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Abstract
Novel view synthesis, especially from sparse view

images, is very challenging due to large view shifting
and occlusions. Existing image-based methods fail to
generate reasonable results for invisible regions, while
geometry-based methods have difficulties synthesizing
detailed textures. In this paper, we propose STATE, an
end-to-end deep neural network, for sparse view syn-
thesis by learning STructure And TExture representa-
tions. The structure is encoded as a hybrid feature
field to predict reasonable structures for invisible re-
gions and maintain original structures for visible re-
gions, and the texture is encoded as a deformed fea-
ture map to preserve detailed textures. We propose a
hierarchical fusion scheme with intra-branch and inter-
branch aggregation, in which spatio-view attention is
designed for multi-view fusion at the feature level to
adaptively select important information by regressing
pixel-wise or voxel-wise confidence maps. Through de-
coding the aggregated features, STATE is able to gener-
ate realistic images with reasonable structures and de-
tailed textures. Experimental results demonstrate that
our method achieves better performance than state-
of-the-art methods in both qualitative and quantita-
tive evaluations. Our method also enables texture and
structure editing applications benefitting from implicit
disentanglement of structures and textures. The code
will be available online at https://github.com/
jingxinyi/STATE.

1. Introduction
Novel view synthesis aims to generate a new image for

an object at a new viewpoint from a single image or multi-
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Input Generated Images

Figure 1. Our STATE model is able to generate realistic images
from sparse view images or even a single image.

view images, which has a wide range of applications in vir-
tual reality, education and movie production. It is a very
challenging problem for sparse view cases due to large view
variation and occlusions.

Existing methods on novel view synthesis can be classi-
fied into image-based and geometry-based methods. Image-
based methods warp the source image from the source view-
point to the target viewpoint by estimating an affine trans-
formation [39, 45] or an appearance flow field [32, 38, 53].
Flow-based methods are more flexible to deal with complex
deformations than affine transformation methods. However,
due to lack of geometry information, image-based meth-
ods tend to generate unsatisfactory results for invisible re-
gions, especially for sophisticated objects or sparse views.
Geometry-based methods first estimate the 3D structure of
the object in an explicit [6, 42, 20] or implicit [37, 29, 49]
manner, and then generate the target image by rotation and
projection. Explicit representations use discrete volumes
while implicit methods use continuous implicit functions.
Along with neural rendering based methods [5], the latter
can be trained without 3D supervision. Although geometry-
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based methods can keep the consistency of the structure
and predict reasonable shapes for the invisible regions, they
would deteriorate with sparse views and lose texture details
due to the limited representation resolution.

It is very important to find an effective way to make bet-
ter use of the multi-view information, especially for sparse
views. Most works [22, 23, 29, 41, 44] directly average the
representations of all inputs, where all locations of inputs
are taken as valid values. However, not all locations of in-
puts have positive impacts on the target image. To solve this
problem, Sun et al. [38] propose a self-learned confidence
method to fuse the resulting images generated by each in-
put at the pixel level. However, this fusion scheme requires
large memory and cannot deal with the unavoidable mis-
alignment problem.

The aforementioned methods encounter three challenges
to synthesize satisfactory images: 1) the coupling of the
shape and the texture in the input images, 2) potential un-
certainties in invisible regions, and 3) difficulty to achieve
color, texture and shape consistency.

To address these problems, in this paper, we propose an
end-to-end deep neural network, STATE, for sparse view
synthesis by disentangling the input images into STructure
And TExture representations to ensure both shape and tex-
ture consistency. Although our method does not explicitly
control disentanglement, the two branches with proper de-
sign achieve effective disentanglement of structures and tex-
tures as verified by experimental results (in Section 4.2 and
4.5). In the structure-aware encoder, we represent struc-
ture as a hybrid feature field, which can predict reason-
able structure for invisible regions. In the texture-aware en-
coder, we estimate an appearance flow field and warp the
source image feature from the source viewpoint to the tar-
get viewpoint at the feature level. To make the best use
of multi-view images, we also propose spatio-view atten-
tion aggregation to adaptively fuse multi-view information
at the feature level by regressing pixel-wise or voxel-wise
confidence maps. The final image is delivered by decod-
ing the aggregated feature of structure-aware representation
and texture-aware representation. Our model works well
for both single view and multi-view inputs. Experimental
results demonstrate that our method achieves better perfor-
mance than state-of-the-art methods. We also verify our hy-
pothesis by comprehensive ablation studies. Figure 1 gives
some examples of our results.

The main contributions are summarized as follows:

• We propose STATE, an end-to-end deep neural net-
work, to disentangle the sparse input images into two
embedding neural representations: structure and tex-
ture representations, which helps to predict reasonable
regions invisible in the source image, while also recov-
ering detailed textures.

• We propose a hierarchical fusion scheme with intra-
branch and inter-branch aggregation. Spatio-view at-
tention is designed for multi-view fusion at the feature
level to adaptively select important information by re-
gressing pixel-wise or voxel-wise confidence maps.

• Our model can realize texture or structure swapping
without training in stages due to effective disentangle-
ment of structures and textures. Our model is easy and
robust to train with a hybrid loss including cosine loss
to achieve color, texture and shape consistency, leading
to state-of-the-art performance.

2. Related work

In this section, we review the existing work on novel
view synthesis for objects or humans from a single image or
multiple images, which can be classified into image-based
and geometry-based novel view synthesis methods. Image-
based methods can maintain the appearance consistency by
transferring the pixels in the source images to the target im-
age, while geometry-based methods can maintain the struc-
ture consistency by reconstructing the 3D structure of the
object before rendering the novel view image.

2.1. Image-based Novel View Synthesis

Image-based novel view synthesis methods directly gen-
erate pixels or move pixels from the source images to the
target image. Tatarchenko et al. [39] and Yang et al. [45]
generate pixels with affine transformation. Instead of learn-
ing to synthesize pixels from scratch, Zhou et al. [53] prove
that the visual appearance of the same instance from differ-
ent views is highly correlated, and such correlation can be
explicitly learned to predict appearance flow [17, 32, 38],
i.e., 2D coordinate vectors specifying which pixels in the
input view can be used to reconstruct the target view. To
use features at different scales, Yin et al. [48] estimate ap-
pearance flows with different resolutions to warp the source
view to the target view. According to the appearance flow,
bilinear sampling is used to move pixels from the source
images to the target image [17, 19, 38, 53]. To avoid the
poor gradient propagation of the bilinear sampling, Ren et
al. [32] propose a content-aware sampling method by adopt-
ing a local attention mechanism. As described in [21, 50],
most flow-based methods [38, 53] warp the input images
pixel-wisely, which prevents the network from generating
new content for invisible pixels. Warping the input im-
ages at the feature level can solve this problem [14, 17, 32].
There are also some methods synthesizing invisible pixels
without warping the input features. Park et al. [30] use a
completion network to hallucinate the empty parts. In sum-
mary, image-based methods can generate detailed textures
by moving pixels from the source images to the target im-
age, but the results generated by the above methods lack a
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Figure 2. Overview of our STATE model.

consistent shape and hence may have some artifacts along
the silhouette.

2.2. Geometry-based Novel View Synthesis

Geometry-based novel view synthesis methods estimate
the 3D structure of the instance in an explicit or implicit
manner, and then generate the target image by rotation and
projection. Two strategies are adopted: depth maps and 3D
models (textured occupancy volumes, colored point clouds
or neural scene representations). The depth-map-based ap-
proaches [2, 6, 13] typically estimate the depth map [46, 47]
of each input view as a 2.5D intermediate representation
which captures hidden surfaces from one or multiple view-
points. The point-cloud-based methods [20] estimate a
point cloud to be transformed into the target view. In addi-
tion, several recent methods [4, 8, 16, 42] reconstruct an ex-
plicit occupancy volume from the input images, and render
it using traditional rendering techniques. To overcome the
memory limitation of volume representations, some meth-
ods leverage signed distance field encoded volumes [31, 35]
or RGBα-encoded volumes [11, 24] and achieve good per-
formance. Zhao et al. [52] adopt parametric human model
as the representation together with neural texture to avoid
memory limitation problem. Since explicit volumes are dis-
crete, several methods [26, 27, 28, 29] based on implicit
volume representations are proposed without any 3D su-
pervision. In order to have a more accurate understanding
of the structure of objects, Galama and Mensink [7] pro-
pose IterGANs to learn an implicit 3D model of the object

in an iterative manner. Implicit volume representation has
gained popularity due to continuous shape and texture rep-
resentation. Some methods [25, 37, 40, 49] predict contin-
uous neural scene representations, and then render them to
the novel view image through neural rendering. Geometry-
based methods can keep consistent structure and predict
reasonable shapes for invisible regions, but the generated
textures tend to lose fine details.

In this paper, we propose an end-to-end deep neural net-
work for sparse view synthesis by learning structure and
texture representations. Structure is encoded as a hybrid
feature field while texture is encoded as a deformed feature
map. Each representation is generated by spatio-view atten-
tion aggregation for multi-view cases. The results generated
by our approach have consistent structures and detailed tex-
tures.

3. Method

3.1. Overview

The inputs of novel view synthesis from N images are
a target camera pose pt and N pairs of source images and
camera poses (I1s , p

1
s), (I

2
s , p

2
s), ..., (I

N
s , p

N
s ). Our goal is

to synthesize the target image Ît in the target camera pose
pt. Denote by It and Ît the ground truth and synthesized
target images. In order to generate the result with reason-
able structure and fine texture, we propose a new network
STATE that aggregates information from both structure and
texture representations. As shown in Figure 2, STATE con-
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Figure 3. Detailed structures of spatio-view attention aggregation
in texture-aware branch (left) and structure-aware branch (right).

sists of a two-branch encoder and a fusion decoder.

1. The two-branch encoder E(·), consisting of a
structure-aware branch and a texture-aware branch, en-
codes the inputs into a structure feature volume fstr
and a texture feature map ftex. It can be written as:

(fstr, ftex) = E(pt, (I
1
s , p

1
s), (I

2
s , p

2
s), ..., (I

N
s , p

N
s )).

(1)
The structure-aware branch estimates a hybrid feature
field for each view, and then rotates and adaptively ag-
gregates them to a single feature volume fstr contain-
ing structure information. The texture-aware branch
estimates a single feature map ftex containing texture
information by adaptively fusing the flow-warped fea-
tures of N views.

2. The fusion decoder D(·) takes the feature volume fstr
and the feature map ftex as input and generates the
target image by

Ît = D(fstr, ftex). (2)

The adaptive fusion of multi-view inputs will be intro-
duced in detail in Section 3.3. Please note that our model
is able to extend to an arbitrary number of inputs for both
training and testing without modifying the encoder or de-
coder.

3.2. Two-Branch Encoder

We design a two-branch encoder to disentangle texture
and structure from the sparse input images, which includes
a texture-aware branch and a structure-aware branch. For
both branches, to cope with occlusion and large view differ-
ence, pixels in the input images should not have the same
contributions. So we design a spatio-view attention by cal-
culating confidence maps for multi-view images to obtain
the final texture representation ftex and structure represen-
tation fstr, which will be presented in Section 3.3 in detail.

In the texture-aware branch, as shown in Figure 2, We
use an hourglass network Fwarp to predict a warping field
wi and a confidence map citex for each input view i, which

takes the target pose pt, the i-th source image Iis and the i-th
source pose pis as inputs:

(wi, c
i
tex) = Fwarp(pt, I

i
s, p

i
s), (3)

where the warping field wi is represented by displacements
between the source image and the target image. Camera
poses pt and pis are represented by quaternions. We expand
the dimensions of the quaternion to match the dimensions of
the image, and then concatenate them to form the input. The
confidence map citex is used to fuse the feature maps from
different views. citex and wi share all weights of Fwarp ex-
cept for their output layers. We use a fully convolutional
network Ftex to extract features f̃ itex from the source im-
ages, and then warp the features to get the target features
f itex, which can be formulated as

f̃ itex = Ftex(I
i
s), (4)

f itex =W(wi, f̃
i
tex), (5)

whereW(·) is the warping function, and bilinear sampling
is used in our network.

In the structure-aware branch, we use an encoder Fstr

[29] consisting of a series of 2D convolutions, reshaping,
and 3D convolutions to extract a hybrid feature field repre-
sented as a structure feature volume for each image:

f̃ istr = Fstr(I
i
s), (6)

where f̃ istr is the structure feature volume in the correspond-
ing pose pis. Then, we rotate f̃ istr from the source pose pis
to the target pose pt:

f istr = R(f̃ istr, pis, pt), cistr = 3DConv(f istr), (7)

whereR(·) is the rotation operation with trilinear sampling,
f istr is the transformed feature volume having the same
shape as f̃ istr, and 3DConv(·) represents 3D convolution.
The confidence map cistr is used to fuse the feature maps
from different views.

The texture representation ftex and the structure repre-
sentation fstr are decoded by a fusion decoder described in
Section 3.4.

3.3. Spatio-View Attention Aggregation

Due to occlusions and large view variation, the texture
representation f itex of view i may be incomplete. The
missing regions should not have the same weighting as the
other regions. Moreover, the visible view should have more
impact on the final result. Similarly, the structure-aware
branch requires different weights for different regions of
f istr and different views. Therefore, instead of simply av-
eraging the encoded feature maps, we design an adaptive
aggregation with spatio-view attention for the texture-aware



Table 1. Quantitative comparison with four alternative designs.

Dataset Method
1 view 2 views 3 views 4 views

LPIPS↓ FID↓ LPIPS↓ FID↓ LPIPS↓ FID↓ LPIPS↓ FID↓

Car

w/o Tex. 0.139 79.143 0.104 57.997 0.096 54.261 0.092 52.961
w/o Str. 0.127 64.788 0.098 44.501 0.089 39.765 0.084 37.901

w/o SVA 0.118 62.619 0.090 42.023 0.081 38.642 0.078 37.258
w/o Cos. 0.136 82.208 0.104 57.810 0.096 53.844 0.092 52.462

Full 0.117 60.387 0.089 39.052 0.080 34.472 0.075 32.290

Chair

w/o Tex. 0.250 64.584 0.113 21.622 0.096 19.488 0.092 18.898
w/o Str. 0.166 33.330 0.141 26.628 0.133 25.145 0.129 24.443

w/o SVA 0.209 48.731 0.100 19.228 0.086 17.336 0.081 16.730
w/o Cos. 0.246 62.418 0.109 20.006 0.093 17.998 0.088 17.461

Full 0.159 30.936 0.096 18.486 0.080 16.547 0.074 15.881

Human

w/o Tex. 0.118 70.431 0.087 64.174 0.082 64.860 0.081 65.550
w/o Str. 0.106 82.642 0.088 76.567 0.081 75.137 0.078 75.357

w/o SVA 0.102 61.274 0.078 57.386 0.072 57.710 0.069 58.330
w/o Cos. 0.110 62.791 0.082 56.604 0.077 56.487 0.076 56.525

Full 0.105 60.056 0.076 55.802 0.070 56.469 0.068 57.055

encoder and the structure-aware encoder by calculating a
confidence map for each view, as shown in Figure 3. The
pixel-wise or voxel-wise confidence maps {citex}1≤i≤N and
{cistr}1≤i≤N are used to fuse the texture features and struc-
ture features of all the views by

ftex =

N∑
i=1

f itex � Softmaxi(c1tex, ..., cNtex). (8)

fstr =

N∑
i=1

f istr � Softmaxi(c1str, ..., cNstr). (9)

We normalize the predicted confidence maps {citex}1≤i≤N

and {cistr}1≤i≤N by applying Softmax(·) across them.
The normalized confidence maps can then be used as the
weights to aggregate the feature maps. This mechanism en-
ables the weights to be automatically adjusted for any num-
ber of input views, which is very flexible. Moreover, the
fusion at the feature level costs less memory but is able to
produce a more continuous result.

3.4. Fusion Decoder

The fusion decoder fuses the texture feature map and the
structure feature volume, and then generates the final image.
After several 3D convolutions, the structure feature volume
is turned into a structure feature map by merging the depth
dimension into the channel dimension. We concatenate the
structure feature map and the texture feature map, and then
get the final image after a U-Net decoder. Instead of fusion
at the pixel level, we fuse the structure representation and
the texture representation at the feature level. This has three
reasons: 1) it is difficult to ensure the alignment of two-
branch results; 2) the features before the decoder contain

more information than the decoded images; 3) fusion at the
feature level enables the network to generate new contents,
especially for the invisible regions.

3.5. Loss Functions

Because our STATE is an end-to-end trainable network,
we directly define several losses in the image space to train
our network. Our full training loss consists of a reconstruc-
tion term, a structural term, a perceptual term, a cosine term
and an adversarial term. The full loss is formulated as

L = λrLR + λsLS + λpLP + λcLC + λaLA, (10)

where λr, λs, λp, λc and λa indicate the weights of five loss
terms.
Reconstruction Loss. The reconstruction loss directly
guides the similarity between the generated image Ît and
the ground-truth image It at the pixel level, which can ac-
celerate the convergence process. LR is defined as the `1
distance:

LR =
∥∥∥Ît − It∥∥∥

1
. (11)

Structural Loss. We also use the structural similarity
(SSIM) loss LS [43] with the window size of 11 × 11 to
improve the structural similarity, which is more consistent
with human perception. We compute the structural dissimi-
larity between the generated image Ît and the ground-truth
image It by

LS = 1− SSIM(Ît, It). (12)

Perceptual Loss. In addition to the low-level constraints at
the pixel level, we adopt the perceptual loss [15] to compute
the difference between the deep features of the generated
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Figure 4. Qualitative comparison with four alternative designs.
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Figure 5. Disentanglement of textures and structures.

image Ît and the ground-truth image It in perceptual level,
which is formulated as

LP =
∑
i

∥∥∥φi(Ît)− φi(It)∥∥∥
2
, (13)

where φi is the output of the i-th layer of the VGG-19 [36]
which is pre-trained on ImageNet [34]. We use [1, 6, 11,
16]-th layers to supervise our network.
Cosine Loss. To ensure the color consistency, we calculate
the cosine similarity between the generated image Ît and
the ground-truth image It. Cosine similarity measures the
similarity between two vectors by measuring the cosine of
the angle between them:

LC = 1− cos(Ît, It). (14)

Discriminator Loss. We adopt the discriminator from gen-
erative adversarial networks [9], which has achieved great
progress in image synthesis. It constrains the distance be-
tween the distributions of the generated image Ît and the
ground-truth image It, which is defined as

LA = E[log(1−D(Ît))] + E[logD(It)], (15)

where D(·) is a patch discriminator, log(·) is the logarithm
of base 2 and E[·] is the expectation.

3.6. Implementation Details

Our framework is implemented in PyTorch. The hyper-
parameters [λr, λs, λp, λc, λa] are set to be [1, 10, 0.5, 1, 1]
in our training. Adam optimizer [18] is used to optimize
our network with the default parameters (β1 = 0.9 and β2
= 0.999) and the learning rate is 2e − 4. We trained our
model with four source view images until convergence on
the training data, which takes approximately 7 days using a
single GeForce GTX 2080 Ti GPU. At the test time, gen-
erating an image takes about 90 milliseconds using a single
GeForce GTX 2080 Ti GPU.

4. Experiments

4.1. Setup

Datasets. To evaluate the performance of our view synthe-
sis approach, we conduct experiments on ShapeNet (Chair
and Car) [1], in which the camera poses are represented
by the rotation components around the object’s central

Source Image 1 Source Image 2 Generated Image Result 1 Result 2

Figure 6. Confidence map of different views.

axis. We use the same training and testing splits used in
[53, 38, 29, 30] (80% of models for training and the remain-
ing 20% for testing). Each model is rendered as 256× 256
RGB images at 18 azimuth angles sampled at 20-degree in-
tervals and 3 elevations (0, 10 and 20 degrees), for a total of
54 viewpoints per model.

We also synthesize a dataset Human from 496 real
scanned 3D human models1. Each model is rendered as
256 × 256 RGB images at 18 azimuth angles sampled at
20-degree intervals and 3 elevations (0, 10 and 20 degrees),
for a total of 54 viewpoints per model. We use 80% of the
models for training and the remaining 20% for testing.

Note that the models in the test images are not included
in the training set.
Metrics. We use two popular metrics, Learned Perceptual
Image Patch Similarity (LPIPS) [51] and Fréchet Inception
Distance (FID) [12], which are generally considered to be
closer to human perception, to calculate the reconstruction
errors. LPIPS computes the distance between the generated
image and the ground-truth image in the perceptual domain.
FID calculates the Wasserstein-2 distance between the dis-
tributions of the generated images and the ground-truth im-
ages, which measures the realism of the generated images.

4.2. Ablation Study

In this section, we evaluate our method with four alterna-
tive models to assess the factors that contribute to achieving
reasonable view synthesis from sparse input images. These
models use the same setup, training schedule, and sequence
of input images as STATE. We use the same training and
test scheme as that in state-of-the-art methods [29, 38] on
Chair, Car and Human datasets: training with 4 views and
testing with 1-4 views.
The Model without Texture-Aware Branch (w/o Tex.).
The model, deleting the texture-aware branch but retaining
the multi-view adaptive weighting, is designed to assess the
importance of the texture-aware branch, and to verify the
necessity of the combination of both texture representation
and structure representation.
The Model without Structure-Aware Branch (w/o Str.).
The model, deleting the structure-aware branch but retain-
ing the multi-view adaptive weighting, is designed to assess
the importance of the structure-aware branch, and to verify

1https://web.twindom.com



Table 2. Quantitative comparison on Chair, Car and Human datasets.

Dataset Method
1 view 2 views 3 views 4 views

LPIPS↓ FID↓ LPIPS↓ FID↓ LPIPS↓ FID↓ LPIPS↓ FID↓

Chair
TBN [29] 0.182 38.446 0.109 21.159 0.093 18.891 0.086 18.051

pixelNeRF [49] 0.183 40.515 0.181 71.560 0.095 28.588 0.068 18.118
Ours 0.159 30.936 0.096 18.486 0.080 16.547 0.074 15.881

Car
TBN [29] 0.112 46.401 0.091 40.404 0.084 38.841 0.080 38.129

pixelNeRF [49] 0.155 91.252 0.145 89.553 0.101 55.887 0.083 41.496
Ours 0.117 60.387 0.089 39.052 0.080 34.472 0.075 32.290

Human
TBN [29] 0.187 92.368 0.093 51.535 0.083 51.573 0.080 52.262

pixelNeRF [49] 0.137 84.211 0.102 67.718 0.078 60.250 0.068 61.453
Ours 0.105 60.056 0.076 55.802 0.070 56.469 0.068 57.055

Average
TBN [29] 0.160 59.072 0.098 37.699 0.087 36.435 0.082 36.147

pixelNeRF [49] 0.158 71.993 0.143 76.277 0.091 48.242 0.073 40.256
Ours 0.127 50.460 0.087 37.780 0.077 35.829 0.072 35.075

the necessity of the combination of both texture representa-
tion and structure representation.
The Model without Spatio-View Attention (w/o SVA).
The model is trained with multi-view averaging fusion, to
assess the importance of spatio-view attention.
The Model without Cosine Loss (w/o Cos.). The model
with cosine loss removed is designed to assess the impor-
tance of cosine loss.
Full Model (Full). Our full model includes the two-branch
encoder and the multi-view fusion at the feature level with
adaptive weighting.

Table 1 gives quantitative results compared with four al-
ternatives on Chair, Car and Human datasets. Our full
model outperforms all the alternatives on Chair and Car
datasets in terms of LPIPS and FID that are the most re-
cently used metrics to measure the results from perception
and realism. Note that spatio-view attention aggregation is
not used when the test input is single view. Therefore, the
LPIPS values of the w/o SVA model and the Full model are
similar on Human dataset. On the other hand, all the models
in ablation study are trained on the input of four views, and
different confidences are assigned to different views due to
the SVA module of full model. However, when the test in-
put is single view that has low confidence, the results may
be affected. Besides, the clothed posed human has complex
color and is asymmetric, which influences the learning of
structures. Therefore, the FID of the Full model is slightly
worse than that of w/o Cos. model for the input of four
views on Human dataset.

Some visual results are shown in Figure 4. It can be seen
that the w/o Tex. model can generate correct structures, but
the textures in the source images cannot be well maintained,
e.g., the head of car. The w/o Str. model can recover the de-
tailed textures, especially on Car and Human datasets, but
fails to keep the shape consistency. The w/o SVA model
fails to effectively fuse the results of two branches, and thus
the results lose some textures or structures, such as the tex-

ture of car, the back and the legs of chair and the arms
of human. The w/o Cos. model cannot ensure the color
consistency, such as the head of car. On the contrary, our
full model can achieve the consistency of color, texture and
structure.

To verify the disentanglement of textures and structures,
we also visualize the results of two branches. We output
the result of one branch by zeroing out the features of the
other branch. Figure 5 demonstrates that our method can
effectively disentangle textures and structures to generate
realistic images with correct shapes and textures.

We visualize the confidence maps to demonstrate the ef-
fect of spatio-view attention aggregation in Figure 6. Tak-
ing novel view synthesis with two views as an example, the
first two columns are the source images, the third column
is the generated image, and the last two columns give the
visualizations of the confidence maps which are computed
by multiplying the confidence map with the generated im-
age. As shown in the figure, the generated image obtains
more texture information from the source image 2 due to the
similarity of the target view and the source view 2, which
demonstrates that our spatio-view attention aggregation can
select more relevant information from the inputs of different
views.

More results can be found on the project website2.

4.3. Comparisons

We compare our method with TBN [29] and pixelNeRF
[49]. For simplicity, we omit comparisons with earlier
works [37, 38] that have already been compared in TBN
or pixelNeRF, and the methods that do not work well for
sparse views [3, 24, 25, 33]. We use the same training and
test scheme as that in TBN [29] on Chair and Car datasets:
training with 4 views and testing with 1-4 views. For the
case of single view input, we use single view for training,

2http://cic.tju.edu.cn/faculty/likun/projects/STATE/
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Figure 7. Qualitative comparison on Chair dataset.
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Figure 8. Qualitative comparison on Car dataset.
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Figure 9. Qualitative comparison on Human dataset.

because multi-view adaptive weighting is not used. The pre-
trained models of TBN [29] on Chair and Car datasets are
used and we re-train TBN [29] on Human dataset for fair
comparison with the same training and test scheme: training
with 4 views and testing with any other views. We also re-
train pixelNeRF [49] on the Car, Chair and Human datasets
for fair comparison: training with 4 views and testing with
2-4 views. For the case of single view input, we use single
view for training according to the suggestion of the author.

Table 2 gives the quantitative comparison results on
Chair, Car and Human datasets. It can be seen that
our proposed method outperforms the other methods in
terms of FID by a significant margin on Chair dataset,
even in the challenging case of single-view input. For the
Car dataset, benefiting from the spatio-view attention, our
method achieves the best performance for the multi-view
inputs. The cars are left-right symmetrical, not front-to-
back. Therefore, our texture-aware branch is difficult to
estimate reasonable textures when there are lots of occlu-
sions in front of or behind the car for single view, which
leads to some deviations of the final textures, even if the
shape estimated by the structure-aware branch is accurate.

For the Human dataset, our method achieves the best per-
formance for all the cases in terms of LPIPS. The clothed
posed human has complex color and is asymmetric, which
influences the learning of structures. Therefore, the FIDs
of our method are not the best for the multi-view inputs on
Human dataset. From the average results of all datasets,
our method achieves the best performance for nearly all the
views except for slight performance variation in terms of
FID at two views.

Visual results for several challenging examples with
large viewpoint transformations on Chair, Car and Human
datasets are shown in Figure 7, Figure 8 and Figure 9. Due
to the limited representation resolution, TBN [29] is diffi-
cult to recover the details of the image, such as the chair
legs, and the textures of car and people. PixelNeRF [49]
generates some artifacts along the structural edges.

In contrast, our method can obtain detailed textures
while maintaining the structures of the objects, e.g., the
stripes on the car and the suit on the person. Thanks to
the disentangled learning of the structure representation and
the texture representation, the invisible regions and detailed
textures are successfully recovered by our method for any



Table 3. Statistical results of the user study.

Cases
Females Males Independent T Test

Method A Method B Method C Method A Method B Method C t p

Case 1 27.12% 16.95% 55.93% 20.51% 9.62% 69.87% -1.487 0.140

Case 2 16.38% 15.82% 67.80% 6.41% 15.38% 78.21% -1.875 0.064

Case 3 13.56% 14.12% 72.32% 8.97% 11.54% 79.49% -1.072 0.286

Case 4 20.34% 12.99% 66.67% 19.23% 14.10% 66.67% -0.086 0.932

Case 5 16.38% 13.00% 70.62% 18.59% 7.69% 73.72% -0.067 0.946

Case 6 9.61% 10.73% 79.66% 13.46% 8.33% 78.21% 0.510 0.611

Case 7 16.95% 9.60% 73.45% 7.05% 11.54% 81.41% -1.685 0.095

Case 8 15.25% 14.13% 70.62% 8.33% 9.62% 82.05% -1.774 0.079

Case 9 15.82% 14.69% 69.49% 10.90% 8.33% 80.77% -1.437 0.154

Case 10 16.95% 15.82% 67.23% 16.67% 10.25% 73.08% -0.489 0.626

Case 11 14.69% 14.69% 70.62% 9.62% 13.46% 76.92% -0.979 0.330

Case 12 12.99% 9.61% 77.40% 12.82% 8.97% 78.21% -0.087 0.931

Average 16.40% 13.47% 70.13% 12.89% 10.76% 76.35% -1.115 0.267

Texture

Structure

Figure 10. The results of texture or structure swapping on Car
dataset.

number of input views. By fusing and decoding the two
representations, our method does not suffer from the miss-
ing pixels. This proves that our method can generate visu-
ally better and more realistic images.

More results can be found on the project website3.

4.4. User Study

To better evaluate the results of our method, we perform
perceptual evaluation with a user study, compared with
state-of-the-art methods. In the user study, we show the re-
sults of TBN [29] (Method A), pixelNeRF [49] (Method B),
our method (Method C) and the ground-truth for the same
input images in twelve cases with three questions per case
(38 questions in total including the questions related to gen-
der and age of the participant): 1-4 views as input on the
Car, Chair and Human datasets. The results shown are ran-
domly selected, and the users are required to choose the one

3http://cic.tju.edu.cn/faculty/likun/projects/STATE/

Texture

Structure

Figure 11. The results of texture or structure swapping on Chair
dataset.

closest to the ground-truth in terms of texture, structure and
overall quality for each case from A, B and C. We have col-
lected 111 answers, including 59 females and 52 males with
different ages (108 users between 18 and 40, 1 user between
40 and 60, 2 users beyond 60). Table 3 presents statistical
results of the user study. For each of the two genders, we
gives the percentage of participants who choose the partic-
ular method for each case, and the average results over the
twelve cases are also shown. In addition to the percentage,
we also make independent T test [10] between the result and
the gender. For the independent T test, t is a statistical vari-
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Figure 12. The results of texture or structure swapping for various views.
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Figure 13. Failure cases.

able calculated from the results and we can get p by looking
up the table according to t. The p value greater than 0.05
means there is no significant difference between the results
from the two genders. We use 1, 2 and 3 to represent Meth-
ods A, B and C, respectively, and we average the results of
the three questions in each case. As shown in Table 3, the p
values are greater than 0.05, which demonstrates that there
is no significant difference between the results of females
and males, and the user study results are not dependent on
the gender. In a word, our method achieves better results in
the user study.

More results can be found on the project website4.

4.5. Applications

Our method does not explicitly constrain texture and
structure, however, as the branches are capable of generat-
ing better structure and texture respectively, this implicitly
leads to disentanglement. We also achieve texture or struc-
ture swapping with trained model for novel view synthesis.

With the texture branch and the structure branch, we can
easily edit the texture and the structure by changing the in-
puts of each branch. Figure 10 and Figure 11 show some
disentangled results on Car and Chair datasets. The first
row provides the texture information and the first column
gives the structure information. Each result in the other po-
sition (row i and column j) is a decoded result of the com-

4http://cic.tju.edu.cn/faculty/likun/projects/STATE/

bination of the structure representation of the first column
image of row i with the texture representation of the first
row image of column j. It can be seen that the structure of
the result in each row is consistent with that of the left in
this row, and the texture of the result in each column is con-
sistent with that of the top in this column. Figure 12 shows
some disentangled results for various views, which proves
that our method achieves the disentanglement of texture and
structure.

4.6. Failure Cases

Although our method generates realistic images with
reasonable structures and detailed textures in most cases,
it cannot cope well with the structures and textures that de-
viate extremely from the training set distribution. The neu-
ral network predicts the outputs by the interpolation opera-
tor in the manifold built on the training data. Therefore, it
is difficult to predict reasonable results for some challeng-
ing cases, especially with extremely complex structures and
textures. Figure 13 shows some failure cases of our method.
It can be seen that our model fails to predict correct textures
and shapes for extremely complex cases.

5. Conclusions

In this paper, we propose STATE, an end-to-end deep
neural network, for sparse view synthesis from input images
by learning structure and texture representations. Specifi-
cally, we propose a two-branch encoder to extract implicit
structure representation and deformed texture representa-
tion. We also propose spatio-view attention to adaptively
fuse multi-view information at the feature level by regress-
ing pixel-wise or voxel-wise confidence maps. By decoding
the aggregated feature, STATE can generate realistic images
with reasonable structures and detailed textures. Experi-
mental results demonstrate that our method achieves better
performance than state-of-the-art methods. We verify our
hypothesis by comprehensive ablation study. Our method
also enables texture and structure editing applications bene-
fitting from implicit disentanglement of structures and tex-
tures.
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