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Figure 1: Comparison with existing image denoising methods on a real noisy photograph from the CC dataset [33] in terms
of visual results and PSNR(dB)/SSIM results. CBM3D [12] is non-learning-based, DnCNN [46] and CycleISP [45] are
supervised methods based on noisy/clean image pairs, while N2N [28], DIP [39], NAC [43] and S2S [35] are unsupervised
methods trained in absence of clean images. The noise level for CBM3D is estimated by the method of [10].

Abstract

Recent methods on real-world image denoising have
achieved remarkable progress, benefiting mostly from
supervised learning on massive noisy/clean image pairs
and unsupervised learning on external noisy images.
However, due to the domain gap between the training
and test images, these methods typically have limited ap-
plicability on unseen images. Although several unsuper-
vised methods avoid the domain gap by learning denois-
ing from a single input noisy image itself, they usually
assume the noise corruptions are independent and zero

mean. In this paper, we go step further beyond prior
work by presenting a novel deep unsupervised image
denoising framework that is able to learn high-quality
denoised image effectively from a single noisy input im-
age, without any explicit assumptions on the noise statis-
tics. Our approach is built upon the deep image prior
(DIP), which allows a wide variety of image restora-
tion tasks. However, as is, the denoising performance
of DIP will significantly deteriorate on non-zero-mean
noise and is sensitive to the number of iterations. To
overcome this problem, we propose to utilize multi-scale
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Figure 2: Denoising results produced by DIP [39] with dif-
ferent numbers of iterations.

deep image prior by imposing DIP across different im-
age scales under the constraint of a scale consistency.
Experiments on synthetic and real datasets demonstrate
that the proposed method outperforms existing unsu-
pervised denoising methods, and can produce compara-
ble or even better results than the state-of-the-art super-
vised denoising methods.

1. Introduction

Image denoising aims to recover a clean image x from an
observed noisy image y = x+ n, where n denotes the cor-
rupted noise. This problem has been widely studied, since
the presence of noise would not only significantly degrade
the perceptual quality of an image, but also may adversely
affect the performance of many fundamental vision tasks,
e.g., object detection, segmentation, and tracking.

Various methods have been proposed to tackle the im-
age denoising problem. Early methods work by exploring
sparse and low-rank representation of natural images [5, 14,
12, 17], while recent methods are mostly deep learning-
based. Among them, supervised methods achieve promis-
ing performance on images with additive white Gaussian
noise (AWGN) by training on noisy/clean image pairs
[42, 31, 26, 38, 46, 29, 16, 18, 45]. However, their per-
formance usually deteriorates on test images that have dif-
ferent image content and noise statistic from the training
images (see Figure 1), and a large number of noisy/clean
training image pairs are difficult and expensive to collect.

To avoid the dependence on clean training images, some
methods proposed to train unsupervised denoising networks
from a set of external noisy images [28, 23, 3] or a sin-
gle noisy image itself [39, 36, 43, 35]. Despite achieving

promising results, these methods still have their respective
limitations. For instance, Noise2Noise (N2N) [28] requires
massive paired noisy images with independent noise cor-
ruption of the same scene for training, which are difficult to
acquire. Deep image prior (DIP) [39] has good performance
on zero-mean noise, while real noise is usually not zero-
mean [34, 1] and it is non-trivial to stop its network training
at the right moment to achieve the ideal denoising result.
Noisy-As-Clean (NAC) [43] may fail to handle images that
break its basic assumption of weak noise. S2S [35] requires
a prerequisite that the noise corruption is zero-mean and in-
dependent between pixels. This method is effective to alle-
viate the over-fitting arising from training on a single image,
but would incur degraded training efficiency.

In this paper, we propose to learn to denoise from a sin-
gle noisy image, without any explicit modeling or assump-
tion on the noise statistics. We build our network on top of
the “Deep Image Prior (DIP)” work by Ulyanov et al. [39],
which showed that the structure of a convolutional genera-
tion network can capture powerful natural image priors, and
can be employed to achieve compelling results for a wide
variety tasks (e.g., denoising, super-resolution, in-painting,
and layer separation [15]) using only single training image.
However, DIP has two limitations in image denoising. First,
it does not work well for non-zero-mean noise. Second, as
shown in Figure 2, its performance is sensitive to the mo-
ment of stopping its network training. In general, a prema-
ture stopping will lead to over-smooth result with degraded
image details, while a late stopping may produce a fine-
grained reconstruction of the original noisy image.

To address the limitations of DIP and allow more effec-
tive image denoising, we in this work present an unsuper-
vised denoising framework that imposes DIP across differ-
ent scales of an input noisy image. Our approach is built
upon the following observation: the noise level of an image
can be naturally reduced at coarser image scales, making
noise corruption that is difficult to handle with DIP at the
finest image scale may be easier to handle with DIP at a
coarser image scale. Based on the observation, we develop
multi-scale deep image prior (MS-DIP), which is able to ro-
bustly generate high-quality denoising results for both syn-
thetic and real noisy images. MS-DIP consists of multiple
DIP generator networks, each responsible for learning un-
supervised denoising at a certain scale of the given noisy
image. Particularly, the denoised image produced by each
DIP network at a coarser scale will be used to guide the
training of DIP at the next finer scale through a scale con-
sistency loss, such that the output of the finer scale DIP can
maintain the noise removal effect learned from the previous
scale while recovering previously missing image details. In
addition, with the scale consistency loss, we can train each
DIP network until convergence to obtain the denoised im-
age, avoiding the sensitivity to the number of training itera-



tions. To take full advantage of denoising results from dif-
ferent scales, a multi-scale inference ensemble is developed
to average all estimates into a single denoised image.

The major contributions of this work are as follows:

• We find that multi-scale deep image prior can be used
to enable more effective image denoising.

• We design a novel single-image-based unsupervised
denoising framework by coupling deep image priors
learned from different image scales.

• Experiments show that our method outperforms previ-
ous unsupervised methods, and can achieve compara-
ble or better results than leading supervised methods.

2. Related Works

In this section, we discuss previous works on image de-
noising from the following two aspects, i.e., non-learning-
based and learning-based methods, with a focus on recent
learning-based methods closely related to our work.

Non-learning-based methods. Prior to the deep learning
era, it is a common paradigm to formulate non-learning-
based image denoising methods, based on the assumption
that the noise corruption and the underlying clean image
are of different statistics such that they can be separated by
observations on natural images. Following this idea, vari-
ous hand-crafted image priors (e.g., gradient sparsity, patch
recurrence, and low rank) were adopted to perform noise
removal [37, 7, 5, 14, 12, 30, 13, 17].

Learning-based methods. Recent effort on image denois-
ing is mostly learning-based, since deep neural networks
have been proven to be a very powerful tool to infer clean
images from their noisy counterparts by learning the statis-
tical difference between the two components. Methods in
this category can be further broken down into three groups:
(i) methods trained on noisy/clean image pairs; (ii) methods
trained on a set of noisy images; (iii) methods trained on a
single noisy image.

(i) methods trained on clean/noisy image pairs. Many
supervised denoising methods are developed by training on
a large amount of noisy/clean image pairs [46, 48, 47, 18,
49, 2, 44, 26, 6, 19, 11, 27, 45]. These methods achieve im-
pressive performance on AWGN noise removal, since the
paired images employed for supervised learning are typ-
ically synthesized according to the AWGN noise model.
Due to the domain gap between the synthesized training
data and real noisy images, the performance of these meth-
ods typically deteriorates on photographs with real noise.
Some attempts have been made to alleviate the domain gap
by collecting real noisy/clean image pairs for supervised
training [1, 9, 8, 20, 4, 40]. However, it is difficult to collect

a sufficient amount of such image pairs that allow to train a
network generalize well to unseen images.

(ii) methods trained on a set of noisy images. Since
pairs of noisy and clean images are difficult to acquire,
several methods proposed to train unsupervised denoising
networks from a set of noisy images. N2N [28] trained a
denoising network using paired noisy images of the same
scene under the assumption that the noise of paired im-
ages is independent. Although this work achieves com-
petitive results, a large number of noisy image pairs are
difficult to collect. Instead of using paired noisy images,
some recent works proposed to learn unsupervised denois-
ing model from a collection of unorganized noisy images
[3, 23, 25, 24, 41]. Noise2Void (N2V) [23] predicted each
pixel from its neighboring pixels by learning blind-spot net-
works. Similar training schemes as the one in [23] are
adopted by later works [3, 24, 25] with further performance
improvement. More recently, Noiser2Noise [32] was intro-
duced to generalize N2N [28] into the setting of a single
noisy realization for each image.

(iii) methods trained on a single noisy image. Training
unsupervised denoising network from a single noisy image
has emerged to be a new trend, since it does not suffer from
the domain gap problem and is convenient to employ in
practice. The first work is originated by DIP [39], which
showed that meaningful image patterns are learned more
preferentially than random patterns such as noise, when
training a randomly initialized convolutional generator net-
work to reconstruct a degraded image. Based on this find-
ing, DIP achieves image denoising by early-stopping a gen-
erative network trained for reproducing the original noisy
image. Although this method is easy to implement and
demonstrates impressive denoising results, its performance
is sensitive to the moment choice of stopping the network
training, and may not work well for non-zero-mean noise.
In order to overcome the over-fitting problem arising from
the network training on a single image, Self2Self (S2S)
[35] proposed to train with dropout on pairs of Bernoulli-
sampled instances of the input image. This method pro-
duces promising results, but the training scheme signifi-
cantly degrades the training efficiency. NAC [43] developed
a “Noisy-As-Clean” training strategy for unsupervised im-
age denoising. This strategy has broad applicability, but its
effectiveness may deteriorate significantly when the key as-
sumption of weak noise is not met.

3. Method

In this section, we describe the proposed unsupervised
image denoising framework named as MS-DIP. We first il-
lustrate the motivation of our approach. Next, we intro-
duce the network architecture of MS-DIP, and then elab-
orate its training, inference, and implementation details.



Fig. 3 presents the overall denoising workflow of MS-DIP.
As shown, MS-DIP employs multiple DIP generators to
learn unsupervised denoising of an input noisy image from
different image scales, and then averages all the denoising
estimates into a single denoised image.

3.1. Motivation: Single DIP vs. Multi-scale DIP

This section describes the motivation of our approach by
discussing the necessity of learning multi-scale DIP instead
of single-scale DIP for image denoising. We start by giving
a brief introduction of how the original single DIP network
[39] achieves image denoising. Next, we analyze the limi-
tations of single DIP in image denoising, and illustrate why
multi-scale DIP can be employed to allow more effective
and robust image denoising.

Denoising by single DIP. Image denoising is achieved in
[39] by interpreting a single DIP generator network as a pa-
rameterization x = fθ(z) of an image x and enforcing the
network to reproduce a given noisy image y:

θ∗ = arg min
θ
‖y − fθ(z)‖2, x∗ = fθ∗(z), (1)

where z is a random code vector. θ are initialized random
network parameters, while θ∗ are parameters learned from
optimization. x∗ = fθ∗(z) can be treated as the recov-
ered clean image, since the above parameterization has been
shown to present high impedance to image noise.

Limitations of single DIP. Despite single DIP is easy to im-
plement and works well for various image restoration tasks,
we found that it has the follow two limitations when applied
for image denoising. First, as analyzed in [43], single DIP
is effective to handle zero-mean noise, while it may fail to
produce satisfactory results for images with real noise. Sec-
ond, its performance is sensitive to the number of iterations
for optimizing the image reconstruction in Eq. (1), which is
hard to control.

Why multi-scale DIP works better? Compared with sin-
gle DIP, multi-scale DIP has the following advantages in
image denoising. First of all, it was observed that the noise
level of an image can be naturally reduced at coarser im-
age scales, such that noise difficult to handle with DIP may
be easier to handle at a coarser image scale [50]. Hence,
by coupling multiple DIP generator networks across differ-
ent scales of an image and then combining the denoising
results from all image scales into a single denoised image,
we are able to obtain higher noise impedance than single
DIP, especially for previously challenging signal-dependent
real noise. On the other hand, since denoising result pro-
duced by DIP network at a coarser image scale can be used
to guide the network training of DIP networks at the subse-
quent finer scales, we can avoid being sensitive to the num-
ber of iterations.

3.2. Network architecture

The overall network architecture of our MS-DIP is
shown in Figure 3. It consists of a pyramid of DIP gen-
erators (same as the one employed in [39]), which are
trained over an image pyramid of the given noisy image y:
{y0, ..., yN}, where yn is a downsampled version of y with
a factor rn (r < 1). Each DIP generator aims to produce a
denoised image xn from the downsampled noisy image yn.
This is achieved by reconstructing yn from random code
vector zn, as illustrated in Eq. (1). The whole network is
trained in a coarse-to-fine manner. We start at the coarsest
image scale, which has the minimum noise level since it has
been observed that noise level drops dramatically at coarser
image scales [50]. Owing to the noise suppression naturally
enabled by image downsampling, training DIP network at
the coarsest scale is relatively insensitive to the number of
iterations, and thus allows us to obtain a denoised image
with strong noise removal but weak detail preservation. The
denoising output of the coarsest scale is then used to guide
the training of DIP network at the next finer scale, such that
the output of the finer scale DIP can maintain similar noise
removal effect while recovering the previously missing de-
tails. Subsequent DIP networks at finer image scales are
trained similarly. Based on denoising results produced from
all image scales, we perform a multi-scale inference ensem-
ble to generate the final denoising result.

3.3. Training

Besides the coarsest image scale yN whose training is
the same as the single DIP introduced in [39], the training
loss function for DIP networks at other image scales n ∈
[0, N − 1] is as follows:

Lntotal = Lnrec + λnLnsc, (2)

where Lnrec is a reconstruction loss as that in Eq. (1), while
Lnsc is a scale consistency loss that aims to enforce DIP net-
work at the current scale to obtain a denoised image with
similar noise removal effect as the output from previous
coarser scale. λn is a scale-adaptive weight. Below we de-
scribe the consistency loss Lnsc and the weight λn in detail.

Scale consistency loss. To avoid bringing back noise from
finer scale DIP generators, we design a scale consistency
loss to encourage similarity between the training output xn
of the current scale and the known denoised output xn+1

from the previous coarser scale. Rather than encouraging
the pixels of xn to exactly match the pixels of xn+1, we
follow [21] to encourage them to have similar feature repre-
sentations computed by a VGG-16 network pre-trained on
ImageNet, which is formulated as

Lsc = MSE (φi((xn) ↓r), φi(xn+1)) , (3)
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Figure 3: The overall denoising pipeline of the proposed MS-DIP. Our model consists of multiple DIP generator networks,
for which both the training and inference are done in a coarse-to-fine fashion. At each scale, a DIP generator is employed
to generate a denoised image xn by reproducing the downsampled noisy image yn, under the guidance of a denoising
output xn+1 produced by DIP generator at previous coarser scale (except for the coarsest level). With the denoised images
{xN , xN−1, ..., x0} from all image scales, a multi-scale inference ensemble is performed to produce the final denoising result.

where φi denotes the i-th feature layer of the VGG-16 net-
work. (xn) ↓r is a downsampled version of xn by a factor
of r, which has the same size as xn+1.

Scale-adaptive weight λn. The weight λn in Eq. (2) plays
an important role in determining the overall denoising per-
formance. Intuitively, a large λn tends to make the DIP net-
work to simulate the denoised images from previous coarser
scales, and produces a smooth output with degraded image
details. On the contrary, a small λn may result in noise
residual in the denoising output. According to above analy-
sis, setting a proper λn for each image scale has two advan-
tages. First, it benefits obtaining high-quality noise removal
results. Second, it can help alleviate each DIP’s sensitiv-
ity to the number of iterations, since we can achieve noise
removal by training DIP network at each scale to conver-
gence, rather than stopping its training in advance as done in
[39]. Hence, we design a scale-adaptive weighting scheme
for λn, which is as follows

λn =
√
σyn(N − n), (4)

where σyn is the noise level of yn, which is estimated by
the method of [10]. N is the total number of image scales.
In general, high noise level of yn and shallow image scale

n correspond to large λn. The reason behind this design
is twofold. First, when yn has high noise level, we want
to enhance the capability of noise removal by enforcing
strong scale consistency to the denoising output from pre-
vious scale. Second, as the image scale goes up, the risk
of bringing back noise from the finer scale DIP learning be-
comes high. Hence, we gradually enlarge λn to lower the
effect of the reconstruction loss to alleviate this problem.

3.4. Inference

Since multiple DIP networks are trained across the im-
age scales, multi-scale denoising results {x0, ..., xN} are
thus generated along with the training of MS-DIP. To ob-
tain the final denoising result that gathers all noise removal
estimates, a multi-scale inference ensemble is developed.

Multi-scale inference ensemble. The multi-scale denois-
ing outputs {x0, ..., xN} are averaged to obtain the final de-
noised image x. As {x0, ..., xN} are in different sizes, we
choose to average two neighboring results at each time, and
then use the obtain result to compute average between the
result from the next finer scale. Suppose xn and xn−1 are
two results to be averaged, we first upsample xn to the same
resolution as xn−1 in an edge-aware fashion by performing



Table 1: Quantitative comparison between our method and state-of-the-art methods on Set9 and BSD68 in terms of average
PSNR(dB)/SSIM. The best numerical results for different AWGN noise levels are shown in boldface.

Dataset Set9 BSD68
Noise level σ = 10 σ = 15 σ = 20 σ = 25 σ = 10 σ = 25
Metric PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
CBM3D [12] 31.40 0.918 30.87 0.902 30.16 0.899 29.36 0.889 34.43 0.951 30.72 0.910
DnCNN [46] 31.06 0.848 30.10 0.824 29.29 0.804 28.58 0.785 33.73 0.945 30.01 0.874
N2N [28] 30.38 0.914 30.07 0.900 29.70 0.896 29.27 0.891 33.85 0.943 30.37 0.903
DIP [39] 29.68 0.889 29.18 0.880 28.95 0.878 28.09 0.864 33.00 0.932 29.71 0.885
N2S [3] 25.10 0.822 25.96 0.825 25.42 0.825 25.37 0.799 29.66 0.922 28.60 0.891
NAC [43] 29.35 0.759 24.97 0.569 22.50 0.458 20.65 0.383 30.63 0.850 25.56 0.616
S2S [35] 30.11 0.900 29.89 0.895 29.59 0.889 29.24 0.884 33.16 0.933 30.45 0.905
Ours 31.94 0.926 31.25 0.908 30.48 0.906 29.94 0.903 34.94 0.956 31.04 0.913

joint bilateral upsampling [22] as

x̂pn =
1

Zp

∑
q↑∈Ωp↑

xqnF (‖p− q‖)G(
∥∥xp↑n−1 − x

q↑
n−1

∥∥), (5)

where p and q denote coordinates of pixels in xn, while p↑
and q↑ denote coordinates of pixels in xn−1 and the upsam-
pled version x̂pn of xn. F and G are spatial and range filter
kernels with standard deviation σd = 0.5 and σr = 0.1,
respectively. Ω denotes a 5 × 5 window centered at pixel
p↑. Zp is the normalizing factor that sums the filter weight
F (·)G(·). With the upsampled x̂n, we average it with xn−1

to update xn−1. The updated xn−1 is then used to perform
averaging between xn−2, until the finest scale result x0 is
averaged to produce the final denoised image x. Note, the
reason we adopt joint bilateral upsampling instead of sim-
ple upsampling strategies such as bilinear upsampling and
nearest neighbor upsampling is because it is able to produce
results with sharper edges and details.

3.5. Implementation Details

Our model is implemented in Pytorch using Adam opti-
mizer with a fixed learning rate of 10−3. The random noise
input to DIP generator at each scale is initialized as uniform
noise with same size as the downsampled noisy image. To
stabilize the network training and achieve more stable re-
sults, we follow [39] to perturb the noise code zn with ran-
dom Gaussian disturbance at each iteration. In addition, we
found that training with a L1 reconstruction loss at early it-
erations and then switching to L2 reconstruction loss can
help produce denoising results with clearer structures. The
downsampling factor r is set as 0.8, and the minimum scale
is 128 × 128. Note, unlike [39] which requires manually
setting a proper number of iterations to achieve image de-
noising rather than image reconstruction, our method is in-
sensitive to the actual number of iterations for each DIP
generator, because the multi-scale framework can provide

denoising guidance for the training of each DIP generator
at different image scales.

4. Experiments

In this section, we present experiments to evaluate the
proposed MS-DIP on image denoising. We first compare it
with state-of-the-art methods on blind Gaussian denoising
and real-world noisy image denoising. Next, we perform
ablation studies to evaluate the model design, and discuss
the time performance of our method.

4.1. Blind Gaussian Denoising

Datasets. We evaluate the performance of our method on
the benchmark Set9 and BSD68 datasets corrupted by syn-
thetic AWGN noise, which are widely employed by previ-
ous works [39, 23, 35, 43]. The first one contains 9 color
images, while the second one has 68 gray-scale images.

Compared methods. We compare our method with vari-
ous state-of-the-art methods, including: (i) CBM3D [12],
which is a well-performed non-learning-based method; (ii)
DnCNN [46], a common benchmark for supervised image
denoising; (iii) five recent unsupervised denoising meth-
ods, i.e., N2N [28], DIP [39], N2S [3], NAC [43], and
S2S [35]. Note, N2N and N2S are unsupervised meth-
ods trained on a set of noisy images, while DIP, NAC, and
S2S are single-image-based unsupervised methods. For fair
comparison, we produce results of all the compared meth-
ods using publicly-available codes or trained models pro-
vided by the authors with recommended parameter setting.
In addition, since DIP’s denoising performance is sensitive
to the number of iterations, we thus implemented it multi-
ple times with different number of iterations and adopted
the best results for comparison.

Quantitative comparison. To evaluate our method’s ef-
fectiveness in blind AWGN noise removal, we compare it
with the other methods on Set9 and BSD68 in terms of av-



Table 2: Quantitative comparison between our method and state-of-the-art methods on SIDD-Medium and CC.

Dataset Metric Non-learning Supervised Unsupervised Unsupervised (single-image)
CBM3D DnCNN CycleISP N2N N2S DIP NAC S2S Ours

CC PSNR 35.19 34.65 35.56 35.32 31.86 35.69 36.59 37.29 37.82
SSIM 0.906 0.960 0.962 0.916 0.950 0.926 0.950 0.976 0.981

SIDD-Medium PSNR 35.06 33.40 36.90 32.74 33.25 34.05 32.64 35.32 36.76
SSIM 0.891 0.886 0.974 0.870 0.952 0.920 0.769 0.927 0.967

Input (20.48dB/0.434) Clean image (GT) CBM3D (29.84dB/0.863) DnCNN (28.92dB/0.737) N2N (29.80dB/0.878)

DIP (28.86dB/0.861) N2S (26.12dB/0.833) NAC (27.33dB/0.700) S2S (29.97dB/0.878) Ours (31.42dB/0.896)

Figure 4: Visual comparison of blind AWGN denoising on an image from Set9 with noise level σ = 25.

erage PSNR (dB) and SSIM. Table 1 reports the results,
where we can see that our method outperforms the others on
the two metrics for both benchmark datasets. CBM3D and
DnCNN produce very competitive results, since the former
is non-blind to the noise level and the latter benefits from
supervised training on massive high-quality noisy/clean im-
age pairs. Our method clearly outperforms DIP, mani-
festing that learning multi-scale deep image prior allows
more effective image denoising. N2N and S2S also pro-
duce promising results, while their visual results in Figure 4
demonstrates that they tend to generate overly smoothed im-
ages with degraded image details.

Visual comparison. We further provide visual comparison
results in Figure 4. As can be seen, there are obvious noise
residuals in results produced by CBM3D, DIP, and NAC,
while the results of DnCNN, N2N, N2S, and S2S degrade
the image textures and structures. In contrast, our method
produces better result, by not only effectively removing the
noise, but also faithfully preserving the underlying image
details. Please also see the supplementary material for more
visual comparison results.

4.2. Real-World Noise Removal

Datasets. Two real-world noisy datasets are employed
for performance evaluation, which are the SIDD-Medium
dataset [1] and the CC dataset [33]. The SIDD-Medium
dataset contains 160 real noisy images captured by five
different smartphone cameras with corresponding ground-
truth clean counterparts. The CC dataset consists of im-
ages of 11 scenes captured by three cameras, and their cor-
responding clean images.

Compared methods. Our method is compared with the
following eight methods: (i) CBM3D; (ii) DnCNN and Cy-
cleISP [45]; (iii) N2N, DIP, NAC, and S2S, where CycleISP
is a state-of-the-art supervised method. Note, the same
method configuration as in Section 4.1 is adopted to achieve
fair comparison. Akin to [35], we employ the method in
[10] to estimate the noise level for CBM3D.

Quantitative comparison. Table 2 shows the quantita-
tive comparison results. As shown, on both SIDD-Medium
and CC, our method produces better results than the non-
learning-based and unsupervised methods. Benefiting from



Input (21.28dB/0.577) Clean image (GT) CBM3D (23.57dB/0.682) DnCNN (25.14dB/0.753) CycleISP (30.35dB/0.967)

N2N (24.39dB/0.721) DIP (27.02dB/0.875) NAC (22.88dB/0.4813) S2S (28.16dB/0.873) Ours (31.69dB/0.972)

Figure 5: Visual comparison of real-world image noise removal on an image from the SIDD-Medium dataset.

Input (18.77) Clean GT w/o Ln
sc (26.31)

w/o ada. λn (28.78) w/o ensem. (30.19) Full method (32.15)

Figure 6: Visual ablation study (with PSNR) on the effec-
tiveness of scale consistency loss Lnsc, scale adaptive weight
λn, and multi-scale inference ensemble. The input image is
from the SIDD-Medium dataset.

the dropout-based training strategy, S2S achieves compet-
itive results on CC since noisy images in this dataset are
typically corrupted by relatively weak noise, while its per-
formance deteriorates on SIDD-Medium consisting of im-
ages with heavy sensor noise. It is worth mentioning that
our method also produces comparable or even better results
than DnCNN and CycleISP, which are leading supervised
methods. Note that, although CycleISP reports best numer-

Table 3: Quantitative ablation studies on the effectiveness
of scale consistency loss Lnsc, scale adaptive weight λn,
and multi-scale inference ensemble on the CC and SIDD-
Medium datasets (w/o - without).

Method CC SIDD-Medium
PSNR SSIM PSNR SSIM

Ours w/o ensemble 37.02 0.963 36.37 0.951
Ours w/o adaptive λn 35.83 0.949 35.52 0.934
Ours w/o Lnsc 34.13 0.901 33.27 0.916
Ours (full method) 37.82 0.981 36.95 0.967

ical results on SIDD-Medium, our results are very close to
that of CycleISP. Furthermore, as shown in Figure 5, we are
able to obtain better results than CycleISP on some noisy
images from SIDD-Medium with complex textures.

Visual comparison. The visual comparison on SIDD-
Medium is shown in Figure 5, where the input image is cor-
rupted by heavy camera sensor noise. As the sensor noise
is signal dependent and it is nontrivial to estimate a proper
noise level, there are obvious noise residuals in result of
CBM3D. Similar issues also appear in results of DnCNN
and N2N, mainly due to the domain gap between the train-
ing samples and test images. NAC fails to remove noise, be-
cause its weak noise assumption is violated by the employed
noisy image. DIP, S2S, and CycleISP produce competitive
results, while they also induce lightweight noise residuals or
degraded image structures. In comparison, our method pro-
duces a high-quality result without noticeable noise resid-



Noisy (33.34dB/0.922) Clean GT CBM3D (36.80dB/0.971) DnCNN (36.65dB/0.972) CycleISP (36.00dB/0.960)

N2N (37.01dB/0.973) DIP (36.52dB/0.983) NAC (36.20dB/0.900) S2S (38.45dB/0.984) Ours (40.47dB/0.989)

Figure 7: Visual comparison of real-world image noise removal on an image from the CC dataset.

Noisy (26.57dB/0.714) Clean GT S↓=64 (36.39dB/0.972) S↓=128 (37.00dB/0.975) S↓=256 (36.53dB/0.973)

Figure 8: Effect of varying minimum image scales S↓ on denoising an image from the SIDD-Medium dataset.

ual and structure degradation. Please also see the supple-
mentary material for more visual comparison results. Fig-
ure 7 presents visual comparison on an image from the CC
dataset. We can see that our method produces high-quality
result, while the compared methods either fail to completely
remove the noise, or destroy the underlying texture structure
of the input image.

4.3. Ablation Study

Besides the visual comparison results shown in Figure 6,
we also conducted ablation studies to evaluate the effective-
ness of each component in our model. Comparing the nu-
merical results in Table 3, we observe clear performance
improvements by adopting the scale consistency loss Lnsc,
the scale adaptive weight λn, and the multi-scale inference
ensemble, which convincingly demonstrate their respective

effectivenesses. Note, we also analyzed the effect of vary-
ing minimum image scales on the denoising performance,
and found that smaller minimum scales may not produce
better results, as shown in Figure 8.

4.4. Limitations

Although the proposed method provides a simple yet ef-
fective exploration to unsupervised image denoising based
on single training image, it still has several limitations. First
of all, unlike most prior learning-based denoising meth-
ods where the training and testing phase are separately,
as the testing phase of our method involves the whole
time-consuming training procedure, it typically takes rel-
atively high time cost (a few minutes for an image of size
640×480) to produce the denoising results. In addition, for
real-world noisy images with highly textured background in



Noisy DnCNN Ours

Figure 9: Our method fails to completely remove noises
from the leftmost noisy image with highly textured back-
ground, while faithfully preserving the texture details.

Figure 9, our method as well as other state-of-the-art meth-
ods may fail to completely remove the noise while faithfully
preserving the underlying texture details.

5. Conclusion

We have presented MS-DIP, a single-image-based unsu-
pervised framework for high-quality image denoising. It
is built upon the observation that the noise level of an im-
age usually drops dramatically at coarser image scales, such
that noise removal at coarser scales is more tractable. Based
on the observation, we propose to perform image denoising
by learning deep image prior across image scales under the
guidance of denoising outputs produced by previous coarser
scales, and then averaging the denoising outputs from dif-
ferent scales into a single denoised image. Experiments on
benchmark synthetic and real-world datasets show that our
method outperforms previous unsupervised denoising net-
works (both single-image-based and noisy image collection
based), and can achieve comparable or even better results
than the state-of-the-art supervised denoising networks.
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