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Abstract

We propose a novel method for unsupervised image-
to-image translation, which includes a generator with
attribute consistency constraints and a new multi-scale
discriminator. Unlike the existing methods, which
cannot preserve important attributes of input images
while handling large shape deformations, our method
can simultaneously take both tasks. We introduce the
attribute-based recalibration module into the genera-
tor to extract the input image’s attribute features effi-
ciently. On this basis, we impose attribute consistency
constraints on feature space to ensure the preservation
of the crucial attributes of the input images. Moreover,
our multi-scale discriminator shares a backbone and
only introduces the attention mechanism on the high-
est scale, facilitating shape deformation and improving
image generation quality. We show that the proposed
method outperforms the existing state-of-the-art mod-
els in various challenging applications, including selfie-
to-anime, dog-to-cat, and cat-to-dog. Our code is avail-
able at https://github.com/Nightfury12366/
ACG-GAN.

1. Introduction

Unsupervised image-to-image translation aims to learn
the mapping function of images in two different domains.
It has become an area that attracts a lot of attention from
researchers in computer vision. Driven by the generative
adversarial networks (GANs) [11], recent works [1, 14, 19,
24, 27, 30] can change the local texture and style of the im-
age by using unpaired training data. Despite the promising

results they attain, all these methods are still challenging to
complete the tasks that require large shape deformation. In
view of this problem, several works [7,13,18,22,28] can be
successfully achieved in image translation tasks with large
deformation (e.g., selfie2anime and cat2dog).

Despite these advances, U-GAT-IT [13] focuses more on
the regions with significant geometric differences between
the two image domains while neglecting the common fea-
tures between the two image domains. Fig.1(c) shows that
U-GAT-IT is more likely to generate images with strange
texture shapes and poor quality (e.g., the cat in the generated
image has no ears). StarGAN-v2 [7] introduces the style
encoding guide generator to complete the image translation
task between multiple domains, but it needs a reference im-
age or style code as an additional input. CouncilGAN [22]
and ACL-GAN [28] have introduced new mechanisms to
avoid incomplete translation, but the generated images by
these methods may have attribute differences with the in-
put images, and some essential attributes of the input im-
age were not preserved successfully. Fig.1(d)(e) show the
inconsistency between the input images and the generated
images; there is a significant difference in texture and hair
color between the objects in the input image and output im-
age. e.g., in cat2dog task, the input image is a white cat,
model may generate a yellow dog as output, but we expect
a white dog image as output.

In the unsupervised image-to-image translation task, the
common methods [10, 13, 18, 28, 30] use two generators to
transform between two domains. One generator is used to
complete the translation from source domain to target do-
main, and the other is the opposite. Even if there are geo-
metric differences between the source and target domains,
there will be common features between the two domains
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Figure 1. Example results of our method and baselines. Our method can better preserve essential attributes of the input images by
introducing the attribute-based recalibration module and attribute consistency constraints. Our multi-scale discriminator can guide the
generator to deal with deformation better and generate higher-quality images.

(e.g., in the cat2dog task, cats and dogs have similar hair
textures). Using two independent generators is not con-
ducive to the model to learn the common features between
the source and target domains, reduce the model’s stabil-
ity, and generated image quality. Our goal is to propose an
improved scheme for unsupervised image-to-image trans-
lation tasks involving geometric changes between source
and target domains, dealing with the geometric deformation
from the source domain to the target domain, and generat-
ing higher quality images. At the same time, the generated
image should retain the crucial attributes of the input image.

In this work, we propose a novel unsupervised image-
to-image translation method, which includes a shared back-
bone generator with the attribute recalibration module and
a new multi-scale discriminator. We only use one gener-
ator instead of two to improve the stability of the model
and the quality of output images. Besides, we introduce
the attribute-based recalibration module into the generator
to help the generator better extract the image attribute fea-
tures, and we impose attribute consistency constraints on
the feature space. As a result, the generated image can
retain the essential attributes of the input image. In ad-
dition, we propose an improved multi-scale discriminator,
each scale shares a backbone, and we introduce the attention
mechanism on the discriminator of the highest scale. This
improvement allows the discriminator to simultaneously fo-
cus on the texture details of the image and the shape differ-
ence between the two domains. The low-scale discrimina-

tors guide the generator to generate clear and high-quality
images, while the highest-scale discriminator distinguishes
the largest difference regions between two domain images,
promoting the generator deal with deformation. Our main
contributions can be summarized as follows:
• We introduce the attribute-based recalibration module

into the generator to better extract the attribute features of
the input images.
• We impose attribute consistency constraints on at-

tribute features to ensure the attribute consistency between
input images and generated images.
• We facilitate the shape deformation and improve gen-

erated images quality by improving the structure of multi-
scale discriminator.

2. Related Work

Generative adversarial networks (GANs). Since the in-
troduction of the GAN framework [11], it has been demon-
strated to achieve impressive results in image generation. In
this framework, a generator aims to fool a discriminator by
generating realistic images, whereas the latter attempts to
distinguish between the generated images and real images.
Conditional GAN-based standard framework Pix2Pix [12]
promotes the study on image-to-image translation. Image-
to-image translation aims to learn a mapping from a source
domain to a target domain. Several works have proposed
super-resolution [26] and video generation [25] frameworks
by extending Pix2Pix. However, all these approaches need



paired data for training, which limits their practical usage.

Unsupervised image-to-image translation. Unsuper-
vised image-to-image translation aims to learn a mapping
from a source domain to a target domain with unpaired
training data. CycleGAN [30], DiscoGAN [14], DualGAN
[27] stabilize GANs for unsupervised image translation by
using a cycle-consistency loss. Some recent works con-
sider the problem of generating multiple output images for
a given source image: MUNIT [10] and DRIT [18] decom-
pose the latent space of images into a domain-invariant con-
tent space and a domain-specific style space to get diverse
outputs. Other works aim to achieve simultaneous trans-
lation between multiple(more than two) domains, such as
StarGAN [6] and StarGAN-v2 [7]. A more functional line
of research focuses on the transformation between domains
with a significant geometric difference. U-GAT-IT [13] re-
sort to CAM modules [29] for feature selection and use the
Adaptive Layer-Instance Normalization (AdaLIN) function
to control the amount of change. Council-GAN [22] consid-
ers distribution matching among multiple generators and no
longer uses cycle-consistency loss to avoid incomplete con-
version. ACL-GAN [28] considers distribution matching
between the cycle output and the identity mapping output.
Lu et al. [20] improved the performance of CycleGAN [30]
by adding additional consistency constraints. MaskGAN
[16] implements high-fidelity face semantic editing by in-
troducing mask supervision. DeepFaceEditing [4] decou-
ples the geometric features and appearance features of the
face to edit the detailed features of the face.

Multi-scale discriminator. The discriminator in the orig-
inal GAN framework [11] is simply a binary classifier. For
image-to-image translation tasks, Pix2Pix [12] propose the
PatchGAN discriminator to classify if each image patch is
real or fake. The final output of PatchGAN discriminator is
the average results of all the patches. PatchGAN is initially
designed for improving the high-frequency part of the gen-
erated image; this structure has been extended to multiple
scales [26] to cover the low-frequency part as well and has
been widely adopted by the latest unsupervised image trans-
lation networks [3,8,10,13,22,28]. Among these methods,
U-GAT-IT uses two scales discriminator, and each scale in-
corporates a Class Activation Map (CAM) [29] based atten-
tion module. MUNIT [10] and ACL-GAN [28] collect the
outputs from three scales. The multi-scale discriminators of
the above methods have an independent network for each
scale, NICE-GAN [3] lets each scale share a backbone.

3. Method

Our goal is to translate images from one domain to an-
other only using unpaired samples drawn from each do-
main. Let Xs and Xt be the source and target domains,

xs ∈ Xs and xt ∈ Xt be the images of different domains,
X be the union set of Xs and Xt (i.e.,X = Xs ∪ Xt),
x ∈ X be a single image. zs and zt are latent vector spaces
corresponding to the source and target domains. Our frame-
work consists of one generator G and two discriminators
Ds and Dt. G and D play an adversarial game, in which
D aims to distinguish the generated images from the real
images, while G aims to fool the discriminator.

Unlike these methods [10, 13, 18, 28, 30], we only use
one generator instead of two to complete the translation be-
tween two domains. Let x be the input to the generator and
receive samples from both domains. z is used to control the
translation direction of the generator(e.g., G(x, zt): trans-
form x to the target domain). We integrate the attribute-
based recalibration module into the generator and introduce
attribute consistency losses. Each scale shares a backbone
in our multi-scale discriminator, and only the highest scale
introduces an attention mechanism.

3.1. Generator

Let x ∈ {Xs, Xt} represent a sample from the source
and the target domain. Our translation model G consists of
an encoder E, a latent mapping network M , and a decoder
F . Fig. 2 (b) shows the structure of the generator.

The encoder E consists of a down-sampling module and
a feature manipulate module. Most unsupervised image-
to-image translation methods [10, 13, 18, 28, 30] use sev-
eral residual blocks as feature manipulate modules. Be-
yond them, we introduce an auxiliary unit into each resid-
ual block to represent attribute features effectively in fea-
ture space. Inspired by style-based recalibration module
[17], an attention mechanism, which adaptively recalibrates
intermediate feature maps by exploiting their styles. On
this basis, we propose an attribute-based recalibration mod-
ule(ARM) to better exploit the attribute features by extract-
ing more statistical features. This module guides the gener-
ator to efficiently extract the input image’s attribute features
and focus on regions that are critical to generating a realis-
tic image. We introduce the ARM into the residual block
and note that ARMConvBlock represents the residual block
that integrates ARM. Fig. 2 (c) shows the structure of the
ARMConvBlock. The ARM is comprised of two parts: at-
tribute pooling and attribute integration. In attribute pool-
ing, the average mean, standard deviation, and maximum
value of the feature map are selected as attribute features.
Let Ek(x) ∈ RC×H×W be the k-th feature map of the in-
put feature maps and Ekij (x) be the value at (i, j), where
C is the total number of channels, and H , W denote spa-
tial dimensions. The attribute feature T ∈ RC×3 can be
computed in each channel by:

µk =
1

HW

H∑
i=1

W∑
j=1

Ekij (x), (1)
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Figure 2. The model architecture of our method. The detailed notations are described in Section Method.

σk =

√√√√ 1

HW

H∑
i=1

W∑
j=1

(Ekij (x)− µk)2, (2)

αk = max
1≤i≤H,1≤j≤W

Ekij (x), (3)

tk = [µk, σk, αk]. (4)

The attribute vector tk ∈ R3 serves as a summary descrip-
tion of the attribute information for channel k. In attribute
integration, the attribute features T ∈ RC×3 are converted
into channel-wise attribute weights W ∈ RC×1 by using
a 1-d convolutional layer and softmax activation function.
Finally, the input feature E is recalibrated by the channel-
wise attribute integration weights to produce the output
Ê ∈ RC×H×W as: Ê =W · E.

The latent mapping network M is an eight-layer MLP
network [23], which guides the generator to translate the
image to the source domain or target domain, making our
model integrate the two generators into one. The input ofM
is a latent vector, Z , is represented by a n element vector,
we generate zs, zt ∈ Z as:

zs = 1s + v, zt = 1t + v, v ∼ N (0, 0.2). (5)

where 1s is a n element vector that contains ones on ele-
ments 0 through n

2 and zeros elsewhere, and 1t is set the
opposite way. The decoder F equips the residual blocks
with AdaLIN [13] whose parameters, γ and β are dynami-
cally computed by latent mapping network M .

The structure of the decoder F is similar to the U-GAT-
IT [13], but we changed the way it gets γ and β , it uses

the γ and β output by M to determine whether to generate
a image in the source domain or the target domain.

3.2. Discriminator

The discriminators in our framework consist of Ds and
Dt. We only discuss Dt here, the formulation of Ds is sim-
ilar toDt. Unlike the multi-scale discriminator proposed by
the previous method, our multi-scale discriminator shares a
backbone and only introduces the attention mechanism on
the highest scale. Fig.2 (a) shows the structure of the dis-
criminator.

The discriminatorDt contains two parts: n scales shared
backbone discriminators D0

t to Dn−1
t (n is 3 in Fig.2 (a)),

and an auxiliary classifier ηt. Each scale discriminators are
consists of several down-sampling-convolution layers, and
auxiliary classifier is CAM module [29]. D0

t is directly
connected to the output of the downsampling layer, D1

t is
connected to the output of D0

t , and so on. We introduce
the attention mechanism on the highest scale discriminator:
suppose En−1

t is the output feature map of Dn−1
t , wt is the

weight of feature map got from the auxiliary classifier ηt,
the output of the highest scale discriminator can calculated
as: Ên−1

t = wt∗En−1
t . The highest scale discriminator has

a global receptive field, and the auxiliary classifier is easier
to distinguish the true and fake images on this scale, which
is helpful for the discriminator to distinguish the shape dif-
ferences between the source domain and the target domain
and guide the generator to deal with the deformation. We
do not introduce the attention mechanism on the low-scale
discriminator, making our method pay more attention to the



local texture features and help guide the generator to pro-
duce a well-textured image.

3.3. Attribute Consistency Losses

3.3.1 Cycle-consistency loss.

In the task of unsupervised image-to-image translation,
the assumption of cycle-consistency [30] is used to ensure
the translated images contain enough information from the
original input images and alleviate mode collapse prob-
lem. It aims to ensure the similarity between each pixel
of the input image and the reconstructed image. The cycle-
consistency loss is defined as:

Lcyc(Gs→t) =Ex∼Xs
[‖G(G(x, zt), zs)− x‖1]. (6)

Here, x is the input image from source domainXs,G(x, zt)
is the generated image at target domainXt, G(G(x, zt), zs)
is the reconstructed image at source domain Xs, we only
discuss Gs→t here, the formulation of Gt→s is similar to
Gs→t.

However, the cycle-consistency loss is insufficient to
ensure the attribute consistency between the input image
and the generated image. We define the process of gen-
erating images to the target domain as G and the process
of generating to the source domain as F (i.e. G(x) =
G(x, zt),F(y) = G(y, zs)). The model can be viewed as
two auto-encoders: G ◦ F : Xs → Xs and F ◦ G : Xt →
Xt [5], where the translated image G(x) and F(y) can be
viewed as intermediate representations. Therefore, the im-
age can be coded as any representation so long as it can
be decoded back to the original, which does not guarantee
attribute consistency before and after translation.

Besides, the cycle-consistency assumes the images con-
tain all the input images’ information to reconstruct the in-
put images. Therefore, the generated images may retain
too much input image information, resulting in incomplete
translation.

We proposed attribute consistency constraints to solve
these problems by introducing attribute consistency loss and
attribute cycle-consistency loss.

3.3.2 Attribute consistency loss.

Here, E is the encoder module in our generator. The at-
tribute consistency loss ensures the similarity between the
input image and the generated image in the attribute feature
space.

Lattri(Gs→t) =Ex∼Xs [‖E(G(x, zt))− E(x)‖1]. (7)

3.3.3 Attribute cycle-consistency loss.

The attribute cycle-consistency loss ensures the similarity
between the input image and the reconstructed image in the

attribute feature space rather than in the image pixel space.
The reconstructed image only needs to retain the attribute
features of the input image, which reduces the constraints
on the generator and helps to alleviate the problem of in-
complete translation.

Lattri cyc(Gs→t) = Ex∼Xs
[‖E(G(G(x, zt), zs))− E(x)‖1].

(8)

3.4. Other Losses

3.4.1 Adversarial loss.

An adversarial loss is employed to match the distribution of
the translated images to the target image distribution. We
used the Least Squares GAN [21] objective for stable train-
ing:

Llsgan(Gs→t) =Ex∼Xs [(Dt(x))
2]+

Ex∼Xt
[(Dt(1−G(x, zt)))2].

(9)

3.4.2 Identity loss.

To ensure that the color distributions of input image and
output image are similar, we apply an identity consistency
constraint to the generator.

Lidentity(Gs→t) = Ex∼Xt [‖G(x, zt)− x‖1]. (10)

3.4.3 Full objective.

Finally, we jointly train the generator, discriminators to op-
timize the final objective:

min
Gs→t

max
Dt

λ1Llsgan + λ2Lcyc+

λ3Lattri + λ4Lattri cyc + λ5Lidentity.
(11)

where λ1 = 1, λ2 = 10, λ3 = 0.5, λ4 = 10, λ5 = 5. In the
second half of the training process, we remove the Lcyc to
achieve better results.

4. Experiments

4.1. Experiment Setup

4.1.1 Datasets.

We evaluate our model on three tasks, including selfie-to-
anime, cat-to-dog, and dog-to-cat.

Selfie-to-Anime. The selfie-to-anime dataset [13] con-
tains 3,400/100 selfie images and 3,400/100 anime face im-
ages in the training/test set. The image size is 256× 256.

Cat-to-Dog and Dog-to-Cat. The AFHQ dataset [7] con-
tains 4,739/500 dog face images and 5,153/500 cat face im-
ages in the training/test set. The image size is 512× 512.
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Figure 3. Ablation studies. The dog-to-cat translation results illustrate the effectiveness of our different settings. From left to right: input
images; Ours; w/o ARM; w/o ATM; a/ ATM; w/o ACL; w/o SW.
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Figure 4. Comparison against baselines on three tasks. From left to right: dog-to-cat, cat-to-dog, and selfie2anime. (a)Inputs, (b)Ours,
(c)U-GAT-IT [13], (d)ACL-GAN [28], (e)CouncilGAN [22], (f)CycleGAN [30], (g)MUNIT [10].

4.1.2 Baseline Models.

We compare our model to the state-of-the-art models for un-
supervised image translation, including CycleGAN [30],U-
GAT-IT [13],Council-GAN [22], MUNIT [10] and ACL-
GAN [28]. We use the official pre-trained models if avail-
able, including the selfie-to-anime models of Council-GAN
and U-GAT-IT. We reproduce the other results using the of-
ficial open source code.

4.1.3 Evaluation Metrics.

We evaluate generated images on two metrics, the Fréch-et
Inception Distance(FID) [9] and the kernel inception dis-
tance(KID) [2]. FID is a widely used metric for evaluat-
ing the image quality of generative models by comparing
the distributions of the real and generated images. KID is
an improvement on FID by adding unbiased estimates that
more consistently match human perception.



4.1.4 Training.

Our model is trained using Adam [15] with β1 = 0.5 and
β2 = 0.999. We use a weight decay at a rate of 0.0001. For
data augmentation, we first resize the images to 286× 286,
then randomly crops the images to 256×256, all images are
flipped horizontally with a probability of 0.5. We train all
models with a fixed learning rate of 0.0002 until 100 epochs
and linearly decayed up to 200 epochs.

4.2. Ablation Studies

We analyzed our model by comparing five different set-
tings: 1) with total module and loss(Ours), 2) without
attribute-based recalibration module(Ours w/o ARM), 3)
the highest scale discriminator does not introduce attention
mechanism(Ours w/o ATM), 4) introduce attention mecha-
nism into each scale discriminator(Ours a/ ATM), 5) with-
out attribute consistency losses and cycle-consistency loss
is used throughout the training(Ours w/o ACL), 6) without
weight sharing of generator, using two generators instead
of one(Ours w/o SW). The results of different settings are
shown in Fig. 3, and the quantitative results are listed in
Table 1.

We observed that the attribute-based recalibration mod-
ule we introduced into the generator successfully helps pre-
serve important attribute features of the input image in the
translated image, compared with the setting of ’w/o ARM’,
the results are shown in Fig.3(b)(c). Besides, the ARM can
also help generate more realistic images. The scores of FID
and KID are significantly worse when removing the ARM.
The attention mechanism introduced in the highest scale
discriminator significantly promotes the generator to com-
plete the deformation task, in ’w/o ATM’ setting, as shown
in Fig 3(d), it is difficult for the generator to transform the
dog’s eyes, nose and ears into the cat’s shape. As mentioned
above, the ’a/ ATM’ setting will cause the model to pay too
much attention to deformation and ignore the processing of
texture details of generated images. Fig 3(e) shows that this
setting will lead to inconsistent cat eye color and strange ear
texture. Although the ’w/o ACL’ setting can also generate
very high-quality realistic images (its FID score and KID
score are close to ’Ours’), it can not ensure the generated
image retains the crucial attributes of the input image. Fig
3(f) shows the huge attribute inconsistency between the in-
put and generated images; it illustrates the importance of at-
tribute consistency losses. The ’w/o SW’ setting gets worse
scores in FID and KID, although Fig 3(g) shows that it can
produce similar results with ’Ours’.

4.3. Comparison with Baselines

We compare our model to the baselines and summarize
the quantitative results in Table 2. The qualitative results
are shown in Fig. 4.

Model FID KID
Ours 21.02 0.00160

Ours w/o ARM 25.89 0.00448
Ours w/o ATM 56.37 0.00479
Ours a/ ATM 25.93 0.00178

Ours w/o ACL 21.76 0.00175
Ours w/o SW 22.21 0.00171

Table 1. Quantitative results of different ablation cases for dog-to-
cat. Lower is better.

4.3.1 Selfie-to-anime.

Selfie-to-anime is a task that requires significant shape and
texture change. The four columns on the right of Fig. 4
show the results of our model and baselines for selfie-to-
anime. Our method can generate higher quality anime-style
images while preserving the important attributes of the in-
put images, e.g., the hair color is better-preserved, and the
layout of facial features are better-organized than baselines.
Our method can generate images with finer hair textures,
more detailed eyes and higher quality facial contour. In con-
trast, other methods often cause inconsistent sizes or color
of the two eyes, unnatural hair texture, and important at-
tributes such as hair color and head shape not being pre-
served. Our method outperforms all the baselines with a
significant margin in FID and KID in Table 2.

4.3.2 Dog-to-cat and cat-to-dog.

Dog-to-cat is a task that transforms a dog face into a cat
face while retaining the features of the input image; cat-to-
dog is the opposite. The eight columns on the left of Fig. 4
show the results of our model and baselines for dog-to-cat
and cat-to-dog. Our model does a better job than baselines
in dealing with the deformation of eyes, nose, and ears. e.g.,
ACL-GAN and CycleGAN are difficult to deal with defor-
mation, and U-GAT-IT often cause unreal facial features
and ears. Our model can better preserve attribute features
than baselines. e.g., the generated image inherits the input
fur color and texture. The right columns of Table 2 show
the quantitative results of dog-to-cat and cat-to-dog. Our
method outperforms all baselines on both FID and KID.

4.4. User Study

We used user studies for qualitative evaluation. In the
user studies, 138 people participated in the selfie-to-anime
evaluation, 120 participated in the cat-to-dog evaluation,
and 112 participated in the dog-to-cat evaluation. We in-
form only the name of the target domain, i.e., anime, dog,
and cat to the participants. We randomly selected 100 im-
ages for user studies, including 34 in selfie-to-anime, 33
in dog-to-cat, and 33 in dog-to-cat. For each input im-
age, we show participants the image results generated by



Model Sefile-to-Anime Dog-to-Cat Cat-to-Dog
FID KID FID KID FID KID

Ours 77.69 0.01614 21.02 0.00160 44.59 0.00765
U-GAT-IT 87.15 0.01627 26.07 0.00396 57.55 0.01804
ACL-GAN 97.94 0.03371 39.80 0.02021 94.75 0.05169

CouncilGAN 91.81 0.02541 40.19 0.01916 98.75 0.06633
CycleGAN 89.37 0.02269 70.81 0.03242 123.77 0.07093

MUNIT 94.80 0.02964 42.29 0.02215 85.58 0.04319

Table 2. Quantitative results of Ours and the baselines. Lower is better.

Model Sefile-to-Anime Dog-to-Cat Cat-to-Dog
Ours 72.42 77.03 80.41

U-GAT-IT 12.70 15.69 13.38
ACL-GAN 7.21 1.84 1.79

CouncilGAN 4.39 4.25 1.77
MUNIT 3.28 1.19 2.65

Table 3. Preference score on translated images by user studies. Higher is better.

our method and other baseline methods (but do not tell par-
ticipants which is the output of our method). We instructed
participants to select images with higher image quality and
better preservation of input image attributes. We compare
our model to the baselines and summarize the qualitative re-
sults in Table 3. The results in Table 3 show that the score of
our method is higher than that of all other baseline methods.
User studies show that the images generated by our method
generally have higher quality and can better retain more at-
tribute information of the input image. At the same time, we
also received feedback from some participants. Like other
methods, our method is hard to retain detailed attribute in-
formation such as eye color. We will discuss it in the limi-
tations section.

5. Limitations

The experiments have demonstrated that our method out-
performs state-of-the-art methods both quantitatively and
qualitatively on three tasks. Nevertheless, our method also
has some limitations. The typical failure cases are shown in
Fig. 5. We only use one generator to translate real images
from domain Xs to Xt synchronously, however, the perfor-
mance may be decreased in tasks with huge differences in
objects or backgrounds between Xs and Xt. In addition,
for the attributes of eye color and expression in the input
image, our method can not ensure that the output image is
consistent with the original image in these details. Thus,
supporting the preservation of eye color and expression is
an interesting direction for future studies.

(a) dog2cat and cat2dog (b) selfile2anime

Figure 5. Typical failure cases of our method. (a) When the input
cat closes its eyes, it may produce a dog without eyes; The eye
color of the input image and the output image may be inconsistent.
(b) The generated anime image may be distorted when the face in
the input image is too small; Sometimes the generated image may
appear glasses that are not in the input image.

6. Conclusions

This paper has proposed a novel generator with ARM
and attribute consistency constraint and has proposed a new
multi-scale discriminator for unsupervised image transla-
tion. Our generator better ensures the preservation of the at-
tribute features of the input images. Our discriminator facil-
itates the shape deformation and improves generated image
quality. We have shown in the experiments that our method
improves the quality of the generated images, and generated
images better preserve the attribute features of inputs. Our
model outperforms the existing state-of-the-art methods on



both FID and KID metrics.
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