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Abstract

In this paper, we tackle the challenging problem of
point cloud completion from the perspective of feature
learning. Our key observation is that to recover the un-
derlying structures as well as surface details, given par-
tial input, a fundamental component is a good feature
representation that can capture both global structure
and local geometric details. We accordingly first pro-
pose FSNet, a feature structuring module that can adap-
tively aggregate point-wise features into a 2D structured
feature map by learning multiple latent patterns from
local regions. We then integrate FSNet into a coarse-to-
fine pipeline for point cloud completion. Specifically, a
2D convolutional neural network is adopted to decode
feature maps from FSNet into a coarse and complete
point cloud. Next, a point cloud upsampling network
is used to generate a dense point cloud from the partial
input and the coarse intermediate output. To efficiently
exploit local structures and enhance point distribution
uniformity, we propose IFNet, a point upsampling mod-
ule with a self-correction mechanism that can progres-
sively refine details of the generated dense point cloud.
We have conducted qualitative and quantitative exper-
iments on ShapeNet, MVP, and KITTI datasets, which
demonstrate that our method outperforms state-of-the-
art point cloud completion approaches.

1. Introduction

In this paper, we study the problem of point cloud com-
pletion, i.e. recovering a full point cloud given a partial ob-
servation. It is an important component of many real-world
applications, such as 3D data scanning [2], acquisition [28],
robot navigation [15] and so on.

Point cloud completion is a challenging task as it needs

to recover both missing topological structures and geo-
metric details from incomplete input. Traditional meth-
ods [3, 19] used hand-crafted features like surface smooth-
ness or symmetry priors. Such empirical human-designed
features suffer from performance degradation under chang-
ing illumination and in the presence of severe occlusion.
Recently, deep neural network (DNN) based methods have
been introduced into this task and have achieved promis-
ing improvements. Early works [4, 27] voxelized the 3D
point cloud and applied a 3D convolutional neural network
(CNN) to the volumetric data to complete the shapes. Due
to the large computational cost of 3D CNNs, such methods
generally output shapes with limited details. Pioneered by
PointNet [22] and PointNet++ [23], other methods [47, 29]
directly complete 3D point clouds. Compared to using vox-
els, learning on 3D points is more scalable and efficient,
but also leads to the problem of feature learning due to the
inherent irregularity and sparseness of point clouds.

A common practice in previous methods is to apply
MLPs to point clouds in an encoder-decoder manner, where
per-point features are aggregated to a global feature vec-
tor via a max-pooling operation and then decoded into a
complete point cloud. Due to the use of pooling opera-
tions, these methods suffer from unavoidable information
loss which results in unsatisfactory shape structures and
blurred details in the missing regions. More recent methods
have been proposed to improve feature learning, including
use of shape priors [21], a skip-attention mechanism [36],
and so on [49, 42]. However, most of these methods adopt
feature vectors as the global representation and suffer from
non-uniform distributions of the dense prediction results,
due to the irregular and discrete nature of the point cloud,
especially when the input shapes have large missing parts.
As shown in Figure 1, the distributions of the point clouds
predicted by previous methods are uneven e.g. in regions
between the known and predicted parts.
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Figure 1. Our approach can generate complete point clouds from partial input with finer details and more uniform surface points compared
to state-of-the-art methods.

To tackle these challenges, we propose a new point cloud
completion method with two novel modules: FSNet for
structured feature learning, which captures well both global
structure and local geometric details of the input point
cloud, and IFNet, for progressive detail generation and uni-
formity enhancement. Given a partial input, point-wise fea-
tures are first extracted by an encoder and FSNet is then
applied to form a 2D structured feature map. Instead of a
max-pooling operation, FSNet relies on multi-head atten-
tion [30] to aggregate the features, where a learnable set
and the input features are used as queries and key-value
pairs, respectively, and the output matrices constitute the
structured feature map. By exploiting latent patterns among
local regions, FSNet can learn a global representation with
rich semantic information which is distinguishable at the in-
stance level. The 2D structured feature map then allows us
to utilize a 2D convolutional neural network as a decoder to
predict the complete structures and generate a coarse point
cloud as the input to the upsampling stage. Motivated by
the success of feedback mechanisms in the image super-
resolution task [9], we propose IFNet with a self-correction
strategy to upsample the coarse point cloud in a progressive
manner. A sparse encoding module is applied to extract
sparse features from the coarse point cloud and input, and
followed by an upsampling module to generate initial dense
features. The final dense point cloud is then iteratively re-
fined through IFNet, where details are progressively added
and uniformity is gradually improved by feeding back the
projection error to the initial dense features.

We have conducted experiments on ShapeNet, MVP and
KITTI datasets to evaluate our method. The results show
that our approach can outperform state-of-the-art methods.

To summarize, our contributions are as follows:

• FSNet, a novel feature aggregation network which
adaptively organizes the unordered features into a 2D
structured feature map, which can retain more infor-

mation and represent more fine-grained global features
than a feature vector,

• IFNet, an iterative feedback network to upsample and
refine the coarse completion via a multi-step self-
correction procedure, which can further exploit local
details and facilitate consolidation and uniformity of
the point cloud, and

• an evaluation of different algorithms on both synthetic
and real-world datasets, which shows that our ap-
proach outperforms state-of-the-art methods in terms
of both completion quality and surface uniformity.

2. Related Work

2.1. 3D shape completion

3D shape completion has drawn increasing attention in
recent years. Early geometric methods [3, 19] complete ob-
jects by leveraging predefined geometric features, such as
surface smoothness or symmetry priors. Since these meth-
ods rely on hand-crafted features, they are only valid un-
der particular circumstances. Recently, convolutional neu-
ral networks (CNNs) have been widely used for processing
regularly arranged data due to their ability to learn features.
Some methods [4, 27] introduce 3D voxel grids or distance
fields as the representation for 3D data, and utilize a 3D
CNN to complete objects. However, use of a 3D CNN leads
to large computational and memory costs that are cubic in
the resolution of the volumetric data, while reducing the res-
olution limits the processing of fine-grained shapes.

Recent works tend to adopt 3D point clouds as the repre-
sentations of 3D objects due to their convenience and flex-
ibility. Pioneered by Pointnet [22], several methods use
MLPs for point cloud completion under an encoder-decoder
framework, where per-point features are aggregated to a



Figure 2. Pipeline.

global feature vector (GFV) by the max-pooling opera-
tion. PCN [47] and MSN [18] complete the point cloud
in a coarse-to-fine fashion. TopNet [29] introduces a hi-
erarchical tree-structure network that takes the geometric
structure into consideration. RL-GAN-Net [26] and Ren-
der4Completion [10] focus on adversarial learning to im-
prove the realism and consistency of the generated shape.
However, these methods suffer from loss of structural de-
tails, as they predict the point cloud only from a single
global vector.

To better preserve shape structures and complete surface
details, SA-Net [36] and ASHF-Net [51] introduce a skip-
attention mechanism to further revisit the low-level features
from the encoder. SoftpoolNet [34] proposes a soft pooling
module to replace the max-pooling operator, to keep more
information by considering multiple features. NSFA [49]
aggregates different features to represent the known and
missing parts separately. GRNet [42] and VE-PCN [31] in-
troduce 3D voxels as the intermediate representation to help
the network to infer the the complete shape. PF-Net [11],
DeCo [1], and PoinTr [46] only generate the missing part of
the object to preserve the spatial arrangements of the orig-
inal part. VRCNet [21] and ASFM-Net [39] improve the
global features by narrowing the distribution difference be-
tween the incomplete and complete point clouds. CRN [32]
and SnowflakeNet [40] generate the complete point cloud
in a progressive manner. Other notable work such as PMP-
Net [37] formulates completion as a point cloud deforma-
tion process, where point-wise paths are predicted to move
each point of the incomplete input to complete the point
cloud. SpareNet [41] proposes a style-based point genera-
tor with adversarial rendering for point cloud completion.
Cycle4Completion [35] improves completion quality by es-
tablishing a geometric correspondence between complete
shapes and incomplete ones.

2.2. Point cloud upsampling

Point cloud upsampling aims to generate a uniform
dense point cloud to represent the underlying surface of
the object within local patches. PU-Net [45] uses Point-
Net++ [23] to extract multi-scale features and expands the
features through multi-branch MLPs. With additional edge
and surface annotations, EC-Net [44] improves the edge
quality of PU-Net by formulating an edge-aware joint loss
to learn the geometry of edges. MPU [43] proposes a

progressive network to upsample points in multiple stages,
which requires supervision of intermediate outputs. PU-
GAN [17] presents a generative adversarial network (GAN)
to learn the distribution of dense point clouds. PUGeo-
Net [25] proposes a geometric-centric network by learn-
ing local parameterization and normal direction for each
point, which needs additional normal annotations. Recently,
PU-GCN [24] designed a novel feature expansion network
called NodeShuffle, which utilizes graph convolutional net-
works (GCNs) to encode local information.

3. Method

We now formally introduce our proposed method. As
shown in Figure 2, we use a two-stage pipeline which works
in a coarse-to-fine manner and consists of a coarse structure
completion stage and a point cloud upsampling stage. More
specifically, taking a partial point cloud P i ∈ RNi×3 as in-
put, a novel feature structuring module FSNet firstly aggre-
gates point-wise features encoded from P i into a 2D struc-
tured feature map SFM and feeds it to a point cloud decod-
ing network to produce a coarse point cloud P c ∈ RNc×3,
where N i and N c denote the numbers of input points and
points after coarse completion, respectively. Then, a sparse
encoding module and a novel iterative feedback network
IFNet are applied sequentially to upsample and refine the
coarse completion P c, followed by an offset regression
module to obtain a dense point cloud P d ∈ RNd×3 with
fine-grained details, where Nd denotes the number of points
after dense completion.

3.1. Coarse Point Cloud Generation

3.1.1 Background

The goal of the first stage is to generate a coarse and com-
plete point cloud. The main challenge is to recover a coarse
shape that has correct global structures while maintaining
sufficient local geometric details with respect to the input.
To this end, we propose a feature structuring network, FS-
Net, that can adaptively aggregate point-wise features into a
2D feature map and then decode it into a coarse point cloud,
as shown in Figure 3 (a).



Figure 3. Network architectures of (a) our coarse point cloud generation module and (b) our point cloud upsampling module.

Figure 4. Normalized attention weights of some representative
channels in the SFM.

3.1.2 Feature structuring network

To preserve permutation invariance of the input points, max
pooling is widely used by previous methods, but it often
leads to unavoidable information loss of local details. In-
spired by Set Transformer [16], we propose FSNet, which
utilizes multi-head attention [30] instead of max pooling to
aggregate point-wise features in a data-driven way, while
ignoring the order of the input points.

Specifically, given point-wise features F i ∈ RNi×Ci

ex-
tracted from the input point cloud, we explore the latent
patterns in local regions via an attention mechanism. We
first define a learnable set with k vectors S ∈ Rk×Ci

and
the F i as the queries and key-value pairs. Then, we lin-
early project the queries, keys and values h times through
different MLPs to dimension d. We further perform an at-
tention function [30] on the projected features, yielding h
matrices with shape k × d, where each matrix is gener-
ated as the weighed sum of the projected input features and
the attention weights which determine the geometric region
corresponding to the channel extracted from the input point
cloud. These matrices are then concatenated to generate
a 2D structured feature map SFM ∈ Rh×k×d with shape
k × d and h channels. Note that the output feature map is
independent of the order of the input points, and naturally
takes all vectors of input features into consideration thanks
to the attention mechanism.

To better understand the learned SFM, we visualize the
normalized attention weights of some representative chan-
nels using heatmaps in Figure 4. We observe that the distri-
bution of attention weights shows different patterns across
channels; some reveal semantic correlation, while others are
geometrically complementary, indicating the structured fea-
ture map contains different combinations of local informa-
tion from the input point cloud.

3.1.3 Point cloud decoding network

With the learned SFM, the next step is to generate a coarse
but complete point cloud that recovers the overall struc-
ture of the target object. The key challenge here is to in-
fer the features of missing regions and recover the under-
lying structure for diverse topologies. Our key observa-
tion is that since SFM has a regular 2D format and con-
tains rich local information about the input, we may model
the point cloud structure via 2D convolution operations.
Thus, we build a decoding network that learns to generate
a point cloud from the SFM. It is composed of two parts:
a 2D CNN with UNet structure and a regression layer. In
more detail, given the SFM as input, the 2D CNN produces
coarse features F c ∈ RCc×k×d, and then the regression
layer transforms F c to an intermediate output P̄ c with shape
3× (k/2)× (d/2), which is reshaped to form the corre-
sponding coarse point cloud P c ∈ RNc×3.

Note that as the structure information is implicitly mod-
eled in the 2D CNN, local patches in P̄ c actually correspond
to local neighboring point regions, which represent the lo-
cal structure of the object. Figure 5 shows some example
local point regions corresponding to local patches in P̄ c,
with increasing sizes from the top to bottom rows, where
we use sliding windows of different sizes to extract the lo-



Figure 5. Representative structures learned by the decoding net-
work. Local patches in the 2D structured point cloud P̄ c corre-
spond to local point regions, which grow with increasing patch
size from the top row to the bottom row.

cal patches. We can see that point regions corresponding
to smaller patches represent low-level structures of the ob-
ject, and point regions grow with increasing local patch size
in P̄ c to represent high-level structures of the object. This
shows that the CNN-based decoding network can precisely
model the structure of point cloud using the given SFM.

3.2. Point Cloud Upsampling

3.2.1 Approach

After generating the coarse point cloud P c, a point cloud
upsampling stage follows to produce a dense point cloud
P d with fine-grained details and uniform distribution. As
Figure 3 (b) shows, our proposed point cloud upsampling
stage has three steps: sparse encoding, feature expansion,
and offset regression.

3.2.2 Sparse encoding

The first step is a sparse encoding module which serves as
sparse feature preparation and provides both local and con-
textual information to the following steps. It consists of two
branches: a neighbor encoding path to preserve geometric
structures, and a feature reuse path to explore structural de-
tails in local regions by revisiting the input features F i and
coarse features F c. For the neighbor encoding path, we first
combine P c with P i, followed by farthest point sampling
and a grouping operation, which produces a sparse and rel-
atively uniform point cloud P s ∈ RNs×3, where Ns de-
notes the number of sparse sample points. We then follow
the GCN structure in DGCNN [33] with adaption of Edge-
Conv [33] as the GCN layer, which sequentially aggregates
features from the local neighbors for each point. For the
feature reuse path, F i and F c are passed to a sequence of
1D and 2D convolution layers separately. The output fea-
tures are concatenated, followed by a grouping operation

and a sequence of self-attention units [48] to enhance fea-
ture integration. At the end, features from the two paths are
concatenated as the sparse features F s ∈ RNs×Cs

and fed
into the feature expansion step.

3.2.3 Iterative feedback network

Inspired by DBPN [9] for image super resolution tasks, we
introduce a feedback mechanism into feature expansion by
constructing an iterative feedback network (IFNet) that can
effectively expand the sparse features through multi-step
refinement. The network first reduces the dimension of
F s from Cs to c using an MLPs and expands it through
an upsampling unit, producing the initial sparse features
F s
0 ∈ RNs×c and dense point features F d

0 ∈ RrNs×c,
where r denotes the upsampling ratio. It then feeds the ini-
tial features into a sequence of feedback blocks (FBs) to
perform self-correction.

More specifically, a feedback block comprises an upsam-
pling unit, a downsampling unit and a self-attention unit,
defined as:

scale down : F s
t+1 = DOWNt(F

d
t , r) (1)

difference : Es
t = SAt(F

s
t+1 − F s

t ) (2)

scale difference up : Ed
t = UPt(E

s
t , r) (3)

corrected features : F d
t+1 = F d

t + Ed
t (4)

where SA denotes the self-attention unit [48], and UP(F, r)
and Down(F, r) denote upsampling and downsampling op-
erations on features F with a ratio r. Detailed network ar-
chitectures are shown in the supplementary materials.

Each feedback block takes sparse features F s
t ∈ RNs×c

and dense features F d
t ∈ RrNs×c as inputs, and maps the

dense features F d
t to new sparse features F s

t+1 ∈ RNs×c.
The difference Es

t ∈ RNs×c between known sparse fea-
tures F s

t and the reconstructed sparse features F s
t+1 is com-

puted, followed by a self-attention unit to produce a more
discriminative error by capturing long-range contextual in-
formation. Afterwards, the difference is mapped to interme-
diate dense features Ed

t ∈ RrNs×c, and the corrected dense
features F d

t+1 ∈ RrNs×c are obtained by adding Ed
t to F d

t .
Intuitively, each block performs a self-correction procedure
by feeding back the projection error to the initial dense fea-
tures, which enables the networks to produce dense features
that help to produce a dense point cloud with fine-grained
details and uniform distribution.

3.2.4 Offset regression

In the last process, we generate the dense point cloud P d

based on the produced dense features F d ∈ RNd×c by
predicting offsets between the coordinates of points in the
sparse and dense point clouds, where the residual offsets
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Figure 6. Completion results on the ShapeNet dataset.

are regressed through two layers of MLPs and the sparse
point cloud P s is replicated r times before residual sum-
mation. Note that the number of dense completion points
Nd = rNs.

3.3. Loss function

We choose Chamfer distance (CD) as the reconstruction
loss due to its efficiency, following PSGN [5] and Top-
Net [29]. The Chamfer distance between two point sets X
and Y is defined as:

LCD (X,Y ) = LX,Y + LY,X , (5)

where

LX,Y =
1

|X|
∑
x∈X

min
y∈Y

||x− y||22 . (6)

Since we generate the complete point cloud in a coarse-to-
fine fashion, we jointly optimize the coarse point cloud P c

and dense point cloud P d via the CD loss. The overall train-
ing loss is defined as:

L = LCD (P s, P g) + LCD

(
P d, P g

)
(7)

where P g ∈ RNg×3 denotes the ground truth point cloud,
and Ng denotes the number of ground truth points.

4. Experiments

4.1. Datasets

We evaluated our method using three popular bench-
marks, including ShapeNet [38], MVP [21], and KITTI [6]:

4.1.1 ShapeNet

The ShapeNet dataset for point cloud completion is derived
from PCN [47]; 30,974 samples are selected in 8 categories.
The ground truth point clouds containing 16,384 points are
uniformly sampled from mesh surfaces. The partial point
clouds are generated by back-projecting 2.5D depth maps
from 8 random views into 3D. For a fair comparison, we
use the same training / validation / test splits as PCN.

4.1.2 MVP

The MVP dataset consists of 16 categories of partial and
complete point clouds generated from CAD-models se-
lected from the ShapeNet dataset [38]. There are 62400
and 41600 shape pairs in the training and testing sets, re-
spectively. Unlike other datasets, the complete point clouds
in MVP have different resolutions, including 2048, 4096,
8192 and 16384, so can be used to evaluate completion
quality at different resolutions. We use the same training
/ test splits as in VRCNet [21] to evaluate our method.

4.1.3 KITTI

The KITTI dataset is composed of a sequence of real-world
LiDAR scans, also derived from PCN [47]. For each frame,
a car point cloud is extracted within the car object bounding
boxes, resulting in 2,401 partial point clouds. There is no
ground truth for this dataset.



Method Plane Cabinet Car Chair Lamp Sofa Table Vessel Avg.

PCN [47] 1.40 4.45 2.45 4.84 6.24 5.13 3.57 4.06 4.02
TopNet [29] 2.15 5.62 3.51 6.35 7.50 6.95 4.78 4.36 5.15
MSN [18] 1.54 7.25 4.71 4.54 6.48 5.89 3.80 3.85 4.76
NSFA [49] 1.75 5.31 3.43 5.01 4.73 6.41 4.00 3.56 4.27
PF-Net [11] 1.55 4.43 3.12 3.96 4.21 5.87 3.35 3.89 3.80
CRN [32] 1.46 4.21 2.97 3.24 5.16 5.01 3.99 3.96 3.75
GRNet [42] 1.53 3.62 2.75 2.95 2.65 3.61 2.55 2.12 2.72
PoinTr [46] 0.99 4.80 2.52 3.68 3.07 6.53 3.10 2.02 3.34
VRCNet [21] 1.53 4.66 2.66 4.62 5.50 5.70 4.39 3.58 4.08
PMP-Net [37] 1.22 4.18 2.85 3.51 2.14 4.22 2.89 1.88 2.86
SnowflakeNet [40] 0.86 3.40 2.36 2.68 2.06 4.46 2.16 1.74 2.47
ASHF-Net [51] 1.40 3.49 2.32 2.82 2.52 3.48 2.42 1.99 2.55

Ours 0.80 3.53 2.13 2.48 1.79 3.64 1.98 1.81 2.27
Table 1. Shape completion results (CD loss×104) on the ShapeNet dataset.

Points 2,048 4,096 8,192 16,384
CD F1 CD F1 CD F1 CD F1

PCN [47] 9.77 0.320 7.96 0.458 6.99 0.563 6.02 0.638
TopNet [29] 10.11 0.308 8.20 0.440 7.00 0.533 6.36 0.601
MSN [18] 7.90 0.432 6.17 0.585 5.42 0.659 4.90 0.710
CRN [32] 7.25 0.434 5.83 0.569 4.90 0.680 4.30 0.740
ECG [20] 6.64 0.476 5.41 0.585 4.18 0.690 3.58 0.753
VRCNet [21] 5.96 0.499 4.70 0.636 3.64 0.727 3.12 0.791
PMPNet [37] 6.33 0.479 4.63 0.584 3.52 0.680 2.79 0.753
SnowflakeNet [40] 6.06 0.500 4.80 0.615 3.49 0.739 2.75 0.805

Ours 5.53 0.503 4.20 0.648 3.19 0.760 2.33 0.810
Table 2. Shape completion results (CD loss×104 and F-score@1%) with various resolutions on the MVP dataset.

4.2. Implementation Details

We use DGCNN [33] as the encoder to extract features
from the input point cloud. Both d and k are set to 64 for
generating a coarse completion P c with N c = 1024 points.
The number of channels h for SFM is set to 32, determined
by experiment. We typically sample Ns = 1024 points
to obtain the sparse point cloud P s, which is sufficient to
cover the overall structures of the objects. We may generate
dense output P d with various resolutions, including Nd =
2048, 4096, 8192, 16384, where the upsampling ratio r is
set to 2, 4, 8, and 16, respectively.

Our networks are implemented using PyTorch and op-
timized using an Adam optimizer [13] with β1 = 0.9 and
β2 = 0.999. The initial learning rate is 10−3 and is mul-
tiplied by 0.7 per 10 epochs. We train the networks with a
batch size of 32 on four NVIDIA TITAN Xp GPUs.

4.3. Comparison with State-of-the-Art

We have compared our method to several state-of-the-
arts point cloud completion approaches, both quantitatively

and visually.

4.3.1 Results on ShapeNet

A quantitative comparison of our method to other methods
on the ShapeNet dataset is shown in Table 1: our method
outperforms all competitive methods in terms of average
CD across all categories. Qualitative results are shown in
Figure 6: our method can precisely predict the missing
parts of the input while other methods tend to output blurred
point clouds in the missing region. Moreover, our method
can produce more uniformly-distributed dense point clouds
with less noise than other methods, benefiting from IFNet
with its self-correction procedure.

4.3.2 Results on MVP

Since our method can generate complete point cloud with
various resolutions by modifying the upsampling rate r, we
compare our method with existing methods that support
multi-resolution completion. Except for CD loss, we also



Methods
FD MMD Consistency Uniformity

(×10−3) (×10−3) (×10−3) 0.4% 0.8% 1.2%

PCN [47] 2.235 1.366 1.557 3.662 7.710 10.823
TopNet [29] 5.354 0.636 0.568 1.353 1.219 0.950
MSN [18] 0.434 2.259 1.951 0.822 0.523 0.383
NSFA [49] 1.281 0.891 0.491 0.992 0.767 0.552
PF-Net [11] 1.137 0.792 0.436 0.881 0.682 0.491
CRN [32] 1.023 0.872 0.431 0.870 0.673 0.485
GRNet [42] 0.816 0.568 0.313 0.632 0.489 0.352
VRCNet [21] 2.586 0.378 0.259 0.751 0.582 0.416
SnowflakeNet [40] 0.220 0.664 0.557 0.979 0.730 0.499
ASHF-Net [51] 0.773 0.541 0.298 0.602 0.466 0.335

Ours 0.586 0.336 0.314 0.506 0.313 0.148
Table 3. Shape completion results on the KITTI dataset: fidelity distance (FD), minimal matching distance (MMD), consistency, and
uniformity.

Input GRNet SnowflakeNet VRCNet Ours

Figure 7. Qualitative point cloud completion and surface reconstruction results on the KITTI dataset.

use F-Score [14] to evaluate the distance between objects as
in [21]. As shown in Table 2, our method outperforms all
the other methods in terms of both CD and F-Score@1%.

4.3.3 Results on KITTI

Since there are no complete ground truth point clouds for
KITTI, we follow the protocol of ASHF-Net [51] to eval-
uate the performance, where Fidelity, Minimal Matching
Distance (MMD), Consistency and Uniformity are used
as evaluation metrics. Table 3 shows the advantages of
the point clouds generated by our method over the other
methods in terms of distribution uniformity, which demon-
strates that the proposed IFNet is beneficial to produce uni-
formly distributed point cloud through the iterative self-
correction procedure. Besides, our approach achieves the
lowest MMD among all the methods. Other than the quan-
titative comparison, we also visualize point cloud comple-

tion results and surface reconstruction results in Figure 7,
where the mesh is created by Poisson Surface Reconstruc-
tion [12]. We can observe that other methods produce more
artifacts in the reconstructed surfaces due to the generation
of unevenly distributed point set, while our method produce
smoother surface and clearer structures in the completion
results.

4.4. Ablation Study and Parameters

We demonstrate the effectiveness of the proposed net-
works through an ablation study, and consider the choice of
parameters. We conducted all experiments on the ShapeNet
dataset and all experimental settings including the network
architectures were the same as described in 4.2, except for
the analysis.
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Figure 8. Visual comparison of coarse point clouds generated by SFM and GFV.

4.4.1 Feature structuring network

We compared the performance of point cloud completion
to quantitatively validate the effect of the FSNet; the struc-
tured feature map SFM was generated with various num-
bers of channels h. Additionally, we replaces FSNet by
a max-pooling operation to produce a global feature vec-
tor (GFV) as the global representation instead of SFM,
and the coarse point cloud was generated by the module
in SnowFlakeNet [40]. As Table 4 shows, the completion
quality of the SFM-based method for both coarse and dense
point clouds is better than for the GFV-based method. A
visual comparison of the coarse point clouds generated by
different methods is provided in Figure 8, and we see that
our method provides complete shapes with clearer struc-
tures. We also note that CD decreases to the lowest value as
h increases to 32, which demonstrates the effectiveness of
FSNet. However, CD increases when h rises to 64, which
indicates that although using SFM with more channels can
represent richer latent patterns, it may lead to information
redundancy.

Method CD
Coarse Dense

GFV 9.77 2.64

Ours (h = 8) 7.68 2.40
Ours (h = 16) 7.62 2.35
Ours (h = 32) 7.26 2.27
Ours (h = 64) 7.64 2.30

Table 4. Shape completion (CD loss×104) on the ShapeNet
dataset for a GFV-based method and SFM -based method, with
various numbers of channels.

We also provide a visualization of the learned SFM
projection for various testing samples from the ShapeNet
dataset in Figure 9. Compared to a recent GFV based
method [40], the distribution of SFM projections is
more uniform at instance level across different categories,
demonstrating that SFM has learned sufficient local infor-
mation to distinguish different shapes. Note that we use the
same encoder as [40] to conduct the comparison.



Method Plane Cabinet Car Chair Lamp Sofa Table Vessel Avg.

MB [45] 0.99 3.80 2.30 3.64 3.12 4.26 2.77 2.61 2.94
DP [17] 1.00 3.88 2.30 3.46 3.07 4.24 2.75 2.60 2.92
NS [24] 0.96 3.79 2.28 3.23 2.95 4.17 2.68 2.51 2.82

Ours (T = 1) 0.80 3.64 2.21 3.05 2.23 3.87 2.31 1.88 2.50
Ours (T = 3) 0.79 3.45 2.24 2.86 1.99 3.98 2.27 2.03 2.45
Ours (T = 5) 0.82 3.52 2.18 2.97 1.85 3.65 2.12 1.92 2.38
Ours (T = 7) 0.84 3.47 2.18 2.63 1.84 3.73 2.04 1.90 2.33
Ours (T = 9) 0.80 3.53 2.13 2.48 1.79 3.64 1.98 1.81 2.27

Table 5. Shape completion results (CD loss×104) on the ShapeNet dataset with different feature expansion networks.

Airplne Chair Lamp Table

SF
M

G
FV

Figure 9. Compared to GFV used in [40], the feature embedding
of the learned SFM is more uniformly distributed.

4.4.2 Iterative feedback network

Feature expansion is an important component of re-
cent point cloud upsampling methods. However, ex-
isting feature expansion methods, including multi-branch
MLPs (MB) [45], duplication-based expansion (DP) [17]
and NodeShuffle (NS) [24] generally perform expansion
in one or two steps, which limits their abilities in the
point cloud completion task which has incomplete and non-
uniform inputs. To demonstrate the effectiveness of IFNet,
we conducted a comparison in which IFNet in our pipeline
is either replaced by other feature expansion methods or has
various numbers T of feedback blocks. Quantitative results
are shown in Table 5, which demonstrates the advantage
of IFNet over other methods in the point cloud comple-
tion task; the completion quality improves as the number
of feedback blocks increases. Qualitative completion re-
sults and close-ups are illustrated in Figure 10, showing
that the dense point clouds generated by our method have
fewer outliers and less noise, demonstrating that the pro-
posed IFNet facilitates consolidation and uniformity of out-
put point clouds.

For more comprehensive understanding of the progres-
sive refinement process in IFNet, we visualize various in-
termediate completion results in Figure 11, where the off-
sets between the coordinates of points in P s and the dense

point cloud in step t are regressed from the corresponding
dense features F d

t . It shows that as the the dense features are
progressively corrected via the feedback mechanism, local
details and surface uniformity of the dense point cloud are
gradually improved. Note that only the dense features from
the last feedback block are fed to the offset regression mod-
ule during both training and test stages, and there is no need
to supervise the intermediate results as in previous meth-
ods [40, 11].

5. Conclusions

In this study, we revisit the problem of point cloud com-
pletion and propose two novel networks which can be inte-
grated into a coarse-to-fine pipeline. By replacing the max
pooling operation with FSNet, we are able to efficiently ag-
gregate both global and local information from partial ob-
servations. Moreover, we introduce IFNet into the upsam-
pling stage, which can work in a self-correcting manner,
helping to progressively refine local details of the output
shape. Experiments on multiple datasets indicate that our
method achieves state-of-the-art performance.

However, our method still has certain limitations. FS-
Net incurs an extra computational cost compared to max-
pooing, and it may lead to information redundancy as noted
in the parameter study. Furthermore, IFNet takes multi-
ple steps to expand the sparse features, which is also rel-
atively time-consuming. It is worth exploring ways to ad-
dress these limitations and the possibility of applying our
method to other tasks like point cloud consolidation and up-
sampling. Moreover, since we use multi-head attention in
FSNet and self-attention in IFNet, it would be interesting to
explore other more sophisticated attention mechanisms [8],
e.g. transformer-based modules that have proved helpful in
3D point cloud processing [7, 50], to see if the results can
be further improved.



Input MB DP NS Ours GT

Figure 10. Example shape completion results using the ShapeNet dataset using different feature expansion networks.

t = 1 t = 2 t = 3 t = 4 t = 5 GT

Figure 11. Example shape completion results using the ShapeNet dataset regressed from the intermediate features in IFNet.
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