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Abstract

We propose a unified 3D flow framework for joint
learning of shape embedding and deformation from dif-
ferent categories. Our goal is to recover shapes from
imperfect point clouds by fitting the best shape template
in a shape repository under deformation. Accordingly,
we learn a shape embedding for template retrieval and a
flow-based network for robust deformation. We identify
that the deformation flow can be quite diverse for dif-
ferent shape categories. Therefore, we introduce a novel
multi-hub module to learn multiple modes of deforma-
tion to incorporate such diversity. As a result, we obtain
a unique network for handling universal objects from
different categories. The shape embedding is trained to
retrieve the best-fit template as the nearest neighbor in
a latent space. We replace the standard fully connected
layer with a tiny structure in the embedding that sig-
nificantly reduces network complexity and further im-
proves deformation quality. Experiments show superi-
ority of our method over existing state-of-the-art meth-
ods according to qualitative and quantitative compari-
son. Finally, our method provides efficient and flexible
deformation that can further be used for novel shape de-
sign.

1. Introduction

Recovering high-quality 3D shapes from imperfect point
clouds is a fundamental problem in 3D vision and graph-
ics. It provides ready-to-use 3D data for down-streamed
tasks, including gaming, virtual reality, and augmented re-
ality. The key challenge is to recover clean and accurate ge-
ometry with sharp features from ubiquitous noises in sparse
point clouds, this complexity is commonly faced by tradi-
tional methods that directly triangulate points [28] or re-
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Figure 1. Deformation latent space. Left and right: Car and chair
deformation through a hub. We learn a latent deformation space by
jointly optimizing shape latent codes and their deformation hubs.
Both the shape’s latent codes and the multiple hubs in the defor-
mation path are optimizable parameters.

construct the surface using volumetric representation [24].
Although deep learning-based methods alleviate the prob-
lem by learning priors from shape repositories [2] and re-
cover shapes using auto-encoders [1, 9, 38], they generate
over-smoothed shapes with missing sharp edges and cor-
ners. One recent promising direction is via template re-
trieval and deformation [48, 20], where the best template
from a shape repository is determined and deformed to fit
the input points. The reason is that deformation from tem-
plate CAD models usually preserves geometry details, en-
sures completeness, and yields lightweight models. How-
ever, existing methods assume very limited settings where
shapes are among the same category. Therefore, category
information and multiple pretrained category-related net-
works are required to apply deformation and retrieval. In
this work, we aim to design a unique network that handles
joint retrieval and deformation for universal objects with un-
known categories.

Following [48], we address the retrieval problem by
learning a shape embedding where the best template can
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be retrieved according to the nearest neighbor in the em-
bedded latent space. Mikaela et al. [48] adopt a fixed post-
deformation step using as-rigid-as-possible [44], whereas
we jointly train an end-to-end flow deformation model fol-
lowing [20] that generates a 3D flow field according to la-
tent vectors of two shapes. Specifically, this field is used to
advect the source to the target through a path in the latent
space connecting shape vectors and a hub fixed at the origin.
We identify that the core limitation of [20] is the assumption
that learned embedding or deformation models are among
the same category with similar deformation modes. As a re-
sult, the learned deformation cannot be extended to the real
world with diverse object categories. Our insight is to learn
multiple paths in the latent space, each of which incorpo-
rates a deformation mode. Therefore, we introduce addi-
tional degrees of freedom for the deformation paths in our
network. First, we allow deformation through paths con-
necting multiple different hubs, each of which represents a
different deformation mode. Second, Jiang et al. [20] fixes
the hub at the origin, whereas we model hubs as mutable
locations in the latent space and jointly train hubs with the
embedding and the flow model. The joint learning helps au-
tomatically explore deformation modes in the latent space,
which is shown in Figure 1. We learn a latent deformation
space by jointly optimizing shape latent codes and their de-
formation hubs in the space. The shape’s latent codes and
the multiple hubs in deformation path are optimizable pa-
rameters.

We aim to learn the deformation to ensure that the near-
est hub between shapes indicates the optimal deformation
mode. Therefore, we model the training loss as the fitting
loss according to deformation via the learned nearest hub.
We propose a novel scheme that progressively identifies rea-
sonable pairs of shapes during training. If we need defor-
mation between different categories, then we select random
pair of shapes from all categories of models during train-
ing. If we only want the deformation within the same cat-
egory, we ensure that the source model and target are from
same class. As a result, the trained embedding tends to
group shapes into different clusters where intra-clusters are
well deformed to each other through the same hub (shown
in Figure 1) with a certain deformation mode. To capture
the geometry features of multi-categories shapes more effi-
ciently, we propose a novel backbone called DFF-Net for
our flow model. It takes input features and passes them
through multiple branches of IM-Net [6] and aggregates
them. The multi-branch structure borrows the idea of In-
ceptionNet [45] that improves feature diversity by different
sizes of convolution kernels and a different number of chan-
nels, while each branch of IM-Net [6] helps to improve vi-
sual quality by concatenating point coordinates with shape
features. This design improves retrieval and deformation
performance but significantly reduces the number of param-

eters and time consumption.
We compare our method with existing state-of-the-art

methods for shape reconstruction on ShapeNet [2], where
our results are the best considering sharp features and re-
alistic appearance for sparse point clouds as input. Dif-
ferent from neural cages [53] that preserves source shape
structures, we provide more flexible deformations that bet-
ter capture the target shape style. This feature leads to
a byproduct application for novel shape design. Ablation
studies highlight our contribution on the multi-hub module
and the new backbone.

Our contributions are summarized as follows:

• A unique multi-hub network for learning retrieval and
deformation of universal objects with unknown cate-
gories.

• A novel backbone for our framework, namely, DFF-
Net, which achieves dramatic improvement in effi-
ciency and deformation quality.

• A progressive training scheme to effectively learn uni-
versal object deformation.

• Improvements in applications including shape recon-
struction and novel shape design.

2. Related works

3D shape deformation 3D shape deformation aims to
generate new shapes by deforming existing shapes while re-
taining local geometry features. Earlier works model the de-
formation as an optimization problem that fit dense [43, 12,
59] or sparse key-point [57, 61] observations with rigid [17]
or non-rigid [30] regularization. Deformation can be free-
form [19, 27, 35] where vertices [52, 21, 33] are directly op-
timized, whereas shape templates or cages [14, 51, 23, 32]
can serve as agents for deformation to preserve shape in-
tegrity.

With the development of deep learning, optimization can
be replaced by efficient network prediction of vertex offsets
under deformation [60, 15, 19, 52, 21]. Alternative solu-
tions directly predict cage deformation [58] or model it as
a continuous flow [37, 20]. We further develop the defor-
mation network to handle universal objects with unknown
categories by modeling multiple modes of deformation as
learnable latent paths with hubs.

Cad-deform [18] is proposed to deal with deformation
between scan and cad model. It can obtain more accurate
CAD-to-scan fits by non-rigidly deforming retrieved CAD
models. However, it does not jointly optimize the embed-
ding and deformation process, and it mainly focuses on de-
formation optimization. Given an image input, the Deform-
Net [27] obtains a nearest retrieved point cloud shape and
deform a template to match the image. However, it can only



obtain coarse point cloud results, and not complete meshes,
and this incapability leads to limited performance. Unlike
these techniques, our method can obtain complete meshes
of models with joint learning of embedding and shape de-
formation with flow models Neural ODE[4]. Flow mod-
els are useful in shape deformation. Neural ODE[4] is a
method of continuous normalizing flow models that com-
bine ordinary differential equation solver and neural net-
works.

As applications of neural flow models, ShapeFlow [20]
can learn the geometry of different 3D models by using
flowing models, and Pointflow [56] proposes a principled
probabilistic framework to generate 3D point clouds by
modeling them as the distribution of distributions which
learn a two-level hierarchy of distributions. Occflow [37]
is also a method which learns flow dynamics to recon-
struct models that belong to 4D models. Apart from the
neural flow models, autoregressive probability density esti-
mation techniques, such as WaveNet [39], PixelRNN [50]
and IAF [25], are used to learn joint probability density
and transformed distribution. RealNVP [11] can be re-
garded as a particular case of bijective functions of IAF,
and it mentions a novel distribution, which is batch regu-
larized bijective function and can be used to stabilize the
training process. Flow-based models are used combined
with some generative models, such as auto-regressive mod-
els [25, 41, 16, 10] and VAEs [42, 49, 25, 13].

In our framework, the continuous deformation flow is
learned by our proposed deformation flow network(DFF-
Net) and it contributes to the natural deformation between
shape pairs. Our model is inspired by the Neural ODE[4]
method, we incorporate the advantages of flow models to
get continuous deformation to achieve a better deformation,
embedding, and reconstruction result of 3D models.

Shape embedding and retrieval Shape embedding and
retrieval has become an important part of shape processing,
and the technique has been used in object completion, shape
reconstruction, and other applications. Among them, shape
reconstruction has been motivated by shape embedding and
retrieval techniques. Tatarchenko et al. [47] believe that,
apart from traditional encoder and decoder reconstruction
methods, shape retrieval also can be used for shape recon-
struction.

The shape retrieval and shape embedding techniques of-
ten rely on each other, and they cannot be separated in most
situations. Former retrieval technique [36] can be applied
in indoor scene understanding. Multi-modal shape embed-
ding [31, 46] is an important part of the embedding tech-
niques. For example, Li et al. [31] propose the first deep
learning technique for joint embeddings of shapes and im-
ages via CNN networks. Then Tabia et al. [46] provide a
new technique for 3D shape retrieval using queries of dif-

ferent modalities, which include 3D models, sketches and
images. Other techniques based on multiple modalities are
also available, Wu et al.[55] designs a CNN architecture to
jointly analyze shapes and images with few training data.
Lee et al. [29] proposes a cross-domain image-based re-
trieval method which can learn joint embedding space for
images and 3D shapes in an end-to-end manner. Some
works [22, 3] are based on the embedding of 3D models
and sketches. In addition to the multi-modal embedding
learning between the CAD model and related images, em-
bedding methods between 3D scan and CAD model [8] are
available. Generative method [54] is also used to solve em-
bedding problems by jointly learning geometry and struc-
ture for 3D shape structure modeling.

Apart from object embedding and retrieval for object re-
construction, indoor scene segmentation and retrieval tech-
niques [34, 26] can also been used for scene reconstruction.
Recent works [48] creatively combine embedding technique
with deformation method, which can deform from a most
similar source shape in the database to a target shape. Our
framework can solve more generative problems and achieve
SOTA results on the public datasets by extending the above
mentioned ideas. Our joint embedding and deformation
framework can automatically find the most suitable simi-
lar objects for deformation when inputting the sparse point
cloud of some unknown objects.

3. Method

3.1. Background

We consider a set of 3D shapes S = {S1, S2, · · · , SN},
where Si = {Vi, Ei} includes Vi = {v1, v2, · · · , vni} as
the ordered vertices set and Ei = {e1, e2, · · · , emi

} as a
polygon set. ei represents vertex indices for the i-th poly-
gon.

We want to learn the deformation mapping from the
source shape Si to the target Sj for minimizing the geome-
try distance between deformed source and target:

arg min
θ
L
(

Φi,jθ (Si) , Sj

)
, (1)

Φi,jθ is a deformation function that moves a point from the
source model to the deformed one depending on informa-
tion of Si, Sj , and a learned network with its parame-
ters θ. L measures the squared Chamfer distance(CD) be-
tween two shapes. We view the deformation as a process
of advecting 3D flows through a path connecting two input
shapes in the shape latent space and define the deformation
through a line in the latent space connecting zi and zj as

Dzi,zj

θ (p) = p(1),p(T ) = p +

∫ T

0

f
zi,zj

θ (p(t), t; ) dt,

(2)
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Figure 2. Framework Overview. It is a multi-hub flow network. During training, we jointly optimize latent hubs for input shapes and
flow network parameter, and obtain nearest hubs between shapes, providing optimal deformation paths. At inference time, given a shape
or a point cloud of unknown category, we will embed it to the latent space by minimizing the deformation loss from existing shapes. The
closest existing shape will be retrieved and deformed to the input.

where each point p in the shape is deformed by integrating
f through t from zero to one. f is a 3D flow model derived
from a neural network:

f
zi,zj

θ (p, t) = hθ (p, zi + t (zj − zi)) · ‖zj − zi‖2 ,
(3)

where h is a network that produces a 3D offset given a 3D
position p and the location in the deformation path at time t.
[20] deforms Si to Sj through a path connecting their latent
codes zi and zj through a latent hub at origin as

Φi,jθ = D0,zj

θ ◦ Dzi,0
θ , (4)

and it jointly optimizes flow parameters θ with shape em-
beddings {zi}. To handle object deformations within un-
limited categories, we explore learned and more flexible
paths for multi-mode deformation discussed in the follow-
ing section.

3.2. Multi-hub flow model

Figure 2 illustrates our framework. Our key novelty is
a multi-hub flow network model framework that learns D
together with flexible deformation paths. We redefine the
deformation function as

Φi,jθ (p;h) = Dh,zj

θ ◦ Dzi,h
θ (p), (5)

to ensure that the deformation path connects zi and zj
through a mutable latent hub h. During training, we set h as
learnable parameters and jointly optimize it with flow net-
work parameters θ. As a result, we obtain an optimal hub
location h in the latent space, which provides the optimal
deformation mode among a set of shapes.

We identify diverse deformation modes among differ-
ent categories of objects. For example, deformation of air-
planes is usually via applying scale transform along hori-
zontal plane-body axes, while chair deformation is usually
along vertical axes. We aim to establish a network that han-
dles deformations of universal objects with unknown and

unlimited categories. Thus, we need to incorporate mul-
tiple deformation modes in our network. Fortunately, our
design can be further extended to satisfy such a challenging
requirement. We introduce multiple learnable hubs into our
network, that is

H = {h1, · · · ,hM} , (6)

where hi ∈ Rd is a mutable hub location in a d-dimensional
latent space, and is initialized using Gaussian distribution
for training.

We aim to learn the deformation to ensure that the near-
est hub between shapes indicates the optimal deformation
mode. Accordingly, we define the final deformation func-
tion as

Φi,jθ (p) = Φi,jθ (p;h) (7)

, where h = arg min
hk∈H

‖hk − zi‖+ ‖hk − zj‖. Our training

loss measures the geometry distance of two shapes taking
their vertex sets V1 and V2 as input and measure the aver-
aged squared distance in Equation 8, that is,

LCD (V1, V2) =
1

V1

∑
x∈V1

min
y∈V2

‖x− y‖22

+
1

V2

∑
y∈V2

min
x∈V1

‖y − x‖22.
(8)

We construct a latent space commonly shared by shapes
and hubs by jointly optimizing latent codes of shapes in the
repository with our deformation model. A shape with un-
known category is given at inference time. We embed this
shape into the the common latent space by solving its la-
tent code zp to minimize the deformation loss from existing
shapes to it fixing other network parameters, that is,

arg min
zp

∑
i∈S
L(Φi,pθ (Si),Sp) + L(Φp,iθ (Sp),Si). (9)

Notably, Sp can represent not only a CAD model but also
a point cloud. In the latter case, we can use our network
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Figure 3. The new decoder network structure of our frame-
work. Inputs are the d-dimensional latent code of each shape and
the 3-dimensional point coordinate of each point in the shape, then
we concatenate the two parts to get one input vector. The grey
“MLP” means a fully-connected layer with an activation layer be-
hind. The dimension of output in the blue rectangle of each net-
work layer is different, and S is a number hyper-parameter about
the width of network output, which can be adjusted.

to reconstruct the point cloud via retrieval and deformation.
Specifically, we find the shape Sk in the repository that has a
latent code zk closest to zp, and reconstruct the point cloud
by directly deforming the retrieved shape as Φk,pθ (Sk).

3.3. Deformation flow backbone

Inspired by the structure of InceptionNet [45] and IM-
Net [6], we propose a concise but efficient new decoder net-
work for the deformation flow named DFF-Net. This net-
work implements hθ in Equation 3, which takes inputs as
a 3D point and a d-dimensional latent vector, and outputs
3D vector flow which can be integrated as a moving offset
for this point. Inspired by the structure of InceptionNet [45]
and IM-Net [6], we propose a concise but efficient new de-
coder network for the deformation flow named DFF-Net.
This network implements hθ in Equation 3, which takes
inputs as a 3 point and a d-dimensional latent vector, and
outputs 3-dimensional vector flow which can be integrated
as a moving offset for this point.

The network architecture is illustrated in Figure 3. Over-
all, we model it as a two-branch structure, each of which
takes the concatenated point and latent code as input. For
each branch, the input is passed through MLP layers twice
where each output is concatenated with the original input.
Such design borrows the idea of IM-Net [6] that concate-
nates point coordinates with shape features to improve de-
formation quality. Different from [6], our network is shal-
lower but wider. As a result, it avoids the vanishing gradi-
ent problem for latent codes and thus generates more detail-
preserving result. The difference between the two branches
appears as different number of output feature dimensions
after MLP layers, where the upper branch outputs features

with 16 and 8 dimensions while the lower branch outputs
features with 4 and 2 dimensions. This structure borrows
the idea of InceptionNet [45] to improve feature diversity
and capture shape features from different aspects.

Compared with IM-Net which is used in [6], our net-
work reduces the parameters by 61.3%, the training time by
58.6% and the testing time by 41.5%. Apart from achiev-
ing significantly improved efficiency, we also improve the
final deformation quality supported by ablation studies in
Section 4.3.

4. Experiments

Our experiments are trained and evaluated on three cate-
gories of ShapeNet [2]: chair, car, and airplane. The dataset
is split following its official guide. We train the model with
batch size 64 on 2080Ti GPU for 200 epochs, and we set
the number of hubs as 3 for all our experiments after try the
number from 1 to 10. In this section, we first provide quan-
titative and qualitative results of our framework in terms of
surface reconstruction from sparse point cloud, which is the
most important application of our method. Then we pro-
vide experiment results to show that our method can im-
prove the reconstruction results when trained with data of
multiple classes and compared with ShapeFlow [20]. We
also show the performances our method in shape embed-
ding and retrieval, as well as shape deformation. We show
the results of our ablation study to prove the effectiveness
of our new backbone and our multi-hub method.

4.1. Shape reconstruction

We quantitatively and qualitatively compare the surface
reconstruction results of our method against those of sev-
eral classic and state-of-the-art baselines, including 3D-
R2N2 [7], TMNet [40], BSP [5] and ShapeFlow [20]. We
use a single class of ShapeNet data following its official data
split guide to train R2N2, TMNet, and ShapeFlow. We di-
rectly use the pretrained model of BSP, which is trained on
13 categories of ShapeNet data, to obtain the result.

In terms of the quantitative results, we use the metrics
of CD and Intersection over Union (IoU). For each shape,
we randomly sample 512 points to calculate the CD. The
results, which are demonstrated in Table 1, indicate that
our model outperforms the others. Our method achieves
the lowest CD in all the three categories, and has the high-
est IoU in the categories of car and airplane, as well as the
mean IoU.

Figure 4 compares some of the reconstruction results be-
tween our method and the baseline methods. Among all the
results, our method produces the most visually appealing,
realistic results. As shown in the region with red frames,
our model successfully captures the shape of the back of
the chair(round back with thin connections to the main-
frame), whereas other methods do not. Furthermore, the



Ours Shapeflow TMNet BSPNet 3D-R2N2

category CD ⇓ IoU ⇑ CD ⇓ IoU ⇑ CD ⇓ IoU ⇑ CD ⇓ IoU ⇑ CD ⇓ IoU ⇑

car 0.02667 0.8431 0.02923 0.7913 0.03542 0.6402 0.0715 0.5631 0.2001 0.7821
chair 0.04132 0.5479 0.05411 0.4611 0.04340 0.5873 0.1046 0.4969 0.2494 0.5120

airplane 0.01837 0.7311 0.06023 0.6513 0.02291 0.6760 0.1273 0.5083 0.2639 0.4185
mean 0.02879 0.7074 0.04786 0.6346 0.03391 0.6345 0.1011 0.5228 0.2378 0.5709

Table 1. Quantitative 3D shape reconstruction evaluation results. The best results are boldfaced. The second best results are underlined.
(⇑ means a larger number, better performance, while ⇓ means smaller number, better performance.)

Input 3D-R2N2 [7] BSPNet [5] TMNet [40] Shapeflow [20] Our result Ground Truth
Figure 4. Visualization of shape reconstruction from sparse point cloud. We reconstruct from sparse point clouds and compare our
methods with other approaches, including 3D-R2N2 [7], TMNet [40], BSPNet [5], Shapeflow [20].

comparison of the cars shows that our method can recon-
struct the front of the cars(including the window, the bonnet,
and the rearview) more realistically and with higher quality,
whereas other methods cannot. So we get more competitive
results in these shapes as a result of our proposed method.

Multi-class shape reconstruction We also conduct ex-
periments to compare the performance of our method in
surface reconstruction against that of ShapeFlow [20] when
trained with data of multiple classes altogether. Multi-class
shape reconstruction from sparse point cloud is very useful
when the category of the input point cloud is unknown. We
use data of all the three kinds as input, but at the inference
time, we assume the input shape category is unknown. Our
model will correctly embed the shape into its category and
retrieve the best existing shape to deform.

Table 2 shows that, when trained in multiple categories
altogether, our method outperforms Shapeflow both in CD
and IoU measures in all tests. Despite the performance
of our multi-class trained model cannot reach that of the
single-class trained one, the gap between multi-class train-
ing and other single-class methods is small so we get a
meaningful result.

4.2. Shape retrieval and shape deformation

We compare our method with some baselines on shape
retrieval on chairs of ShapeNet, including AutoEncoder [1]
and DAR [48]. As shown in Figure 5, the retrieval results
of our method are closer to the ground truth than that of
others given a complete shape as input. The result shows
that our method can learn a reasonable latent space to enable
retrieval of a shape that closely resembles the input.



Ours(multi) Shapeflow(multi)

category CD ⇓ IoU ⇑ CD ⇓ IoU ⇑

car 0.03265 0.7466 0.03650 0.6686
chair 0.05123 0.4483 0.06800 0.3581

airplane 0.02458 0.5929 0.03001 0.5272
mean 0.03615 0.5959 0.04484 0.5179

Table 2. Quantitative multi-class shape reconstruction evalua-
tion results.

AE DAR Ours GT
Figure 5. Retrieval results of AutoEncoder [1], DAR [48] and
our method. The last column is the ground truth.

Source Neural-Cage Ours Target

Figure 6. Deformation comparison between Neural-Cage [58]
and ours.

We also test our model on the task of shape deforma-
tion, including both intra-class deformation and inter-class
deformation. In terms of intra-class shape deformation, we
compare the shape deformation performance of our model
against those of Neural-Cage [58], which is the state-of-the-

Input Retrieval Deformation Ground TruthDeformation(our)Retrieval(our)

Figure 7. Visualization of retrieval and deformation results.
Middle: The second and third coloums are retrieval and deforma-
tion results of method [20], and the last two column models before
the ground truth column are retrieval and deformation results of
ours.

Source Deformed shape Target
Figure 8. Deformation between different classes in our latent
space.

art learning-based shape deformation method. After our
models and Neural-Cage are trained with the car data of
ShapeNet, we input the source and the target shapes, which
are different cars from ShapeNet. Then, we compare the de-
formation results. The results are illustrated in Figure 6. On
the one hand, our method preserves the shape style and the
detailed features of the source shapes well compared with
Neural-Cage. On the other hand, our method can deform
the global geometry shape of the source to that of the target,
whereas Neural-Cage can only change their scales such as
the length or width.

Our method has reached state-of-the-art performance not
only at intra-class shape deformation itself, but also at the
entire pipeline of shape embedding, retrieval and deforma-
tion. We compare the shape embedding, retrieval and defor-
mation performance of our method against that of Shape-
Flow [20], which is the state-of-the-art shape embedding,
retrieval and deformation method. We use a single class
of ShapeNet data to train both our model and ShapeFlow
model. Then we input sparse point clouds from the same
class, retrieve their most appropriate shapes, and deform
them to the point cloud. We then measure the CD between



the deformed results and the target shapes. The quantita-
tive results are shown in Table 3, where our method reaches
lower CD in every category. The qualitative results are fur-
ther illustrated in Figure 7. The chair retrieved using our
method highly resembles the ground truth, while that re-
trieved using ShapeFlow does not. With regard to the jeep,
the 3D shape retrieved using our method is also a jeep,
whereas that retrieved using ShapeFlow is a car. Although
the cars retrieved using our method and ShapeFlow look
alike, the deformed result of our method resembles the tar-
get car more than that of ShapeFlow.

Ours Shapeflow

car 6.30 8.10
chair 12.66 14.02

airplane 2.19 3.79

Table 3. Quantitative comparison in shape deformation perfor-
mance. CD should be multiplied by 10−4.

Furthermore, our method is also capable of deforming
shapes between different model classes although the de-
formed shape is often strange. The shape may be strange
because it preserves the shape style and detail features of
the source model and maintain the global geometry shape
of the target model. The results are shown in Figure 8. But
it also shows that the limits of our deformation method, as
we preserve the vertices’ connection relationship while de-
forming a source to a target, we cannot endure huge topo-
logical changes.

4.3. Ablation study

We compare four scenarios in this part to analyze the
effect of our two contributions: the multi-hub deformation
flow method and our new backbone DFF-Net. The result is
shown in Table 4. (1)“Multihub+DFF-Net” is our method,
which uses multi-hub and DFF-Net as the backbone.
(2)“Multihub+IM-Net” is the version that uses multi-hub
and IM-Net [6] as the backbone. (3)“Zerohub+DFF-Net”
is the version that uses zerohub, which is used in Shape-
Flow [20], and DFF-Net as the backbone. (4)“Zerohub+IM-
Net” is the version that uses zerohub and IM-Net as the
backbone. The four frameworks are trained in the car cat-
egory of ShapeNet [2] data. Then they are used in the re-
trieval and deformation task, in which we use CD as the
metric. The reason we only compare these two networks
is that they are the only networks that can be used for
our unique flow model. The result shows that our original
method in scenario(4) obtains the lowest CD. This result in-
dicates that both our multi-hub method and BIM-Net, which
is our new backbone, contribute to the performance of our
method.

We compare the numbers of parameters of DFF-Net and
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Figure 9. Comparison between IM-Net and our proposed net-
work DFF-Net. It includes number of network parameters, train-
ing time and testing time. The unit of the number of network
model parameters is ten thousand, and training and test time are
measured in seconds.

IM-Net and the time of training and testing the models to
further quantitatively prove the advantages of our proposed
new network structure DFF-Net compared with the previ-
ous network method. The comparison result in Figure 9
shows that DFF-Net is more effective and lightweight than
previous proposed network IM-Net. DFF-Net reduces the
number of model parameters by 61.3%, the length of train-
ing time by 58.6% and the testing time by 41.5%, which
are notable improvements compared with former useful net-
work structure IM-Net.

Method CD ⇓
Zerohub+IM-Net 8.10

Zerohub+DFF-Net 6.68
Multihub+IM-Net 7.38

Multihub+DFF-Net 6.30

Table 4. Ablation study about hubs and DFF-Net on car defor-
mation. CD should be multiplied by 10−4.

5. Conclusion

We propose a versatile multi-hub flow deformation
framework with a new backbone to learn a multi-class shape
deformation space for better embedding, retrieval and de-
formation. Our new backbone DFF-Net can capture more
diverse shape features and contribute to better qualitative
or quantitative results in shape deformation or reconstruc-
tion experiments. Our method can restore the full mesh
model from an unknown category of sparse point cloud in-
put. We demonstrate different application scenarios of our
framework such as shape reconstruction, shape retrieval and
shape deformation.
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