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Abstract

Existing deep unfolding methods unroll an optimiza-
tion algorithm with a fixed number of steps, and uti-
lize convolutional neural networks (CNNs) to learn data-
driven priors. However, their performance is limited
for two main reasons. Firstly, priors learned in deep
feature space need to be converted to the image space
at each iteration step, which limits the depth of CNNs
and prevents CNNs from exploiting contextual informa-
tion. Secondly, existing methods only learn deep priors
at the single full-resolution scale, so ignore the benefits
of multi-scale context in dealing with high level noise.
To address these issues, we explicitly consider the im-
age denoising process in the deep feature space and pro-
pose the deep unfolding multi-scale regularizer network
(DUMRN) for image denoising. The core of DUMRN is
the feature-based denoising module (FDM) that directly
removes noise in the deep feature space. In each FDM,
we construct a multi-scale regularizer block to learn
deep prior information from multi-resolution features.
We build the DUMRN by stacking a sequence of FDMs
and train it in an end-to-end manner. Experimental re-
sults on synthetic and real-world benchmarks demon-
strate that DUMRN performs favorably compared to
state-of-the-art methods.

1. Introduction

Image denoising is a fundamental problem in low-level
vision since corruption by noise is inevitable during the im-
age acquisition process. Image denoising aims to recover
the latent clean image x from the corresponding noisy ob-
servation y. Mathematically, the degradation model for the
denoising problem can be formulated as

y = x+ n, (1)

where n is generally assumed to be additive white Gaus-
sian noise (AWGN) with standard deviation σ. Due to the
ill-posed nature of the image denoising problem, many con-
ventional methods use various image prior terms based on

the statistics of natural images, including sparse models [18,
39, 17], non-local self-similarity models [7, 8, 13, 54, 55],
low-rank models [16, 24] and Markov random field mod-
els [35, 48]. Despite their significant progress, these model-
based methods usually reconstruct latent clean images by
solving complicated optimization problems, which limits
their practical application. Other methods [10, 16, 24] sac-
rifice flexibility and efficiency to achieve high performance.

With the development of deep convolutional neural net-
works (CNNs), many learning-based methods [61, 62, 9,
63, 41] have been proposed for image denoising. With the
powerful representation ability of deep CNNs, these meth-
ods outperform traditional model-based methods by a large
margin. However, most learning-based methods directly
learn the mapping between noisy and clean image pairs
without considering a physical model of the noise process,
which makes them more efficient but less interpretable than
model-based methods.

Taking advantages of model-based and learning-based
methods, many deep unfolding methods incorporate stan-
dard optimization methods into deep CNNs. They unfold
the image denoising problem through various optimization
algorithms (e.g. gradient descent [11, 22], alternating direc-
tion method of multipliers [56], and primal-dual [2]), and
implement the regularization term using deep CNNs, which
can implicitly learn deep priors in the feature space. By in-
tegrating the image degradation constraint into CNNs, deep
unfolding methods maintain the efficiency and improve the
interpretability of deep learning. However, the performance
of current deep unfolding methods is still limited for two
main reasons. Firstly, in each iteration step of deep unfold-
ing methods, noise is removed in the standard image space,
but deep priors are learned in feature space. The transforma-
tion from deep feature space to image space limits the depth
and receptive field of CNNs, which prevents CNNs from ex-
tracting non-local dependencies within images. Secondly,
existing deep unfolding methods only learn deep priors at
the original full-resolution, and thus cannot effectively cap-
ture spatial contextual information and restore clear edges
for images that suffer from heavy noise [19].
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In this paper, we propose the deep unfolding multi-scale
regularizer network (DUMRN) to more closely integrate
model-based and learning-based methods. To reduce the
number of space transformations and improve information
flow within the network, we explicitly consider the image
denoising process in the deep feature space, and propose a
feature-based denoising module (FDM) based on the image
degradation model. By mimicking the gradient descent op-
timization process, a sequence of FDMs is stacked to build
the DUMRN, so that we can obtain a deep CNN with a large
receptive field and train it in an end-to-end manner. In each
FDM, we construct a multi-scale regularizer block (MSRB)
to learn deep prior information from multi-resolution fea-
tures, which is able to capture local details at high resolution
and large-scale contextual information at low resolution.

To summarize, the main contributions of this paper are
three-fold:

• explicit consideration of the image denoising process
in deep feature space, leading to a feature-based de-
noising module (FDM) based on the iterative optimiza-
tion steps of the image degradation model, and a deep
unfolding multi-scale regularizer network (DUMRN)
produced by stacking a series of FDMs, which can ef-
fectively leverage deep features and learn deep prior
information,

• a multi-scale regularizer block (MSRB) to learn deep
prior information from features of different resolu-
tions, which can capture fine-scale detail information
as well as long-range contextual information, and

• comprehensive experiments to demonstrate DUMRN
achieves competitive performance for synthetic and
real-world image denoising; DUMRN is still effective
and robust on the challenging blind Gaussian denois-
ing task.

2. Related work

Image denoising methods can be roughly categorized
as traditional model-based methods, deep learning-based
methods, or deep unfolding methods. In this section, we
briefly review these methods.

2.1. Traditional methods

Since image denoising is an ill-posed problem, vari-
ous regularization or prior terms have been proposed to
constrain the solution space. For example, Elad and
Aharon [18] enforced sparsity on image patches by con-
structing highly over-complete dictionaries. Dabov et
al. [13] proposed the well-known block-matching and 3D
filter (BM3D) method to combine non-local self-similarity
with sparsity for image denoising. Chen et al. [10] learned a
Gaussian mixture model prior from external image patches

and utilized it to find similar patches in input noisy images
for denoising. However, hand-crafted priors are not strong
enough to characterize complex image structures and usu-
ally involve non-convex and time-consuming optimization
problems.

2.2. Deep learning methods

Motivated by the great success of CNNs in high-level
vision tasks, various learning-based methods have been
proposed for image denoising. Zhang et al. [61] pro-
posed DnCNN which incorporates residual learning [27]
and batch normalization [31] in a CNN to learn residuals
between the noisy input and the corresponding clean image.
To increase the flexibility of the network to deal with noise
of different levels, Zhang et al. [62] utilized a noise level
map as input and performed denoising in the down-sampled
sub-image space. Inspired by DenseNet [28], Zhang et
al. [63] utilized dense connections to construct a residual
dense network (RDN) for image restoration and achieved
state-of-the-art results. For real-world image denoising,
Guo et al. [25] proposed the convolutional blind denois-
ing network (CBDNet) with a noise estimation subnetwork,
while Kim et al. [33] constructed the adaptive instance nor-
malization network (AINDNet) to transfer the Gaussian de-
noiser to various real noisy scenes. To decrease the compu-
tational cost on low-noise images, Yu et al. [57] proposed
a multi-path CNN with a dynamic path selection module
to adaptively select appropriate routes for different image
regions. Recently, several methods [23, 9, 59, 58] have em-
ployed multi-scale strategies to enlarge the receptive field
and improve the performance of deep networks. For ex-
ample, Chang et al. [9] incorporated multi-size dilated con-
volutions into a U-Net [47] structure to capture multi-scale
contextual information, which helps to restore rich details
in complex scenes.

In order to increase the modeling capacity of deep pri-
ors, we utilize deep CNNs to learn deep prior information
at different scales, which helps to enlarge the receptive field
and capture long-range contextual information.

2.3. Deep unfolding methods

Deep unfolding methods integrate the advantages of
model-based methods (e.g. good interpretability) and
learning-based methods (e.g. efficiency and strong repre-
sentation capability). They usually unfold iterative op-
timization algorithms as a cascade scheme with a fixed
number of steps. Deep CNNs are utilized as regulariz-
ers in each step, which implicitly learn deep image pri-
ors. Many unfolding methods have been proposed for
various image restoration tasks, including image denois-
ing [6, 51, 50], image deblurring [49, 11, 22], and image
super-resolution [60]. Schmidt and Roth [49] unrolled the
half-quadratic optimization procedure into an end-to-end



learning framework and proposed a random field-based ar-
chitecture to learn an image restoration regularizer. Chen
et al. [11] proposed a trainable nonlinear reaction diffusion
(TNRD) model by unfolding the gradient descent proce-
dure to a fixed number of iterations. To integrate sparsity
regularization with deep CNNs, Simon et al. [50] unfolded
the convolutional sparse coding model by the learned itera-
tive shrinkage threshold algorithm. By incorporating deep
CNNs into a fully parameterized gradient descent scheme,
Gong et al. [22] proposed to learn a universal gradient de-
scent optimizer and construct a recurrent gradient descent
network (RGDN) for image restoration. Recently, Ren et
al. [46] incorporated the adaptive consistency prior into the
maximum a posterior framework, and proposed DeamNet
based on unfolding the optimization problem. Driven by a
large training set, deep unfolding methods optimize the pa-
rameters in an end-to-end manner and surpass model-based
methods.

Existing deep unfolding methods utilize CNNs to learn
data-driven priors in deep feature space, but they remove
noise in image space. Thus deep features are transformed
into image space at each iteration step, which limits the
depth of CNNs and makes it difficult from them to exploit
contextual information within images. In order to make full
use of deep CNNs, we explicitly consider the image denois-
ing problem in deep feature space and construct a deep net-
work for image denoising.

3. Proposed method

In this section, we first propose the feature-based denois-
ing module (FDM) which performs image denoising in deep
feature space. Then we introduce the multi-scale regularizer
block (MSRB) which learns deep prior information from
features at different resolutions. Finally, we stack several
FDMs using an unfolding strategy to build the DUMRN for
image denoising.

3.1. Feature-based denoising module

From a Bayesian perspective, the maximum a posterior
(MAP) model for denoising can be formulated as:

x̂ = arg min
x

1

2
‖y − x‖22 + λφ(x), (2)

where the first, fidelity, term guarantees the solution x̂ is in
accordance with the degradation process in Eq. (1), φ(x)
is the regularization term associated with prior information,
and λ is the regularization parameter that controls the trade-
off between these terms. Eq. (2) can be solved by various
optimization algorithms, such as gradient descent [11, 22],
alternating direction of multipliers [56], and the primal-dual
method [2]. Here we utilize the momentum gradient de-
scent method due to its simplicity and effectiveness [45, 52].

Thus, x̂ can be obtained through the following iteration:

xt+1 = xt − αt
(
(xt − y)− λ∇φt(xt)

)
+ βt(xt − xt−1),

(3)
y = x0, (4)

where t denotes the step index, αt is the step size, ∇φt(·)
denotes the gradient of φ(·), βt is the momentum param-
eter at step t and (xt − xt−1) is the momentum term. In
order to learn deep image priors, deep unfolding methods
employ CNNs to calculate the gradient of the regularizer
∇φ(·), which implicitly provides a deep image prior. Then
the iterative procedure in Eq. (3) is unrolled with a fixed
number of steps T . However, in each iteration step, noise in
xt is removed in the standard image space while the prior
∇φ(·) is learned in deep feature space. The mapping from
deep feature space to image space limits the depth and re-
ceptive field size of CNNs, making it difficult for unfolding
methods to capture non-local dependencies inside images.

In order to make full use of deep CNNs and improve the
information flow in the network, we explicitly consider re-
moving noise in deep feature space. Specifically, we first
utilize a feature extractor f(·) to map image x to the fea-
ture space. Then we can use Eq. (3) to iteratively denoise
f(x) without mapping it into image space. In order to scale
the gradient and momentum terms adaptively, we replace
the step size αt and momentum parameter βt by At(·) and
Bt(·) respectively. We let S(·) replace ∇φ(·) to supplant
the gradient of the regularizer; S(·) absorbs the trade-off
weight λ. S(·) implicitly performs the role of the deep prior.
Overall, the t-th feature-based denoising module (FDM) is
formulated as:

Xt+1 = Xt−At(Xt−Y+St(Xt))+Bt(Xt−Xt−1), (5)

Y = f(y) = f(x0) = X0. (6)

After T iterations, we utilize an image reconstructor g(·)
to reconstruct the final denoised image from XT :

x̂ = g(XT ). (7)

Considering the effectiveness of the residual block (Res-
Block) in low-level vision tasks [36, 42], we use a single
ResBlock to implement At(·) and Bt(·) respectively. The
structure of the ResBlock is shown in Figure 1(a): each
ResBlock contains two 3 × 3 convolutional layers and a
ReLU activation function [43]. For flexibility, we imple-
ment the feature extractor f and image reconstructor g us-
ing two convolutional layers with 3× 3 learnable kernels.

3.2. Multi-scale regularizer block

Many unfolding methods [22, 60, 11] implement S(·)
using deep CNNs due to their strong learning capability.
However, limited by the size of the convolution kernel,



(a) Residual block (ResBlock). (b) Structure of {Gi}3i=1.

(c) Architecture of the back-projection feature fusion (BPFF) block.

Figure 1. (a) Structure of the residual block (ResBlock). (b)
{Gi(·)}3i=1 in FDM share a common architecture of a CNN with
different parameters to be learned. (c) Structure of the BPFF
block. Conv2 and Deconv2 represent a convolutional layer and
deconvolutional layer with stride of 2 respectively.

CNNs fail to capture diverse contextual information, and
most existing deep unfolding methods (e.g. TNRD [11] and
CSCNet [50]) perform poorly when the noise level is high.
To overcome this problem, we adopt a multi-scale strat-
egy by down-sampling features to different scales. On one
hand, down-sampling can effectively enlarge the receptive
field and enable models to exploit more spatial contextual
information, which is helpful in denoising images that suf-
fer from heavy noise [19]. On the other hand, as observed
in [65], noise decreases while strong edges are less affected
by down-sampling. To gain the advantages of a multi-scale
strategy, we implement S(·) using a multi-scale regularizer
block (MSRB) to extract useful feature information at mul-
tiple resolutions:

S(X) = fMSRB(X) = F(G1(X),G2(X ↓2),G3(X ↓4)),
(8)

where fMSRB(·) represents the proposed MSRB function, ↓k
represents the down-sampling operator with a scaling factor
of k, {Gi(·)}3i=1 denotes a set of deep CNNs that learn use-
ful prior information from the features of different scales,
and F(·) denotes the multi-scale feature fusion block uti-
lized to aggregate features from multiple scales. In practice,
we use three CNNs with the same structure but different
channel dimensions to implement {Gi(·)}3i=1. The numbers
of channels are set to 64, 128, 256 at resolutions 1, 1/2, 1/4
respectively. As shown in Figure 1(b), each Gi(·) consists
of two convolutional layers with ReLU activation functions
and a ResBlock, and all kernel sizes are set to 3.

Summation and concatenation are the most commonly-
used strategies for feature fusion, but directly applying them
to multi-scale feature fusion is not effective [15]. Moti-
vated by the success of back-projection technique in image
super-resolution [32, 26, 14], we implement F(·) using a

back-projection feature fusion (BPFF) block [15] to aggre-
gate multi-scale features. As shown in Figure 1(c), we first
down-sample G1(X) to the same resolution as G3(X ↓4),
and compute their difference:

e1 = G1(X) ↓4 −G3(X ↓4), (9)

then we enhance the prior information G1(X) using the
back-projected difference:

s = G1(X) + (e1) ↑4 . (10)

We obtain the final S(X) by applying a similar update
procedure to integrate s and G3(X ↓4):

e2 = (s) ↓2 −G2(X ↓2), (11)
S(X) = s+ (e2) ↑2 . (12)

In MSRB, we use convolutional layers and deconvolu-
tional layers to implement down-sampling and up-sampling
operators respectively; the strides of both convolutional lay-
ers and deconvolutional layers are set to 2. By utilizing the
BPFF block in MSRB, we can effectively aggregate prior
information at different resolutions into a stronger prior.

3.3. Overall architecture

The overall architecture of our proposed deep unfolding
multi-scale regularizer network (DUMRN) is shown in Fig-
ure 2. Let y and x denote the input noisy image and the
corresponding ground-truth image. The feature extractor f
first extracts features from y. The extracted features Y are
set as the initial value X0 for the feature denoising process.
T FDMs are stacked to remove noise in feature space: we
update Xt via T steps using Eq. (5). Finally, we utilize the
image reconstructor g to reconstruct the final image from
the denoised feature XT .

The DUMRN is optimized by minimizing the differ-
ence between the input noisy images and the correspond-
ing ground-truth counterparts. To assess the effectiveness of
the proposed network, we adopt the same L2 loss function
as previous works [61, 62, 9, 41]. Given a training dataset
{yi, xi}Ni=1, where N is the number of the training patch
pairs, we obtain the optimal parameters by minimizing the
following objective function:

L(Θ) =
1

N

N∑
i=1

‖fDUMRN(yi)− xi‖2, (13)

where fDUMRN(·) represents the DUMRN function, and Θ
represents all learnable parameters in DUMRN.

4. Experimental results

In this section, we first provide the training and imple-
mentation details of the proposed network. Then, we com-
pare our proposed DUMRN with several state-of-the-art



Figure 2. Architecture of DUMRN. The first convolutional layer extracts feature X0 from the noisy input, then T feature-based denoising
modules (FDMs) are stacked to remove noise in deep feature space; the structure of FDM is based on the momentum gradient descent
algorithm. Benefiting from FDM, there is no need to transform deep features into image space at each step. The last convolutional layer
converts the denoised feature XT to a clean image. A multi-scale regularizer block S(·) learns deep prior information from features at
different resolutions; ↓k represents down-sampling with a scaling factor of k.

methods on synthetic and real-world image denoising tasks.
Our source code is available at https://github.com/
Xujz19/DUMRN.

4.1. Datasets and implementation

4.1.1 Datasets

Following RDN [63] and SADNet [9], we adopt 800 high-
resolution training images from the DIV2K dataset [3] to
train our models for Gaussian denoising at four different
noise levels (σ = 10, 30, 50, 70). In addition, we use noisy
images with varying noise levels σ ∈ [0, 75] to train a
single model for blind Gaussian denoising; it is referred
as DUMRN-B. All synthetic Gaussian noisy images were
obtained by adding Gaussian noise of different levels to
clean images. For real-world image denoising, , following
DeamNet [46], we trained our model on the SIDD medium
dataset [1] and RENOIR dataset [4].

To evaluate DUMRN for gray-scale image denoising, we
used three benchmark datasets: Set12[61], BSD68 [40],
and Urban100 [29]. For color image denoising, we chose
Kodak24 [20], CBSD68, and Urban100 as test datasets.
For real image denoising, we evaluated our model on the
SIDD Benchmark dataset [1] and Darmstadt Noise Dataset
(DnD) [44]. We used peak signal-to-noise ratio (PSNR) and
structural similarity (SSIM) [64] as the metrics for quanti-

tative evaluation.

4.1.2 Implementation details

We implemented our proposed model in the PyTorch envi-
ronment and adopted the ADAM optimizer [34] with de-
fault parameters to optimize the network parameters. We
trained our network on an NVIDIA TITAN Xp GPU for
a total of 15,000 epochs. For each iteration, we set the
batch size to 16 and randomly cropped the noisy and
sharp images to size 96 × 96. Like other denoising meth-
ods [61, 62, 63, 9, 41, 53], we performed data augmentation
on the training images, using random flipping and rotation.
We set the initial learning rate to 10−4 and halved it ev-
ery 2500 epochs. All trainable parameters were initialized
using the Xavier method [21]. For the trade-off between ef-
ficiency and performance, we set the number of FDMs T to
6. More details of this choice are provided in Section 5.1.

4.2. Synthetic noise removal

To evaluate denoising performance on synthetic noisy
images, we compared our proposed DUMRN with sev-
eral state-of-the-art denoising methods including classical
model-based methods (BM3D [13] and CBM3D [12]), deep
unfolding methods (TNRD[11], CSCNet [50] and Deam-
Net [46]), and deep-learning based methods (DnCNN [61],

https://github.com/Xujz19/DUMRN
https://github.com/Xujz19/DUMRN


Table 1. Average PSNR (dB) and SSIM results for different methods on the gray-scale datasets for noise levels σ =10, 30, 50 and 70. Best
results are highlighted in bold. ‘-’ means that a result is unavailable.

Method Set12 BSD68 Urban100

10 30 50 70 10 30 50 70 10 30 50 70

BM3D [13] 34.38 29.13 26.72 25.22 33.23 27.74 25.61 24.42 34.47 28.75 25.94 24.27
0.9233 0.8315 0.7676 0.7174 0.9148 0.7721 0.6855 0.6318 0.9459 0.8567 0.7791 0.7163

TNRD [11] - - 26.88 - - - 26.01 - - - 25.71 -
- - 0.7717 - - - 0.7057 - - - 0.7757 -

CSCNet [50] - - 27.15 - - - 26.23 - - - 26.21 -
- - 0.7823 - - - 0.7199 - - - 0.7957 -

DnCNN [61] 34.78 29.52 27.18 25.52 33.88 28.36 26.23 24.90 34.73 28.88 26.28 24.36
0.9270 0.8420 0.7827 0.7273 0.9270 0.7999 0.7189 0.6567 0.9486 0.8566 0.7869 0.7178

FFDNet [62] 34.64 29.61 27.32 25.81 33.76 28.39 26.29 25.04 34.45 29.03 26.52 24.86
0.9271 0.8465 0.7903 0.7451 0.9266 0.8032 0.7245 0.6700 0.9489 0.8707 0.8057 0.7495

NLRN [38] - - 27.64 - - - 26.47 - - - 27.49 -
- - 0.7980 - - - 0.7298 - - - 0.8279 -

SADNet [9] - 29.94 27.67 26.19 - 28.58 26.49 25.23 - 29.83 27.42 25.82
- 0.8551 0.8032 0.7622 - 0.8106 0.7340 0.6819 - 0.8876 0.8347 0.7891

DudeNet [53] 34.65 29.54 27.21 - 33.76 28.37 26.25 - 34.41 29.00 26.46 -
0.9256 0.8430 0.7839 - 0.9251 0.7991 0.7167 - 0.9444 0.8629 0.7945 -

COLANet [41] 34.97 29.81 27.50 25.98 33.93 28.47 26.35 25.10 35.37 30.01 27.47 25.79
0.9310 0.8486 0.7929 0.7490 0.9284 0.8054 0.7269 0.6704 0.9545 0.8864 0.8289 0.7782

RDN [63] 35.06 29.94 27.60 26.05 33.91 28.54 26.40 25.10 35.42 30.04 27.44 25.69
0.9315 0.8537 0.7998 0.7558 0.9281 0.8071 0.7275 0.6723 0.9550 0.8886 0.8314 0.7801

DeamNet [46] - - 27.74 - - - 26.53 - - - 27.51 -
- - 0.8052 - - - 0.7364 - - - 0.8374 -

DUMRN 35.12 30.06 27.83 26.33 34.04 28.65 26.56 25.30 35.44 30.19 27.82 26.11
0.9328 0.8566 0.8068 0.7663 0.9298 0.8120 0.7372 0.6835 0.9555 0.8931 0.8435 0.7976

DUMRN-B 34.94 29.98 27.77 26.32 33.93 28.60 26.52 25.27 35.01 30.00 27.66 26.10
0.9300 0.8549 0.8047 0.7648 0.9284 0.8107 0.7351 0.6816 0.9519 0.8899 0.8397 0.7957

Ground Truth
(PSNR/SSIM)

Noisy
(14.76/0.2062)

BM3D
(27.22/0.7942)

TNRD
(26.01/0.7555)

CSCNet
(25.73/0.7501)

DnCNN
(26.22/0.7693)

SADNet
(27.68/0.8234)

RDN
(27.58/0.8183)

DeamNet
(27.62/0.8279)

DUMRN
(28.09/0.8389)

Figure 3. Gray-scale image denoising results on image 09 in Set12 with noise level σ = 50.

FFDNet [62], NLRN[38], SADNet [9], DudeNet [53],
COLANet [41], Neb2Neb [30], and RDN [63]).

Tables 1 and 2 summarize quantitative results for differ-
ent methods on gray-scale and color image denoising, re-

spectively. Our proposed DUMRN achieves the best PSNR
under all experiment settings, demonstrating the superior-
ity of our model. Specifically, DUMRN outperforms the
most representative traditional method BM3D by 0.74dB



Table 2. Average PSNR (dB) and SSIM results for different methods on the color datasets for noise levels σ =10, 30, 50 and 70. Best
results are highlighted in bold. ‘-’ means the result is unavailable.

Method Kodak24 CBSD68 Urban100

10 30 50 70 10 30 50 70 10 30 50 70

CBM3D [12] 36.57 30.89 28.63 27.27 35.91 29.73 27.38 26.00 36.00 30.36 27.94 26.31
0.9425 0.8450 0.7764 0.7290 0.9507 0.8422 0.7627 0.7073 0.9586 0.8930 0.8404 0.7934

TNRD [11] - - 27.24 - - - 26.01 - - - 25.64 -
- - 0.7210 - - - 0.7013 - - - 0.7696 -

DnCNN [61] 36.99 31.39 29.16 27.64 36.31 30.40 28.01 26.56 36.21 30.28 28.16 26.17
0.9472 0.8611 0.7985 0.7504 0.9552 0.8642 0.7925 0.7404 0.9607 0.8922 0.8490 0.7924

FFDNet [62] 36.81 31.39 29.10 27.68 36.14 30.31 27.96 26.53 35.77 30.53 28.05 26.39
0.9461 0.8595 0.7947 0.7473 0.9540 0.8603 0.7881 0.7332 0.9585 0.8983 0.8476 0.8028

SADNet [9] - 31.80 29.58 28.22 - 30.62 28.31 26.91 - 31.26 28.97 27.45
- 0.8707 0.8140 0.7718 - 0.8697 0.8041 0.7540 - 0.9108 0.8712 0.8368

DudeNet [53] 36.72 31.41 29.10 - 36.06 30.33 27.96 - 35.65 30.63 28.16 -
0.9452 0.8605 0.7952 - 0.9531 0.8616 0.7893 - 0.9545 0.8962 0.8454 -

Neb2Neb [30] 36.17 31.24 28.93 - 35.49 30.22 27.86 - 34.85 30.22 27.82 -
0.9403 0.8594 0.7896 - 0.9492 0.8611 0.7839 - 0.9541 0.8961 0.8423 -

RDN [63] 37.31 31.94 29.65 28.19 36.47 30.67 28.31 26.85 36.69 31.69 29.29 27.64
0.9498 0.8714 0.8132 0.7659 0.9565 0.8695 0.8024 0.7481 0.9635 0.9147 0.8748 0.8377

DUMRN 37.33 32.02 29.81 28.44 36.50 30.76 28.46 27.06 36.71 31.81 29.53 28.01
0.9504 0.8743 0.8192 0.7779 0.9570 0.8725 0.8086 0.7593 0.9640 0.9174 0.8810 0.8489

DUMRN-B 37.24 31.99 29.79 28.44 36.42 30.73 28.45 27.06 36.44 31.71 29.49 28.01
0.9500 0.8740 0.8191 0.7777 0.9565 0.8722 0.8084 0.7593 0.9626 0.9164 0.8804 0.8487

Ground Truth
(PSNR/SSIM)

Noisy
(14.77/0.0997)
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(29.92/0.7718)

DnCNN
(30.12/0.7837)

FFDNet
(30.09/0.7790)

DudeNet
(29.88/0.7707)

SADNet
(30.75/0.8040)

RDN
(30.69/0.7973)

DUMRN-B
(30.94/0.8078)

DUMRN
(30.95/0.8081)

Figure 4. Color image denoising results on image kodim04 from Kodak24 with noise level σ = 50.

to 1.84dB in different settings. For gray-scale image de-
noising on the Urban100 dataset with noise level σ =
50, DUMRN achieves 2.11dB/0.0678 and 0.31dB/0.0061
improvements over the previous deep unfolding methods
TNRD and DeamNet, respectively. Benefiting from the
incorporation of the physical model and deep CNNs, our
model also outperforms state-of-the-art deep learning-based
methods DnCNN, SADNet, COLANet, and RDN. Taking
color image denoising with noise level σ = 50 as an exam-
ple, our DUMRN obtains 0.65dB/0.0207, 0.45dB/0.0161,

and 1.37dB/0.0320 improvements over DnCNN on Ko-
dak24, CBSD68, and Urban100 respectively. Due to the
proposed FDM and multi-scale strategy that enlarge the re-
ceptive field to exploit more spatial contextual information,
DUMRN is especially effective when the noise level is high
(σ = 50, 70). Specifically, on the challenging Urban100
dataset, DUMRN outperforms RDN by 0.42dB/0.0175 on
gray-scale image denoising and 0.37dB/0.0112 on color im-
age denoising when the noise level is σ = 70.

Figure 3 shows a visual comparison of results from dif-
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Figure 5. Color image denoising results on image 119082 from CBSD68 with noise level σ = 50.
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Figure 6. Color image denoising results on image img 022 from Urban100 with noise level σ = 50.

ferent methods on gray-scale image denoising. We can ob-
serve that TNRD and CSCNet generate results with severe
distortion and noticeable artifacts, and no competing meth-
ods recover a clear edge of the chin in the photo, while
DUMRN produces more faithful results. Visual compar-
isons for color images are shown in Figures 4–6. It can
be seen that our DUMRN produces sharper edges and re-
covers more details while other methods suffer from over-
smoothing, demonstrating the powerful representation abil-
ity of our DUMRN model.

Quantitative results for our blind denoising model are
also given in Tables 1 and 2. The performance of DUMRN-
B slightly decreases due to the unknown noise level, but it
is still higher than most deep learning-based methods which
are trained for a known specific noise level, indicating that
our model is robust in blind image denoising. Taking a
noise level σ = 50 as an example, DUMRN-B outperforms
the non-blind RDN by 0.14dB/0.0026, 0.14dB/0.0020, and
0.20dB/0.0056 on the Kodak24, CBSD68, and Urban100
datasets, respectively. As shown in Figures 4–6, DUMRN-

B also generates more faithful results than the other com-
peting methods, further demonstrating that our model can
effective tackle the challenging blind Gaussian denoising
task.

4.3. Real-world noise removal

Actually, it is hard to model real-world noise precisely.
Since investigating the degradation processes of real noise
is not our main goal, we simply assume it is a kind of ad-
ditive noise that can be removed by Eq. (2). We compare
the DUMRN to several state-of-the-art methods, including
CBM3D [12], DnCNN[61], FFDNet [62], CBDNet [25],
AINDNet(TF) [33], PathRestore [57], COLANet [41],
R2Net [5], and DeamNet [46].

Quantitative results for different methods on the SIDD
benchmark and DnD dataset are provided in Table 3. All
PSNR and SSIM results were obtained from public bench-
mark websites. It can be seen that our DUMRN achieves
comparable performance to these competing methods. Vi-
sual comparisons of results of different methods on an im-



Table 3. Quantitative results for different methods on the SIDD
and DnD datasets. Best results are highlighted in bold.

Dataset SIDD DnD

Metric PSNR SSIM PSNR SSIM

Noisy 23.70 0.480 29.84 0.7018
CBM3D [13] 25.65 0.685 34.51 0.8507
DnCNN [61] 23.66 0.583 37.90 0.9430
FFDNet [62] 29.30 0.694 37.61 0.9415
CBDNet [25] 33.28 0.868 38.06 0.9421
AINDNet(TF) [33] 38.95 0.952 39.37 0.9505
PathRestore[57] 38.21 0.946 39.00 0.9542
COLANet [41] 38.99 0.951 39.45 0.9626
R2Net [5] 37.87 0.943 39.25 0.9528
DeamNet [46] 39.35 0.955 39.63 0.9531
DUMRN 39.44 0.956 39.66 0.9529

Noisy
(18.77/0.3015)

CBM3D
(23.95/0.5078)

DnCNN
(32.26/0.8906)

CBDNet
(31.40/0.8364)

COLANet
(33.93/0.9176)

PathRestore
(34.16/0.9009)

AINDNet
(33.39/0.8981)

DeamNet
(34.16/0.9263)

DUMRN
(34.54/0.9215)

Figure 7. Real image denoising results of different methods on the
image from DnD dataset.

age from the DnD dataset are shown in Figure 7. The
conventional CBM3D cannot effectively remove real-world
noise, and most competing methods (e.g. DnCNN and
CBDNet) over-smooth structures while removing noise. In
contrast, DUMRN effectively removes noise in constant re-
gions and recovers clear edges with few artifacts.

5. Model analysis

In this section, we conduct ablation studies to analyze
the effects of different components, including the FDM,

Noisy DUMRN-I

Ground Truth DUMRN

Figure 8. Effectiveness of the FDM on image denoising. Visual
comparison on image 223061 from CBSD68 with noise level σ =
50.

MSRB, and consider the unrolling length T . In addition,
we also compare the computational requirements of our
DUMRN network and competing methods.

5.1. Analysis on FDM

The structure of the proposed DUMRN is similar to
TNRD [11] and RGDN [22]; all are based on the gradient
descent method. The main difference is that our DUMRN
learns a data-driven prior from deep features, but TNRD
and RGDN learn priors from the original images. The per-
formance improvement shown in Table 4 of DUMRN over
TNRD and RGDN illustrates the superiority of the proposed
feature-based denoising framework. To further demonstrate
the effect of the deep feature space, we set the feature ex-
tractor f(·) and image reconstructor g(·) as identity func-
tions (DUMRN-I for short) to learn deep prior informa-
tion from the raw image space. Table 4 shows that the
PSNR of our whole model is 0.19dB higher than DUMRN-
I, which illustrates the importance of the feature-based de-
noising module. A visual comparison of results in Figure 8
further demonstrates the effectiveness of the FDM. It can be
seen that the proposed DUMRN with FDM generates fewer
artifacts and sharper edges than DUMRN-I: FDM can learn
more useful features for high-quality image denoising.

To better demonstrate the effect of the proposed FDM
intuitively, we visualize some intermediate features Xt. Us-
ing the visualization method in [37], we compute the top
three principal components of the intermediate features and
map them to the principal components of RGB space. The
visualized features are shown in Figure 9. It can be seen
that noise is removed progressively from X2 to X6. Feature
X6 contains the least noise and has the sharpest texture: the
proposed FDM effectively removes noise and reconstructs
details.



Noisy X2 X4 X6 Denoised Results

Figure 9. Visualizations of intermediate features in DUMRN.

Table 4. Analysis of the proposed MSRB. PSNR (dB) results of
color image denoising are evaluated on the CBSD68 dataset with
noise level σ = 50.

Method TNRD [11] RGDN [22] DUMRN-I DUMRN

PSNR (dB) 25.96 27.66 28.27 28.46

Table 5. Analysis of the proposed MSRB. PSNR (dB) and SSIM
results of color image denoising are evaluated on the Urban100
dataset with noise level σ = 50.

Method PSNR SSIM

DUMRN-1 28.81 0.8646
DUMRN-2 29.22 0.8747
DUMRN-3 29.07 0.8710
DUMRN-C 29.41 0.8779
DUMRN-S 29.38 0.8778
DUMRN 29.53 0.8810

The number of FDMs determines the depth of the
DUMRN. In Figure 10, we show the variation in PSNR
performance and inference time with increasing numbers of
steps T . PSNR values and inference time both increase as
T rises. As T increases from 5 to 6, an obvious PSNR im-
provement is still obtained. However, when T becomes big-
ger than 6, the curve in Figure 10 becomes flatter, and PSNR
gains become minor. Thus, we conclude that DUMRN
has almost converged when T = 6. Although DUMRN
achieves the best PSNR performance when T = 8, it takes
the most inference time. Considering the trade-off between
the performance and inference time, we adopt T = 6 in our
experiments.

5.2. Analysis on MSRB

To investigate the effect of the proposed multi-scale
strategy and the adopted BPFF block, we designed several
baseline models. Specifically, we trained the following al-
ternatives of our model: (i) removing G2(·) and G3(·) in
MSRB (DUMRN-1 for short), (ii) removing G3(·) in MSRB
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Figure 10. Varying the number T of FDMs. PSNR (dB) results for
color image denoising are evaluated on the Urban100 dataset with
noise level σ = 50.

(DUMRN-2 for short), (iii) changing the number of filters in
G2(·) and G3(·) to 64 and letting them learn deep prior infor-
mation at the original full-resolution (DUMRN-3 for short),
(iv) replacing BPFF block with concatenation (DUMRN-
C for short), (v) replacing the BPFF block with summa-
tion (DUMRN-S for short). Quantitative results are shown
in Table 5. Compared to DUMRN-1, DUMRN-2 has one
more branch that learns deep prior information at the coarse
resolution, and DUMRN-3 has two more branches that learn
deep prior information at the original full-resolution. It can
be seen that DUMRN-2 achieves better denoising perfor-
mance than DUMRN-3, indicating that using features at dif-
ferent scales can provide more effective prior information.
In addition, DUMRN outperforms DUMRN-1, DUMRN-
2, and DUMRN-3, which further demonstrates that multi-
scale information facilitates image denoising. Visual com-
parisons are given in Figure 11; we can observe that a learn-
ing deep prior at the original full-resolution (DUMRN-1) is
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Figure 11. Effectiveness of the MSRB on image denoising. Visual comparison on image img 044 from Urban100 with noise level σ = 50.
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Figure 12. Inference time versus PSNR for different methods.
PSNR (dB) results for gray-scale image denoising were evaluated
on the Urban100 dataset with noise level σ = 50.

insufficient to recover fine texture details. Taking advantage
of the multi-scale prior information, the denoised result of
DUMRN contains fewer artifacts and much more detail than
the results of DUMRN-1 and DUMRN-2.

From Table 5, it can also be observed that DUMRN gen-
erates better results than DUMRN-C and DUMRN-S: sim-
ply using concatenation or summation can not effectively
integrate multi-scale information.

5.3. Speed

We further evaluated the inference time for different
methods for processing a 512 × 512 gray-scale image. All
inference times were tested on an NVIDIA TITAN Xp
GPU. Figure 12 shows that our DUMRN achieves better
PSNR performance with a lower inference time than the
state-of-the-art methods RDN [63], COLANet [41], and
NLRN [38]. Although DUMRN is a little slower than
DnCNN [61], DudeNet [53], and SADNet [9], it achieves
much better denoising performance. Overall, DUMRN per-
forms well in terms of both effectiveness and efficiency.

Ground Truth Noisy

RDN DUMRN

Figure 13. Unsatisfactory results. Visual comparison on image
img 076 from Urban100 with noise level σ = 50.

6. Limitations

Like other denoising methods, DUMRN may fail to re-
construct proper details in some challenging cases. As Fig-
ure 13 shows, strong noise may make vertical textures im-
perceptible in the noisy input, and as a result DUMRN and
the state-of-the-art RDN cannot correctly recover the verti-
cal textures shown in the close-up. Severe corruption makes
it difficult to restore the textures, and DUMRN generates
the most likely texture patterns learned from the training
dataset.

7. Conclusions

In this paper, we proposed the deep unfolding multi-
scale regularizer network (DUMRN) to better integrate the
traditional image denoising model with deep neural net-
works. We explicitly consider the image denoising pro-
cess in deep feature space, and propose a feature-based
denoising module (FDM) following the iterative optimiza-
tion steps of the image degradation model. Benefiting
from the FDM, we can construct a deep network with a
large receptive field to effectively learn deep prior informa-
tion. In addition, we proposed the multi-scale regularizer
block (MSRB) to extract more spatial contextual informa-
tion from features of different scales, which is beneficial for
images that suffer from heavy noise. We also analyzed the



effect of each component in the proposed DUMRN. Exten-
sive experiments demonstrate that our proposed DUMRN
can effectively and robustly denoise images, assessed both
by quantitative metrics and visual quality. In future, we
will investigate real noise models and modify DUMRN to
achieve better results for real image denoising. We will also
extend our model to other image restoration tasks, such as
image deblurring and rain removal.
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