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Abstract

Place recognition plays an essential role in the field of
autonomous driving and robot navigation. Point cloud
based methods mainly focus on extracting global de-
scriptors from local features of point clouds. Despite
having achieved promising results, existing solutions ne-
glect the following aspects, which may cause perfor-
mance degradation: (1) huge size difference between ob-
jects in outdoor scenes; (2) moving objects that are un-
related to place recognition; (3) long-range contextual
information. We illustrate that the above aspects bring
challenges to extracting discriminative global descrip-
tors. To mitigate these problems, we propose a novel
method named TransLoc3D, utilizing adaptive recep-
tive fields with a point-wise reweighting scheme to han-
dle objects of different sizes while suppressing noises,
and an external transformer to capture long-range fea-
ture dependencies. As opposed to existing architec-
tures which adopt fixed and limited receptive fields, our
method benefits from size-adaptive receptive fields as
well as global contextual information, and outperforms
current state-of-the-arts with significant improvements
on popular datasets.

1. Introduction

Navigation systems are essential for robots and self-
driving cars to accurately localize themselves in complex
outdoor scenes, which commonly depend on Global Posi-
tioning System (GPS). When GPS signal is not available, an
alternative method is to sense, monitor, and gather the sur-
rounding information of agents, such as the geometry of the
buildings and roads, from depth sensors or RGB cameras,
and then perform localization by recognizing the current

Figure 1. Pipeline of point cloud based place recognition. The
continuous trajectories are discretized into “places” represented
by the scanned point clouds. A recognition model first produces a
discriminative descriptor for each point cloud, and then finds the
closest match in existing point clouds for a query using the simi-
larity of their descriptors.

place. Compared with point clouds obtained from depth
sensors, images taken from RGB cameras are more sensi-
tive to illumination changes, which may lead to significant
performance degradation [31]. To alleviate this problem,
more and more works [31, 36, 29, 17, 12, 38] began to fo-
cus on place recognition based on 3D point clouds due to
their inherent invariance to illumination.

Large-scale point cloud based place recognition is often
regarded as an instance retrieval problem, as illustrated in
Fig. 1. Although methods have been proposed to achieve
promising results on research datasets, accurate and robust
place recognition remains a challenging problem for the
following reasons. First, in complex outdoor scenes, ob-
jects may differ drastically in size, whereas most existing
methods perform feature extraction utilizing fixed receptive
fields without consideration of size difference. For small
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objects like vehicles, large receptive fields will capture un-
related information, making the extracted features less dis-
criminative, while for large objects such as buildings, small
receptive fields would fail to encode the complete geometric
structure. Second, moving objects in the scene, like pedes-
trians, are not related to place recognition, which requires
the feature extraction process to be robust to such noise.
Third, most of the existing methods only consider extracting
features of local regions, while neglecting long-range con-
textual information. We argue that the lack of long-range
contextual information limits the representation power of
the descriptors.

To address the above issues, we propose a new architec-
ture named TransLoc3D. Our architecture first processes the
input points using sparse voxelization and 3D sparse con-
volution, followed by a novel feature extraction pipeline,
and produces global descriptors by NetVLAD [1, 31]. Our
proposed feature extraction pipeline is capable of adap-
tively adjusting receptive field sizes in accordance with
the targeted objects, which utilizes a point-wise feature
reweighting scheme to reweight features of multiple re-
ceptive scales by a learned attention map. After that, we
adopt external attention layers [8] to capture long-range
contextual information. Combining the strengths of adap-
tive receptive fields and a transformer-based architecture,
TransLoc3D can produce more discriminative global de-
scriptors for point clouds. Quantitative results show that
TransLoc3D surpasses existing methods and achieves state-
of-the-art average recall on widely adopted benchmarks.
We also demonstrate the ability of TransLoc3D to alleviate
the above issues by qualitative visualizations.

Our contributions can be summarized as:

• We argue that taking object size differences into con-
sideration is necessary for point cloud based recogni-
tion of complex scenes, and propose to use adaptive
receptive fields for feature extraction. A point-wise
reweighting scheme is used to fuse features from dif-
ferent scales and suppress noises.

• We design a new architecture named TransLoc3D,
which effectively combines the advantages of adaptive
receptive fields and transformer, making it suitable for
the place recognition task. We also provide a quali-
tative analysis of these modules by visualizing the re-
sults.

• Extensive experiments demonstrate that the proposed
TransLoc3D achieves state-of-the-art results on four
popular benchmarks, namely Oxford RobotCar, B.D.,
U.S. and R.A. datasets.

2. Related Work

2.1. 3D Point Cloud Based Place Recognition

PointNetVLAD [31] is the first learning-based method
for large-scale place recognition. It follows the design
of PointNet [25] to extract point-wise features and then
adopts NetVLAD [1] to transform point-wise features
into a global discriminative descriptor. Following Point-
NetVLAD, PCAN [36] incorporates a Point Contextual At-
tention module into the PointNet architecture, which can
predict the significance of each independent point feature
based on contextual information. However, both of these
methods ignore the spatial point distribution in local areas,
which limits the representation power of the global descrip-
tors. To capture local geometry information, LPD-Net [17]
adopts a graph-based aggregation module in both feature
space and Cartesian space and achieves state-of-the-art per-
formance. Previously mentioned works all operate directly
on unordered point sets. In contrast, MinkLoc3D [12] and
Minkloc++ [13] use an alternative data representation for
place recognition. Point clouds are first voxelized into a
sparse voxel representation, and then a 3D sparse Convo-
lution Neural Network (CNN) built on a Feature Pyramid
Network [15] is adopted to extract informative local fea-
tures. However, simply stacking convolution layers may ig-
nore long-range contextual information, and conventional
CNNs with fixed receptive fields fail to tackle the size dif-
ference problem.

2.2. Transformers in Computer Vision

Recently, inspired by the success of Vision Trans-
former [5], more and more researchers focus their atten-
tion on applying the Transformer architecture to vision
tasks [9, 33, 4, 34, 6, 37]. NDT-Transformer [38] is the
first deep learning architecture modeled upon a standard
Transformer for place recognition. In this model, each
point cloud is first transformed into the Normal Distribution
Transform Cell (NDT Cell) representation [19], and then
fed to a transformer with 3 encoders to capture long-range
contextual information. However, transformer-based mod-
els suffer from large memory consumption, which limits the
batch size for deep metric learning and further influences
the performance of models.

2.3. Multi-Scale Receptive Fields

Numerous experiments [23, 24, 28] in neuroscience have
suggested that the receptive field size of a neuron is not fixed
but adaptive to the input bioelectric signals. However, this
property does not receive sufficient attention in constructing
CNNs. InceptionNetV1 [30] is the first architecture aggre-
gating multi-scale information within the same layer via a
simple concatenation mechanism. Following InceptionNet,
many methods try to improve feature representation by con-



catenating multi-scale features, but they often fail to select
appropriate scales for the targeted objects. The follow-up
work SKNet [14] enhances this architecture using an atten-
tion mechanism to fuse multi-scale information from differ-
ent receptive fields. Compared with simple concatenation,
the attention mechanism is more suited to adaptively adjust-
ing the receptive field sizes based on input and has potential
for tackling the size difference problem in outdoor scenes.

3. Method

3.1. Overview

As illustrated in Fig. 2, our proposed TransLoc3D in-
cludes four main parts, a 3D sparse convolution module,
an adaptive receptive field module with point-wise feature
reweighting, an external transformer and a NetVLAD [1]
module. We use triplet margin loss [10] with batch hard
mining [20] to train our network, which requires a larger
batch size to find more informative triplets. Instead of using
raw point clouds for feature extraction [25, 26, 16], which
requires quadratic space complexity to compute the neigh-
borhood of each point, sparse voxel representation enables
our network to obtain the neighborhood of each voxel using
a hash algorithm with a linear space complexity. Therefore,
we transform the input point cloud into a sparse voxel rep-
resentation and adopt 3D Sparse Convolution (Sp-Conv) [3]
as a basic unit to build our network.

We first employ a small network with two Sp-Conv lay-
ers to aggregate local geometric information and the de-
tails can be found in the supplementary material. Then
features of different receptive field sizes are extracted, and
a point-wise reweighting scheme is designed to adaptively
fuse these features, while being able to suppress noises.
Next, we introduce a transformer architecture to capture
long-range contextual information. Finally, we adopt a
NetVLAD [1] layer to aggregate local features of each voxel
to produce a global descriptor for recognition. NetVLAD
learns K cluster centers and sums the difference between
the local descriptors and the corresponding cluster centers,
to obtain a permutation-invariant descriptor. To make fair
comparisons, NetVLAD is followed by a Multi-Layer Per-
ceptron (MLP) to produce a descriptor of the same size as
that of previous works.

3.2. Adaptive Receptive Field Module with Point-Wise
Feature Reweighting

Although a number of methods have obtained outstand-
ing performance, place recognition remains challenging due
to the existence of unrelated moving objects and the effects
of objects in different sizes. We argue that fixed receptive
fields cannot well tackle huge size differences between ob-
jects. To capture clean and consistent geometric informa-
tion of objects in all sizes, we propose a novel module ca-

pable of adaptively adjusting the receptive field size with a
point-wise reweighting scheme.

The design of our proposed module is inspired by Se-
lective Kernel Convolution (SK-Conv) [14]. Unlike SK-
Conv, we replace the dilated convolutions [2] with conven-
tional convolutions because the combination of dilated con-
volution and sparse feature maps leads to significant per-
formance degradation in our experiments. We also replace
the lightweight fusion mechanism with a novel point-wise
reweighting scheme, based on our observation that objects
of the same category still have different sizes. Formally,
for the given feature map X ∈ RH×W×D×C output by the
3D sparse convolution module, we first conduct transforma-
tions Fi : X → X ′i ∈ RH×W×D×C with different recep-
tive field sizes. Fig. 3 illustrates that our module consists of
five parallel branches. For computing efficiency, branches
with receptive field sizes larger than 5×5×5 is implemented
by stacking convolution layers with kernel size 3×3×3 and
5×5×5. All convolutions are followed by a batch normal-
ization [11] layer and ReLU activation, except for the last
layer of each branch.

Considering that large receptive field would inevitably
capture small objects, we employ an ECA (Efficient Chan-
nel Attention) [32] module to suppress noisy features. For-
mally, for the i-th branch, we multiply the feature map
X ′i ∈ RH×W×D×C by a channel-wise weighting vector
w′ ∈ RC

w′i = σ(φi(AvgPool(X ′i))) (1)
X ′′i = X ′i · w′i (2)

where σ denotes the Sigmoid function and φi indicates 1D
convolution with a kernel of size k along the channel dimen-
sion to model local cross-channel interactions. The hyper-
parameter k can be adaptively determined by channel di-
mension C as proposed in ECA[32]. In the last step, the
information originated from multiple branches is fused to-
gether by a point-wise reweighting scheme

Xout =
∑
i

W ′′i ·X ′′i (3)

where W ′′i ∈ RH×W×D×C denotes the attention weight-
ing map of the i-th branch. As illustrated in Fig. 3, to ob-
tain the weighting maps W ′′i , we fuse results from multiple
branches via an element-wise summation first.

T =
∑
i

δi(X
′′
i ) (4)

Here δi is defined as a non-linear mapping function on the i-
th branch, implemented by stacking 1×1 convolutions with
batch normalization [11] layers and ReLU non-linear func-
tions. Notably, Selective Kernel Convolution [14] squeezes
the global spatial information for higher efficiency while we



Figure 2. TransLoc3D Network Architecture. Our proposed TransLoc3D consists of four parts stacked in series, including a 3D sparse
convolution module, an adaptive receptive field module with point-wise feature reweighting, an external transformer and a NetVLAD
module. Each “RF Branch” in the adaptive receptive field module consists of different numbers of convolutional blocks to extract features
of different receptive field sizes, while the module is capable of adaptively adjusting the size of its receptive field according to the input
point cloud.

Figure 3. Adaptive receptive field module with a point-wise
reweighting scheme. Information from neighborhoods of differ-
ent sizes is aggregated on each branch, and then fed to ECA
modules [32] for further enhancement. A point-wise reweighting
scheme is adopted to fuse information from different branches.

preserve the spatial dimensions. Taking buildings as an ex-
ample, we observe that regions representing buildings have
huge size differences due to occlusions, thus our intuition is
that the weighting vectors should be different for different
positions. Therefore the i-th weighting map W ′′i is defined
as

W ′′i =
exp(ϕi(T ))∑
j exp(ϕj(T ))

(5)

where ϕi denotes an element-wise non-linear mapping from
aggregated information to the weighting maps of the i-th
branch. In practice, it is implemented by a convolution with
C kernels of shape 1× 1× 1, followed by batch normaliza-
tion.

3.3. External Transformer

As mentioned before, the neglect of long-range con-
textual information may limit the representation power of
global descriptors. Therefore, we adopt an External Trans-
former [8] to aggregate information from both nearby and
far-away voxels in spatial dimensions due to its linear space
complexity and high computational efficiency. As illus-
trated in Fig. 2, the transformer includes 6 External Atten-
tion (EA) layers stacked in series, which can be written as
follows

EA(Qi,K
(M)
i , V

(M)
i ) = Softmax(

QiK
(M)
i

T

√
dk

)V
(M)
i (6)

where K(M)
i , V

(M)
i ∈ RS×d denote the i-th head of two

external learnable memory units and the hyper-parameter S
is the number of keys and values in the EA mechanism. For
further reduction of model parameters, the values V (M)

i are
obtained by applying a linear mapping φ to the keys K(M)

i

instead of an extra memory unit

V
(M)
i = φ(K

(M)
i ) (7)

The space complexity of External Attention [8] isO(N×
S), thus we can control the amount of memory consumed
in the training process by adjusting the hyper-parameter S.
Same as PCT [7], we incorporate an offset-attention module
with a small modification1 to External Attention layer for

1We replace the input to the LBR network Fin − FEA proposed in
PCT [7] with FEA − Fin, which does not affect the representation ability
of the model in theory, but has a slight improvement in our experiments.
We assume this is because the LBR network now needs to learn a mapping
closer to identity, which is easier to model.



further enhancement

Fout = LBR(FEA − Fin) + Fin (8)

FEA = [EA(Qi,K
(M)
i , V

(M)
i )]

= [Softmax(QiK
(M)
i

T
)V

(M)
i ] (9)

Here LBR combines Linear, BatchNorm and ReLU layers,
Fin, Fout are the input and output features of the EA mod-
ule, and [·] denotes the concatenation operation. Finally, the
output of each EA layer is concatenated along the channel
dimension, followed by a transformation to aggregate infor-
mation from different levels.

3.4. Network Training

Although a number of sophisticated loss functions have
been proposed in deep metric learning, recent works [22,
27] show that their advantages over the classical triplet mar-
gin loss [10] are moderate. We use triplet margin loss to
train our network, which requires an anchor, a positive ex-
ample (structurally similar to the anchor) and a negative ex-
ample (structurally dissimilar to the anchor):

Ltriplet =
1

N

N∑
i=1

[||δa − δp||2 − ||δa − δn||2 + α]+ (10)

Here N is the number of training samples in a batch, δa,
δp and δn denote the global descriptors of the anchor, posi-
tive and negative point clouds respectively (the index i that
refers to a specific sample is omitted to avoid clutter). [·]+
denotes the function max(·, 0) and α is the constant margin.
Same as Minkloc3D [12], at the beginning of each epoch
the training set is partitioned into batches by randomly sam-
pling positive pairs from the remaining data repeatedly. For
each batch we compute twoN×N binary masks indicating
the structural similarity between each pair of point clouds.
The discriminative descriptor of each point cloud in a batch
is obtained by our proposed network. Then we construct in-
formative triplets via the batch hard mining approach [20]
using the two binary masks.

At the early stage of training, the model cannot produce
sufficiently discriminative descriptors and mode collapse is
more likely to occur with a large batch size. Therefore, we
adaptively adjust the batch size as the training continues, as
is proposed in Minkloc3D [12]. If the average number of
triplets producing non-zero loss accounts for over η of the
total number, the batch size will be enlarged to τ times of
the previous value as long as the batch size is still below
a maximum threshold. Here τ is a hyper-parameter larger
than 1.

4. Experiments

4.1. Datasets

We use a modified Oxford RobotCar dataset [18] and
three other datasets introduced in PointNetVLAD [31], in-
cluding Business District (B.D.), Residual Area (R.A.) and
University Sector (U.S.) to evaluate our method. Point
clouds in Oxford RobotCar dataset are obtained by a Sick
LMS-151 2D LiDAR scanner mounted on a moving vehi-
cle, while others are obtained from a Velodyne-64 LiDAR
scanner. The places are sampled with a fixed interval on the
continuous trajectory of the vehicle, and the corresponding
point clouds are generated by dividing the global map into
a set of submaps. During training, point cloud pairs with a
distance less than 10m are defined as positive pairs, while
more than 50m are defined as negative pairs. The rest of
point cloud pairs are neither positive nor negative. To better
learn geometric features, the non-informative points on the
ground are removed, then the number of points is uniformly
downsampled to 4096. Coordinates of each point are shifted
and scaled to [−1, 1].

4.2. Implementation Details

To reduce the risk of overfitting, data augmentation
is introduced into the preprocessing stage. Specifi-
cally, we adopt random jittering with a noise sampled
from the normal distribution N (0, 0.001) and clipped to
[−0.002, 0.002], random translation with an offset vector
sampled from the uniform distribution [−0.01, 0.01]3, ran-
dom point removal with a probability of dr ∼ [0.0, 0.1],
random symmetrical transformation and random rotation.
We also use random fronto-parallel cuboid erasing approach
proposed in [12] for further augmentation.

Augmented point clouds are quantized with quantiza-
tion step 0.01, and then fed to the network implemented by
Minkowski Engine [3]. The hyperparameter S of each EA
layer is set to 256, 128, 128, 64, 64, 64 in sequence to cap-
ture rich local geometric information. The number of heads
is set to 2. The concatenation of outputs from different at-
tention layers is transformed to 512-dimensional space, and
then fed to NetVLAD [1]. With regard to the hyperparam-
eters within NetVLAD, the size of the cluster is set to 64
and the dimension of the output descriptor is set to 256 for
fair comparisons. We also introduce context gating mecha-
nism [21], which is initially proposed for large-scale video
understanding, into NetVLAD to produce more informative
descriptors.

We adopt Adam optimizer with an initial learning rate
2× 10−4, and multiplied by 0.1 on epoch 80, 120 and 160.
The triplet loss margin α is set to 0.2 in our experiments.
The batch size is initially set to 32 and increased by 40%
once the number of active triplets is less than 70% of the
total. All experiments are conducted on a server with 6



Method Oxford B.D. R.A. U.S.
PointNetVLAD 80.3 65.3 60.3 72.6
PCAN 83.8 66.8 71.2 79.1
DAGC 87.5 71.2 75.7 83.5
LPD-Net 94.9 89.1 90.5 96.0
SOE-Net 96.4 88.5 91.5 93.2
Minkloc3D 97.9 88.5 91.2 95.0
NDT-Transformer 97.7 - - -
Minkloc++ 98.2 82.7 85.1 93.0
TransLoc3D(ours) 98.5 88.4 91.5 94.9

Table 1. Evaluation Results(AR@1%). All the methods are trained
on Oxford RobotCar dataset and evaluated on four datasets with-
out finetuning. Our method achieves the state-of-the-art perfor-
mance on Oxford RobotCar dataset, and has a competitive gener-
alization ability.

NVidia GeForce GTX 1080Ti GPUs and an Intel i7-6850K
CPU.

4.3. Quantitative Comparisons

Following the same evaluation protocol introduced in
PointNetVLAD [31], we compare our model with previous
works and the results are shown in Tab. 1. All these mod-
els are trained on modified Oxford RobotCar dataset and
evaluated on test splits of four datasets without further fine-
tuning. It is worth noting that Minkloc++ is a multimodal
architecture taking geometric information from RGB im-
ages and 3D point clouds as input and we only use the 3D
modality sub-network. If the results are not reported in the
original paper, we run the evaluation by ourselves with pub-
licly available source codes, otherwise we take the results
reported by authors with the identical evaluation protocol.

Our proposed TransLoc3D achieves state-of-the-art re-
sults on Oxford RobotCar dataset, with a 0.3% higher av-
erage recall@1% than the runner-up method, Minkloc++.
Compared with NDT-Transformer which is also based on
a Transformer architecture, our method adopts a nearly
cost-free preprocessing step and achieves a remarkable im-
provement of 0.8% on average recall@1%, which shows
the significance of adaptive receptive fields. For general-
ization capability, our model surpasses other models on the
R.A. dataset while is slightly worse than LPD-Net on other
datasets. We augue that there exist huge differences in data
distribution and LPD-Net enhances the input with hand-
crafted features, which improves the generalization ability
of the network by introducing prior knowledge. The follow-
ing experiment shows that our method surpasses LPD-Net
after finetuning.

Due to that AR@1% is already close to 100%, we also
compare the performance of various models using AR@1 on
the Oxford RobotCar dataset. As illustrated in Tab. 2, our
method is significantly better than the previous state-of-the-

Method AR@1 AR@1%
PointNetVLAD 63.3 80.3
PCAN 70.7 83.8
DAGC 73.3 87.5
LPD-Net 86.3 94.9
SOE-Net 89.4 96.4
Minkloc3D 93.8 97.9
NDT-Transformer 93.8 97.7
Minkloc++ 93.9 98.2
TransLoc3D(ours) 95.0 98.5

Table 2. Evaluation Results on Oxford RobotCar dataset. Our
method has a remarkable improvement of 1.1% on AR@1 and
0.3% on AR@1%.

art model, with an improvement of 1.1%, which shows that
TransLoc3D has stronger discrimination ability than other
methods.

We also test the performance with finetuning. Same as
PointNetVLAD [31], the training subsets of U.S. and R.A.
are also added to the training data in addition to the Ox-
ford RobotCar dataset, in order to verify the generalization
ability of models on unseen scenarios. Inspired by trans-
fer learning, we pretrain our model on Oxford RobotCar
dataset, and then finetune the model with a small learning
rate on downstream datasets. Tab. 3 illustrates the evalua-
tion results of different methods under this setting, where
the evaluation of Minkloc++ [13] is conducted by ourselves
due to the lack of reported results, and other results are re-
ported by the authors. It is shown that our method is su-
perior to previous methods with a remarkable improvement
on three datasets. The comparison to LPD-Net [17] shows
that hand-crafted features contribute greatly to the model
performance under the condition that the amount of data is
relatively small or there exist huge differences in data dis-
tribution. Otherwise, learning-based models have a stronger
representation power.

4.4. Visualization

To intuitively explain how our model addresses three
issues mentioned before, we visualize the retrieval results
and perform qualitative comparisons, which is illustrated in
Fig. 4. The leftmost column shows the query point cloud
and other columns show its nearest neighbors using our
method and Minkloc3D. In the first case, the large receptive
field of Minkloc3D neglects peaked roofs (red circle) of the
building, while our model can adaptively adjust the recep-
tive field size according to the target object size. In the sec-
ond case, points distributed on the continuous building sur-
faces are divided into several patches due to the occlusions
brought in by pedestrians and trees, while our model is more
robust than Minkloc3D under this circumstance. In the third
case, the model is required to capture geometric information



Method B.D. R.A. U.S.
AR@1 AR@1% AR@1 AR@1% AR@1 AR@1%

PointNetVLAD [31] 80.1 86.5 82.7 93.1 86.1 90.1
PCAN [36] 80.3 87.0 82.3 92.3 83.7 94.1
DAGC [29] 81.3 88.5 82.8 93.4 86.3 94.3
LPD-Net [17] 90.8 94.4 90.8 96.4 94.4 98.9
SOE-Net [35] 89.0 92.6 90.2 95.9 91.8 97.7
Minkloc3D [12] 94.0 96.7 96.7 99.3 97.2 99.7
NDT-Transformer [38] - - - - - -
Minkloc++ [13] 91.8 95.5 95.3 98.5 96.5 99.5
TransLoc3D(ours) 94.8 97.4 97.3 99.7 97.5 99.8

Table 3. Evaluation Results. Place recognition methods are trained on Oxford RobotCar, U.S. and R.A. datasets. After finetuning, our
method surpasses other methods with a significant improvement of average recall on all datasets.

Figure 4. Visualization of some representative retrieval results.
Our method recognize the correct places while Minkloc3D [12]
fails under these cases.

Network AR@1 AR@1%
w/o adaptive receptive fields 83.6 93.9
w/o ECA 94.5 98.4
w/o point-wise feature reweighting 94.6 98.5
w/o transformer 94.2 98.2
ours full 95.0 98.5

Table 4. Ablation study on several design choices. The elimina-
tion of each module leads to a significant degradation on the per-
formance.

of the horizontal road (red circle) to produce a discrimina-
tive descriptor. Minkloc3D fails to encode the road due to
its limited receptive field size, while our transformer-based
architecture enables our model to capture global informa-
tion.

4.5. Ablation Studies

We conduct ablation studies to evaluate the impact of
different design choices of our method. In all experi-
ments of this section, the network is trained and evaluated
only using the Oxford RobotCar dataset. We first elimi-
nate several independent modules including adaptive recep-
tive field module, ECA [32], point-wise feature reweighting
and transformer, referred as “w/o adaptive receptive fields”,
“w/o ECA”, “w/o point-wise feature reweighting” and “w/o
transformer”. We denote the complete network architec-
ture as “ours full”. The results are illustrated in Tab. 4.
The elimination of point-wise feature reweighting scheme
is implemented by replacing weighted summation based on
attention weights with a concatenation operation along the
channel dimension, followed by a 1×1×1 convolution used
to aggregate information from different branches. Com-
pared with the complete TransLoc3D model, other alterna-
tives all have significant degradation on average recall@1,
from 0.4% to 11.4%.

To further explore the significance of these module,
we visualize several typical cases in which the complete
TransLoc3D model surpasses other models. As illustrated
in Fig. 5, in the first case, the retrieval results are perturbed
by noise including vehicles on the road and buildings in the
distance. The ECA module enables our complete model to
be more robust to noises than “w/o ECA”. In the second
cases, the vehicles on the street obscures the huge build-
ing, which further changes the distribution of points and
splits the whole point cloud into patches of different sizes.
The point-wise reweighting mechanisms can adaptively ad-
justing the receptive field sizes according to the input point
clouds, which is suitable for this case. In the third case,
only part of the buildings (bottom of the retrieval result)
can match the query point cloud, thus it requires long-range
contextual information to produce sufficiently discrimina-
tive descriptors when local regions have similar geometry.

We also conduct an experiment on how Average Recall



Figure 5. Visualization of some representative retrieval results.
Our complete model recognizes correct places while others fail
under these cases.

Figure 6. Ablation study on the number of branches in the adap-
tive receptive field module. As the number of branches increases,
average recall goes up to saturation with 5 branches(ours).

Network AR@1 AR@1%
1 branch - -
2 branches 92.0 97.4
3 branches 93.2 97.9
4 branches 94.1 98.3
5 branches (ours) 95.0 98.5
6 branches 94.3 98.4

Table 5. Ablation study on the number of branches in the adaptive
receptive field module. “-” means mode collapse.

changes with the number of branches in the adaptive recep-
tive field module. As illustrated in Fig. 6 and Tab. 5, as the
number of branches increases, the discrimination ability of
the descriptors produced by TransLoc3D becomes stronger,
and saturation occurs when more than 5 branches are used.
The result indicates that the local feature extractor requires

Figure 7. Failure cases. We visualize two typical cases in which
our proposed model fails.

aggregating geometric information from a local area larger
than a certain threshold to produce sufficiently discrimina-
tive descriptors, while oversized receptive fields lead to too
complicated geometric information for local descriptors to
efficiently represent. More ablation studies can be seen in
the supplementary material.

4.6. Failure Cases

Although our proposed network has achieved encourag-
ing results on popular datasets, there are still several cases
TransLoc3D cannot handle well. Fig. 7 illustrates two typ-
ical kinds of failure cases. In the first case, geometry of
the buildings on different sides of the road changes dramat-
ically, while a similar building (right side of the retrieval
result) lies on another location. In the second case, the tree
on the street obscures the huge building (right side of the re-
trieval result) and further changes the distribution of points
related to the building, whereas our network does not take
occlusion between unmovable objects into consideration.

5. Conclusion

In this paper, we put emphasis on three issues in point
cloud based place recognition, including moving objects,
size difference of the objects and long-range contextual in-
formation. We propose TransLoc3D, which combines the
advantages of adaptive receptive fields and transformer to
tackle these issues. Extensive experiments show that our
network achieves state-of-the-art performance on benck-
mark datasets, and qualitative analysis also demonstrates
the effectiveness of our model in complex outdoor scenes.
We believe our work can promote further exploitation in
visual transformers by utilizing multi-scale geometry infor-
mation.
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