

Figure 3. Portrait mask generation. Given an input i.e. perspective
image in (a), we first obtain the original mask in (b) by [12]. Then
we compute the transition area between the background and orig-
inal segmentation to generate the portrait mask in (c). Finally, we
calculate the probability density for each pixel in the image, and
we visualize the density map in (d).

maximum and minimum values of the width and height of
input image. We experimentally choose wmax

50 and wmax

20
to be the sampling distance for portrait and background re-
gions. Then, we can compute that the number of mesh ver-
tices N is in the range (4, 25)× 200wmin√

3wmax
.

Although simple point sampling can obtain a good adap-
tive triangle mesh in most cases, it will sometimes produce
some sharp triangles in the transition area between the por-
trait and background area sometimes. We experimentally
found that when the minimum angle of the sharp triangle
is less than π

12 and the vertices cannot fit the portrait edges
well (as shown in Figure 5(b)), the correction result would
still be obviously distorted (as shown in the red box of Fig-
ure 5(d)).

To improve the mesh quality, by removing the sharp
triangles in the transition, we use centroidal Voronoi tes-
sellation (CVT) [23] to further optimize the initial sam-
pling mesh. CVT updates the vertex position by using
the barycentric coordinates based on the density map Md



(a) Input (f35 = 13mm) (b) Sparse sampling (c) Dense sampling (d) Initial sampling

Figure 4. Sampling points. Inside the image, we sample points at equal sampling distance row by row, where the height between the rows
is

√
3

2
times the sampling distance. And we sample points at the image boundary with the same height as the internal points.

(a) Input (f35 = 15mm) (b) Initial mesh (c) Optimization mesh (d) Results comparison

Figure 5. Initial and optimization mesh. (a) The input was taken from a mobile phone with f35=15mm; (b) the initial sampling mesh, the
orange points are located in the portrait areas; the green triangles are the sharp triangles; the initial mesh can not fit the contours of portraits
well; (c) the CVT mesh, the orange points fit the contours of the portraits better than (b); and (d) the red box are the results generated by
mesh in (b); the yellow box are the results generated by mesh in (c). After we optimize the initial triangle mesh, the sharp triangles located
in the transition area between portrait and background area are eliminated.

generated in Section 4.1. After two or three Lloyd’s itera-
tions [20], the mesh quality is improved, and then we obtain
the final adaptive meshM = {vi} without sharp triangles
in the transition area. The new mesh would fit the portrait
contours well because the density map is generated based
on the portrait mask with the transition area (as shown in
Figure 5(c)). The result generated by optimized mesh sug-
gest that the correction effect is improved significantly, as
shown in the yellow box of Figure 5(d).

The optimized adaptive mesh can cover the salient area
and transition area with high-quality mesh without sharp tri-
angles, preventing the inner boundary of the portrait mask
from being seriously affected by perspective projection,
which causes the unnatural stretch.

5. Content-aware Correction

Perspective and stereographic projection have different
and conflicting properties, maintaining straight line and nat-
ural faces respectively. Therefore, we apply stereographic
projection to the portrait mask regions and perspective pro-
jection to the background regions. We compute the cor-
responding mesh M∗ = {v∗} via solving a least squares
optimization problem:

M∗ = argmin
M

wporEpor +wbacEbac +wbouEbou , (3)

where M and M∗ are the meshes before and after opti-
mization, Epor, Ebac and Ebou are the portrait energy, back-
ground energy and boundary energy respectively; and wpor,
wbac and wbou are the corresponding weights. The energy
terms are designed according to the traits of the adaptive tri-
angle mesh, which is simple, smooth and easy to optimize.
The function of the three energy terms will be discussed in
Section 6.1.

5.1. Portrait energy

As the input is a perspective image, we expect mesh ver-
tices vi in the portrait regions to be mapped into corre-
sponding stereographic position si, where si can be com-
puted by perspective coordinates pi using the equation
from [37]:

si = 2f tan (
1

2
arctan

pi
f
) ,

where f is converted by the input parameter f35 to describe
the physical focal length using pixels as f = Rmf35

21.6 . Hence,
we constrain the set of mesh vertices in the portrait mask to
adjust positions by using the portrait energy term:

Epor =
∑

Md(vi)6=0

ωi‖si − (Svi + t)‖22 ,

where Md(vi) 6= 0 indicate that vi is located in portrait or
the transition area, ωi is the portrait weight of vertex vi, S



(a) Input f35 = 17 (b) Mw = 1 (c) Mw = 5 (d) Mw = 10 (e) Mw = 15
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Figure 6. The results with different Mw. (a) The input; (bve) the results of corresponding maximum radical weights; (h) the similarity
curve of the results corresponding to the adjacent Mw, where Dn,n+1 is the similarity between the corrected result with Mw = n and
Mw = n+ 1.

is the similarity transform matrix represented by:

S =

[
a b
−b a

]
,

t is a two-dimensional translation vector, which are the vari-
ables that adjust the vertex distribution through slight trans-
lation and rotation [27]. The portrait weight ωi is set based
on the distortion strength which is related to the radical dis-
tance ri of the vertex vi. Next, we will discuss the portrait
weight setting.

According to the properties of perspective projection, a
greater radial distance ri of the vertex vi corresponds to
more serious distortion. The center of the image usually
does not have inaesthetic distortion, so the weight ωi of ver-
tex vi should be set to be positively related to the radial dis-
tance from the center. The density map Md that describes
the probability density of each pixel satisfies the property.
For convenience, we linearly scale the value of the density,
and set the vertex weight ωi as follows:

ωi =
Mw

max
vj∈I

Md(vj)
Md(vi) if Md(vi) 6= 0 , (4)

where Mw is the maximum radical weight.
We now consider how the weight Mw affects the cor-

rected results. By setting Mw = 1, 2, · · · , we obtain a se-
quence of corrected images In for n = 1, 2, · · · . As shown
in Figure 6(a-c), the results becomes more desirable when
n increases from 1 to 5. However, Mw should not be too
large, otherwise other energy terms will have no effect on
the result. We measure the similarity of two consecutive
images In and In+1:

Dn,n+1 =
Pn · Pn+1

‖Pn‖‖Pn+1‖
, (5)

where Pn is a one-dimensional vector with each element the
average of RGB values of a pixel in In. Figure 6(f) plots the
similarity between two consecutive images In and In+1 as
n varies from 1 to 15. We can observe that the similarity
Dn,n+1 is higher than 0.99 with n ≥ 5. This implies the
correction result tends to be the same when the maximum

radical weight Mw reaches a specific value; see Figure 6(c-
e). Based on the above observation, we take Mw = 5 in all
our experiments.

5.2. Background energy

To maintain the structures in the background, we tailor
the background energy from two aspects: keep the per-
spective projection in the background, and apply the user-
specified geometry constraints, e.g. line constraint.

Ebac = Eedg + Elin ,

where Eedg is the edge term, and Elin is the line-preserving
term. We will discuss the two energy terms in the following.

Perspective projection preservation. We define an
edge term to constraint the background of the image to
maintain the perspective projection. For uniform quad
mesh, the preservation of the structure benefits from the
constraints of Jacobian and Hessian matrices [5, 9]. How-
ever, the Jacobian and Hessian matrices of nonuniform tri-
angle mesh are not straightforward to estimate. As the three
edges can form a unique triangle, we constraint the vector
difference of the triangle edge before and after optimization
to preserve the original perspective structure in the back-
ground. The term takes the length and direction message of
a triangle edge into consideration, and it allows the edges of
the triangle to move as parallel as possible without turning.
Then the warped mesh would have a similar structure with
the original mesh in the background. We can express the
edge term as

Eedg =
∑
i

∑
j∈N(i)

‖(vi − vj)− (pi − pj)‖22 ,

where vi are the mesh vertex coordinates, and pi are cor-
responding perspective coordinates. Intuitively, the above
energy term minimizes the vector difference of the edge be-
fore and after optimization to ensure the similarity of the
original and warped triangles.

Straight line preservation. If the straight structures are
close to portrait regions or covered partly by people in the



(a) Input (f35 = 13) (b) Stereographic (c) Result (wpor = 4)
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(e) Input (f35 = 23) (f) Stereographic (g) Result (wpor = 4) (h) Result (wpor = 17)
Figure 7. The results with different global portrait weight wpor and fitted curve of wpor .

front, then the lines in the structures are likely to be bent
or misaligned after optimization. Thus we propose a line-
preserving term (6) to ensure that the points in the line are
still in a straight line after optimization.

Elin =
∑
n

∑
u∈L(n)

‖uy − knux − bn‖22 , (6)

where L(n) is the vertices set in nth line; ux and uy are the
x-axis and y-axis coordinates corresponding to u, respec-
tively; and kn and bn are the parameters of nth line. u can
be represented linearly by the three vertices of the triangle
it is in, i.e. u = a1v

1
t +a2v

2
t +a3v

3
t , where vit (i = 1, 2, 3)

is the vertex in corresponding triangle t, and ai can be com-
puted by linear interpolation. Even though we can explic-
itly specify the preservation of the straight lines, in most
cases, we can obtain good results without adding the line-
preserving term. As long as the explicit expression of the
geometric shapes can be obtained, we can incorporate the
related constrains into our energy framework easily.

5.3. Boundary energy

Portrait warp may occur in the boundary of the image.
Hence, fixing the boundary vertex is not an appropriate con-
straint. To prevent unpleasant artifacts in the boundary,
boundary vertices should also participate in the optimiza-
tion process. The optimized boundary vertices should be as
close to the original boundary as possible. We define the

boundary term as follows:

Ebou =
∑
i∈Bl

‖vi,x‖22 +
∑
i∈Br

‖vi,x −W‖22

+
∑
i∈Bt

‖vi,y‖22 +
∑
i∈Bb

‖vi,y −H‖22 ,

where Bl, Br, Bt, Bb are the vertex sets of left, right, top,
and bottom boundaries in the image, respectively; and W
and H are the width and height of the image respectively.

5.4. Weight setting

In this section, we discuss the weight setting in Equa-
tion (3). Note that both background energy term Ebac and
boundary energy term Ebou are designed to prevent distor-
tion generation in the background and at the boundary. We
also found that Ebac and Ebou are of the same order of mag-
nitude in our experiments. For simplicity, We firstly fix the
weights of energy terms to be wbac = wbou = 8, then de-
termine the global portrait weight wpor.

The focal length of the photos is an essential factor af-
fecting the distortion. Global portrait weight wpor that
neutralizes the two projections should be adaptive accord-
ing to focal length to achieve a desirable result; see Fig-
ure 7(c,g,h). We conduct experiments on images with five
different focal lengths (f35 = 13, 14, 15, 17, 19) using var-
ious global portrait weight wpor. The optimal integer for
each focal length f35 is denoted by w∗por,f35 . We find that



(a) Input (f35 = 14) (b) W/o transition (c) With transition

(d) Input (f35 = 26) (e) W/o edge term (f) With edge term

(g) Input (f35 = 19) (h) Fixed boundary (i) Constraint boundary

Figure 8. Influence of different energy terms. (a) The input; (b&c)
the results without and with transition area; (e&f) the results with-
out and with the edge term; (h&i) the results when we fix and
constraint the boundary.

the points (f35, w
∗
por,f35

) has a good fit with the function
F (x) = 2ln(12.7x−157.7), as shown in Figure 7(d). Thus, we
set wpor = F (f35) in all our experiements.

5.5. Optimization

The correction problem is formulated as a general non-
linear least squares optimization. As we described above,
the energy function is a nonlinear smooth function. There-
fore, we use the Levenberg–Marquardt algorithm to find the
optimal. Ceres Solver is an efficient open-source C++ li-
brary for solving nonlinear least squares problems. In this
paper, we use Ceres Solver [1] to solve the correction prob-
lem.

6. Implementation and Results

In this section, the ablation experiment results are first
shown to describe the influence of various energy terms.
Next, we show the final results of our algorithm. Then, we
compare the results with the state-of-the-arts of wide-angle
portrait correction [27, 28, 22]. In addition, we conduct the
user study to verify user preferences on our results over re-
sults generated by other methods. Finally, we discuss the
running time of our algorithm.

6.1. Ablation experiments

In this part, we will discuss the influence of the energy
terms from the portrait, background, and boundary term.

Portrait energy. Portrait energy is set to eliminate the
perspective distortion of the portrait areas. As shown in
Figure 8, we use the masks without and with transition to
demonstrate the function of the portrait terms. When we
use the original mask generated from the segmentation al-
gorithm, the little girl’s right arm still has obvious perspec-
tive distortion (Figure 8(b)). After a certain transition area
is added, the whole body of the little girl becomes more
harmonized (Figure 8(c)). The results also present that the
appropriate mask with transition can improve the effect of
correction.

Background energy. We have discussed two energy
terms in the background: the edge term and line-preserving
term individually.

The edge term keeps the triangle mesh from flipping over
and controls the similarity with the original triangle. As
shown in Figure 8, the optimized triangle mesh in the hat is
flipped after the optimization without the edge terms (Fig-
ure 8(e)). After adding the edge term, the foldover is
avoided. As shown in Figure 8(f), we maintain a structure
similar to the original mesh in Figure 8(d). Therefore, the
edge term is necessary to preserve the perspective projec-
tion in the background regions.

The line-preservation term is a supplementary part of
background preservation. The straight line close to or
covered partly by the portrait areas may be significantly
curved or misaligned after the optimization without the line-
preservation term. If these types of straight lines are not
processed separately, even though we have constrained the
triangle edge term, the background area will still produce
unpleasant deformation. As shown in Figure 9, the straight
lines covered by the human body area are misaligned, and
the straight lines on the ceiling above the heads are also
obviously curved. After adding the line-preservation con-
straints, the result is improved significantly.

Boundary energy. Since the distortion of portraits in
wide-angle photos usually occurs at the boundary of the im-
age, if the boundary is directly fixed, the boundary does not
easily produce artifacts due to the triangle edge constraint.
However, the change of portrait would produce other un-
pleasant deformation in the transition area. For example,
the edge close to the head is bent, shown as Figure 8(h). If
we constrain the boundary point as close as possible to the
boundaries, then the energy can be adjusted automatically,
and this problem can be avoided effectively, as shown in
Figure 8(i).

6.2. Corrected image results

We use linear interpolation to render the optimized im-
ages. As the boundary is free to move, the optimized image



(a) Input (f35 = 19mm) [27] (b) W/o line term (c) With line term

Figure 9. Influence of straight line term. (a) The input, and the purple lines are the straight lines specified by the user; (b) the result without
constrained straight lines specified by the user; (c) the result with constrained straight lines specified by the user.

(a) Input (f35 = 17) (b) Quad mesh (c) Triangle mesh

Figure 10. Results under different mesh. (a) The input; (b&c) the
result of a quad mesh with 4800 vertices and triangle mesh with
1113 vertices respectively.

would have some blank parts. we crop these areas and ob-
tain final results. To experiment with the feasibility of the
proposed method, we processed many pictures with wide
FOVs, including single- and multi-person photos, and out-
door and indoor shots to ensure diverse scenes. The back-
ground of some photos contains a large amount of linear
structure, as shown in Figure 11.

The experimental results show that our method is robust
for a variety of scenes. For a natural background without a
large number of buildings, our naked eyes cannot detect ob-
vious background distortions. For photos with many num-
ber of straight-line structures in the background, correcting
the stretching of people will cause the straight lines near the
human body to be misaligned. We constrain this kind of
special straight lines to guarantee a better result. Thus, our
algorithm is also suitable for pictures where the structure of
a building needs to be maintained. However, in most cases,
we do not have to constrain all the straight lines in the pic-
ture and need to deal with only a small part of the straight
lines that are bent.

To validate the robustness of our correction method, we
also conduct experiments on photos taken from the same
scene, as shown in Figure 12. In addition, we test our

method on the photos artificially cropped according to var-
ious fields of view; the experimental results are shown in
Figure 13. The results show that our method has strong ro-
bustness for images with different focal lengths.

6.3. Comparisons with the state-of-the-arts

Figures 14 and 15 show the comparisons against the
state-of-the-arts of wide-angle portrait correction [37, 27,
28, 22].

Zorin et al. proposed a parametric method to correct the
wide-angle photos [37]. As shown in Figure 14(b), the por-
trait has been corrected, but since the method does not pro-
cess the portrait and background separately, the table and
the wall in the right area are distorted. Compared with Zorin
et al.’s method, we apply local deformation in different re-
gions so that our result maintains the straight structures in
the background (Figure 14(d)).

Shih et al.’s method uses a dense quad grid to drive the
image deformation to guarantee the continuity of image de-
formation [27]. In our algorithm, the adaptive triangle mesh
needs only a few vertices to achieve the same deformation
effect as the denser uniform quad mesh, as shown in Fig-
ure 10. Other comparisons with Shih’s work are shown in
Figures 14 and 15. The results show that our method has a
similar effect even though we use fewer vertices and that our
method improves the optimization efficiency significantly.
The optimization time will be discussed in Section 6.4.

Tan et al. proposed a deep learning approach based on
Shih’s work [28]. Although Tan’s method used edge de-
tection in the network to preserve the lines near the face
boundaries, Figure 15(c) shows that the lines in the back-
ground are still misaligned when they are covered by the
face areas. Tan et al. did not take the bodies into account;
the head-to-body ratios are inconsistent as shown in Fig-
ures 14(g) and 15(h), while our result balances the head-to-
body ratio as shown in Figures 14(h) and 15(j).

In addition, Nguyen et al. established a polynomial dis-
tortion model [22], but the straight lines between faces are



Figure 11. More results. Each group shows an input image (left), followed by our result (right).

(a) Input f35 = 24 (b) Result of (a)

(c) Input f35 = 15 (d) Result of (c)

Figure 12. The results of the photos taken from the same scene
with different focal lengths. (a&c) The input images; (b&d) the
results of the corresponding inputs.

bent, as shown in Figure 14(k). Compared with Nguyen et
al.’s model, our method has significant advantages in main-
taining the background structure, as shown in Figure 14(l).

To ensure a fair comparison with other results, we first

compare our results without any straight line constraints
with those of the above mentioned works. However, as
we consider the entire human body not just the faces, the
straight edges around the salient areas more easily produce
unexpected bending or misalignment after warping com-
pared with other works (e.g. as shown at the bottom right
corner in red box of Figure 15(i)). Straight-line perception
is subjective. The straight lines detected by the existing line
detection methods are messy and segmented. If the detected
segmented lines are used directly in optimization, then it
would lead to misalignment of the straight line after opti-
mization and reduce the optimization efficiency. Therefore,
we specify the straight lines manually to constrain (Fig-
ure 15).

6.4. Optimization time

We compare the running time of Shih’s [27] and our
method on a 3.20GHz Intel(R) Core(TM) i5-4460 CPU with
12GB RAM. Note that both Shih et al.’s method and our
method require a body semantic part segmentation for spec-
ifying the weight in correction energies. Besides Instance-
level human parsing [12], other body semantic part segmen-
tation methods may also be applicable for our applications.
Shih et al.’s approach uses a dense uniform grid to guarantee
the continuity of image deformation [27], which is indepen-
dent of the body semantic part segmentation result. Differ-



Figure 13. Corrections of artificially made photos. The input images are in the top row. The image on the left is the original photo (f35 =
15mm). Other images are cropped from the original image such that f35 becomes 16mm, 17mm, 18mm, 19mm, 20mm, respectively. The
results are in the bottom row.

(a) Input (f35 = 18mm) (b) Zorin et al. 1995 [37] (c) Shih et al. 2019 [27] (d) Ours

(e) Input (f35 = 19mm) (f) Shih et al. 2019 [27] (g) Tan et al. 2021 [28] (h) Ours

(i) input (f35 = 19mm) (j) Shih et al. 2019 [27] (k) Nguyen et al. 2021 [22] (l) Ours

Figure 14. Comparisons with other works.

ently, our algorithm requires a triangle mesh adaptive to the
density map correlated to the body semantic part segmenta-
tion result; see Section 4. Here, we focus on comparing the
computation time for mesh generation and correction opti-

mization during the correction process, assuming an appro-
priate body semantic part segmentation is given.

The three sets of data in Table 1 show the number of
vertices used and the running time for corresponding mesh



(a) Input (f35 = 19mm) (b) Shih et al. 2019 [27] (c) Tan et al. 2021 [28] (d) W/o line constraints (e) With line constraints

(f) Input (f35 = 19mm) (g) Shih et al. 2019 [27] (h) Tan et al. 2021 [28] (i) W/o line constraints (j) With line constraints

Figure 15. Comparisons with and without line constraints. (a&f) The input image and user-specified line constraints; (b&g) the results
corrected by Shih’s work [27]; (c&h) the results corrected by Tan’s work [28]; (d&i) our results without line constraints; (e&j) our results
with line constraints.

Table 1. Running time.

Figure Method Nv Tm (s) To (s) Tt (s)

2(a) [27] 4800 0 0.460 0.460
Our 1176 0.030 0.045 0.075

5(a) [27] 4800 0 0.593 0.593
Our 1567 0.035 0.075 0.110

10(a) [27] 4800 0 0.336 0.336
Our 1113 0.025 0.047 0.072

Note: Nv is the number of the mesh vertices; Tm is the run-
ning time for generating mesh;To is the running time for cor-
rection optimization; and Tt = Tm + To.

generation and correction optimization. We can observe
that adaptive triangle mesh significantly reduces the num-
ber of vertices. As shown in Figure 10, the adaptive mesh
uses fewer vertices and achieves similar natural faces and
good background as one generated by denser quad mesh.
Although extra time is used for mesh generation in our
method, the overall computational time is still considerably
reduced.

We also compare the optimization time of the energy
function of Shih’s and ours under the same number of mesh
vertices. Our energy function reaches convergence faster
than Shih’s. For example, the optimization time of adaptive
triangle mesh with 1,200 vertices is only 0.053s, while that
of quad mesh with the same number of vertices is 0.083s for
Figure 10(a).

In summary, our method improves computational effi-
ciency by reducing the number of vertices and simplifying
the energy function.

Table 2. User study in comparisons to other methods.

Expe. 1 Expe. 2 Expe. 3

Input 9.00% 15.00% 6.19%
[27] N/A 16.00% 16.67%
[28] 34.00% N/A 22.38%
Our 57.00% 69.00% 54.76%

Note: Expe. 1v3 represent the three
participant-based experiments, respectively;
each col shows the percentages of votes in
each experiment.

6.5. User Study

In this section, we further evaluate whether our results
meet human expectations by conducting a user study. Here,
we compared our method to mesh-based method [27] and
learning-based method [28].

We presented 16 groups of images in a random or-
der to 35 participants, including three participant-based
experiments: (1) 5 groups compared with mesh-based
method [27]; (2) 5 groups with deep-learning-based
method [27]; and (3) the remaining 6 groups with both
methods, respectively. Each group includes the randomly
sampled input image with portrait distortion followed by the
results generated by different methods in random order. The
participants were asked to select their favorite one. Table 2
shows the distribution of votes for different methods. The
voting results demonstrate that our method outperformed
others; the number of votes for our results exceeds 50% in
all three experiments.



7. Conclusion and Future work

We propose a content-aware portrait correction method
based on adaptive triangle mesh. We build least squares
optimization by minimizing the energy terms that measure
wide-angle portrait distortion. Experimental results indi-
cate that our method is robust to various kinds of pictures
and that the adaptive strategy reduces the vertices signifi-
cantly. Comparisons with other works demonstrate that our
algorithm is efficient for optimization and the results have
better consistency of heads and bodies.

One extension of our work is to realize the automatic de-
tection of geometric shapes such as whole lines covered by
human regions instead of segmented lines. A deep learning
approach based on the dataset generated by our method is
another potential area for future work. Inspired by [28], a
worthwhile task is to add line detection to the deep learning
network to achieve fully automated wide-angle correction.
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