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Abstract

Vision Transformers have shown impressive perfor-
mance on the image classification task. Observing that
most existing neural style transfer algorithms are based
on texture-biased CNNs pre-trained on the image recog-
nition task with ImageNet dataset, here raises the ques-
tion that whether the shape-biased vision Transform-
ers can perform style transfer as CNNs. In this work,
we focus on comparing and analyzing the shape bias
between CNNs and Transformer with our proposed
Transformer-based visual style transfer methods (Tr-
NST, Tr-AdaIN, Tr-WCT). We show that Transformers
pre-trained on ImageNet are not proper for typical style
transfer methods due to the strong shape bias from both
learned parameters and the structure design. By com-
paring Transformers and CNNs on the view of visual
style transfer via experiments variations, we provide evi-
dence that when retrained with proper style supervision,
Transformers can learn similar features as CNNs which
capture local textures and style patterns, alleviate the
shape bias from the learned parameters. Qualitative ex-
periments demonstrate that the proposed Tr-AdaIN can
generate comparable results with the state-of-the-art vi-
sual style transfer methods.

Keywords: transformer, convolution neural network,
visual style transfer, comparative study

1. Introduction

Visual style transfer (VST) refers to the task which ren-
ders given visual media into the desired style while preserv-
ing its content structure. Since Gatys et al. [11] proposed
the Gram matrix based style measurement, researchers have
been focusing on performing style transfer with convo-
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lutional neural networks (CNNs) in an end-to-end man-
ner. Optimization-based or feed-forward approaches are
two kinds of mainstream VST approaches focusing on di-
rectly stylizing input visual media without involving spe-
cific domain knowledge of arts. Optimization-based meth-
ods [11, 17] achieve style transfer in an iterative optimiza-
tion process, which produce high-quality images but are
computationally expensive due to the direct backward on
image pixels. Feed-forward approaches [14, 21, 8, 7] fo-
cus on arbitrary or universal style transfer using encoder-
decoder pipeline to generate visual media with remarkable
quality for different styles. All of these methods are based
on features extracted from CNNs which are pre-trained on
image classification tasks.

(a) Content (b) VGG CAM (c) ViT CAM

(d) Style (e) AdaIN (f) Tr-AdaIN

Figure 1. Visual comparisons for CNN- and Transformer-based
structures. From the class activation map (CAM, (b) and (c)), we
could observe that the pre-trained ViT prefers to make prediction
based on integral shape, whereas the VGG focuses on local patch,
showing that ViTs have stronger shape bias than CNNs. The bot-
tom row shows the style transfer results generated by AdaIN (e)
and the proposed Tr-AdaIN (f).
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Recently, Transformer [32] provides an alternative ar-
chitecture for CNNs in the research field of visual media
computing. Researchers adopted the sequence to sequence
architecture to the field of visual media computing. Repre-
sented by Vision Transformer (ViT) [9], Transformer-based
models outperform CNNs in various CV tasks [3, 38, 19,
13]. The success of Transformer has heightened the need
for clearing the properties of Transformer. Overall, re-
searchers consider the difference of ViT and CNN backbone
caused by the long-range dependencies and local-receptive
field. In-depth comparisons point out that CNNs are tex-
ture biased while Transformers are shape biased, as shown
in Figs. 1(b) and 1(c).

Tuli et al. [30] compared CNNs and Transformers on the
view of human vision similarity. By measuring and analyz-
ing the error consistency for different networks, they found
that in contrast to CNNs, Transformers behave higher shape
bias and are largely closer with human vision. Their ex-
periments showed that Transformers can maintain the accu-
racy and increase the shape bias when fine-tuned on aug-
mented data, whereas CNNs drop performance at the same
time. Naseer et al. [24] studied the shape and texture bias
of Transformers and CNNs. They also pointed out that the
strong shape bias leads the Transformers to perform bet-
ter than CNNs and comparable to humans on shape recog-
nition. Besides, they found that the shape bias makes the
Transformers more robust towards domain shifts.

However, all these conclusions are made upon image
classification tasks. Few studies have investigated compar-
isons between CNN and Transformers on generative tasks,
such as style transfer. Shape and texture, corresponding to
content and style, are considered to be the basic constituent
elements in the VST process. As shown in Figs. 1(e) and
1(f), when using similar configurations for the transfer mod-
ule, different types of backbones lead to different VST re-
sults.

To figure out the cause of shape bias in Transformer, we
attempt to engage the architecture into typical VST algo-
rithms (NST, AdaIN, and WCT), visiting the following fun-
damental problem which is central both to VST and the re-
search field of computational visual media: is the shape bias
of Transformer from the model parameters or structure. Re-
searchers widely hold the point that different structures lead
to different results. Comparing the results of Transformer-
based VST, we found that the typical VST approaches do
not work well on Transformer structure. However, by fur-
ther controlling the training configuration of Transformer
encoder, we prove that the same structure may generate to-
tally different results when the model parameters are differ-
ent. Overall, we conduct preliminary comparisons among
CNN- and Transformer-based VST approaches which may
through new light upon the research field of deep structure
based approaches. Our contributions are summarized as fol-

lows:

• We engage three typical VST approaches with Trans-
former by proposing Tr-NST, Tr-AdaIN, and Tr-WCT.
Results show that pre-trained ViTs are invalid for per-
forming mainstream style transfer methods due to the
shape bias.

• We demonstrate that the shape bias can be reduced
by training with proper supervision. ViTs can obtain
the ability to capture style strokes and patterns, which
leads the models towards texture bias instead of shape
bias.

• We discuss the influence of basic Transformer mod-
ules such as position encoding, and upsampling way
for Transformer based VST tasks.

2. Related works

2.1. Neural Style transfer

Style transfer is a long-standing task in the image pro-
cess field. Gatys et al. [11] open up the neural style trans-
fer area, introducing the style representation by computing
Gram matrix upon deep features extracted by convolution
neural networks. Johnson et al. [16] and Ulyanov et al.
[31] train a single feed-forward network to transfer specific
style to arbitrary content, achieve faster inference speed
than directly optimizing pixels. But these models need to be
trained from scratch to render a new style. Li et al. [21] pro-
pose the whiting and coloring transformation, namely WCT,
for arbitrary style transfer. Huang et al. [14] introduce the
adaptive instance normalization, namely AdaIN, which per-
forms normalization on content feature with mean-variance
statistics from style feature. Most recently, An et al. [1]
propose ArtFlow based on reversible neural flow, alleviat-
ing the content leak phenomenon. Although recent devel-
opments [25, 7, 20, 34, 8] in the field of style transfer have
made great achievements towards arbitrary style and high
quality, these style transfer models are still almost based on
deep features from CNNs. In this paper, we propose to per-
form style transfer with Vision Transformers.

2.2. Visual Transformers

Transformer [32] is proposed for machine translation
task and has achieved the SoTA performance in various
NLP tasks. Utilizing attention mechanisms, Transformer-
based models can process long-range dependencies, aggre-
gate information from all the tokens. Inspired by the success
of Transformer-based models in the NLP field, there have
been many attempts on adapting the Transformer architec-
ture to computer vision tasks. Chen et al. [5] introduce a se-
quence Transformer pre-trained to auto-regressively predict
pixels. Proposed by Dosovitskiy et al. [9], Vision Trans-
former (ViT) has achieved SoTA performance on image



𝐿 ×

Embedded

Patches

MLP

Norm

Norm

Multi-Head

Attention

(a) Encoder block

Transformer Encoder

Linear Projection

𝐼𝑠 𝐼𝑐

Position 

Embedding

𝐼𝑐𝑠

𝑳 ×

(b) Tr-NST

Transformer Encoder Block

Transformer Decoder Block

Tr-AdaIN/Tr-WCT

Up-sampling Decoder

Linear Projection

𝐼𝑠 𝐼𝑐 𝐼𝑐𝑠

Position Embedding

Transformer Decoder Block

𝑳 ×

(𝑳 − 𝟏) ×

𝟏 ×

(c) Tr-AdaIN/Tr-WCT

Figure 2. Model architectures for the three proposed Transformer based VST approaches.

classification tasks, outperforms previous CNNs. With a
pure Transformer architecture, ViT process images patches
as tokens directly, instead of pixels. In addition to the image
classification task, Transformers have been used to solve
other various computer vision tasks [37], such as object de-
tection [3], segmentation [33], image processing [4, 18, 23],
image generation [15, 19] and 3D computer vision [13]. In
this paper, we investigate the ability of Transformer on rep-
resenting style and preserving the content structure, explore
the property by performing style transfer with Transformer.

2.3. Comparative study of CNN and visual Transformers

Analyses of CNN have been proposed a lot due to its
high performance in visual tasks. Following the break-
through of Transformer in computer vision field, there ex-
ist works paying attention to horizontal comparison be-
tween CNNs and visual Transformers. Cordonnier et al.
[6] prove that self-attention layers can express any convo-
lutional layer when given sufficiently many heads. Besides,
they give proof that fully-attentional models seem to learn a
generalization of CNNs where the kernel pattern is learned
at the same time as filters. Tuli et al. [30] explore that
Transformers have higher shape bias than CNNs for im-
age classification tasks, conclude that attention models fo-
cus on the important part of the image for the given task,
and neglect the otherwise noisy background to make pre-
dictions. Naseer et al. [24] get similar conclusions with
Tuli. They analyze the one properties of ViT that Trans-
formers are more biased towards shape compared to CNNs,
and this leads Transformers highly robust to severe occlu-
sions, perturbations, and domain shifts for the image clas-
sification task. Both of the above works on comparison be-
tween Transformers and CNNs explore important proper-
ties for the image classification tasks without considering
the effect on generative tasks. In this paper, we are mainly
concerned with properties of Transformers for generative

tasks by horizontal comparing and analyzing Transformers
and CNNs.

3. Transformer based VST

3.1. Formulations

Given a content image Ic ∈ RH×W×3 and a style image
Is ∈ RH×W×3, our goal is to render style from Is to Ic
for generating Ics. We split the input content image Ic and
style image Is into patches, and then feed these patches into
a linear projection layer to obtain sequence tokens Ec and
Es with the shape of L× C, where L = H×W

m×m refers to the
token numbers, m refers to patch size, C refers to token’s
feature dimension.

Before being fed into Transformer encoder blocks, the
sequence tokens can be added with an optional positional
embedding. We adopted sinusoidal position embedding
(SPE) [32] and learnable position embedding (LPE) [9] as
alternative position encoding methods. The SPE can be cal-
culated as:

SPE(pos, 2i) = sin(
pos

100002i/C
),

SPE(pos, 2i+ 1) = cos(
pos

100002i/C
).

(1)

The LPE has the same shape with sequence tokens E , which
can also be added to the tokens to retain positional infor-
mation. Given a sequence tokens E added with optional
position embedding, each encoder block can be denoted in
Fig.2(a). The multi-head self-attention can be calculated as:

MultiHeadAttention(Q,K, V ) =

Concat(head1(Q,K, V ), ..., headh(Q,K, V ))W o

where headi = Attention(QW q
i ,KW k

i , V W v
i ),

(2)

where i = 1, ..., h, h refers to the number of attention
heads, W q

i ∈ RC×C , W k
i ∈ RC×C , W v

i ∈ RC×C and
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Figure 3. Transformer decoder block.

W o
i ∈ RC×C are learnable parameter matrices for projec-

tions. The complete Transformer encoder block can be for-
mulated as:

X = MultiHeadAttention(Ei, Ei, Ei) + Ei,
X ′ = FFN(X) +X,

(3)

where FFN refers to the feed-forward network, i =
1, ..., Nl is the layer index.

Similarly, each decoder block (as shown in Fig.3) can be
formulated as:

Y = MultiHeadAttention(Ej , Ej , Ej) + Ej ,
Y ′ = MultiHeadAttention(Y,Z,Z) + Y,

Y ′′ = FFN(Y ′) + Y ′,

(4)

where Z refers to the encoded sequence tokens from the
Transformer encoder when reconstructing images or Tr-
AdaIN and Tr-WCT when performing style transfer, j =
1, ..., Nl is the layer index. We apply the Layer Normaliza-
tion in the way of Pre-LN [36].

3.2. Tr-NST

We follow Gatys et al. [11] to perform optimization-
based style transfer by proposing Tr-NST. As shown in
Fig.2(b), instead of extracting features from a pre-trained
VGG [28], we utilize the Transformer encoder features to
compute perceptual loss. Generally, the feature sizes from
different levels are the same for specific input. The content
perceptual loss based on Transformer features is defined as:

Lc =
1

Nl × CL

Nl∑
i=0

∥re(ϕi(Ecs))− re(ϕi(Ec))∥2, (5)

where re(·) is used to reshape the E into the shape of C ×
H
m × W

m and ϕi(·) denotes the features extracted from the
ith level Transformer encoder block. Similarly, we define
the style perceptual loss based on Transformer feature as:

Ls =
1

Nl × CL

Nl∑
i=0

∥G(ϕi(Ics))−G(ϕi(Ic))∥2. (6)

where Gi(·) ∈ RC×C denotes ith level feature’s Gram ma-
trix, which is defined as:

Gi(E) =
∑

ETE . (7)

The total perceptual loss based on Transformer feature is
defined as: L = Lc + λLs. (8)

We optimize an image Ics ∈ RH×W×3 using L where the
Lc and Ls are computed with pairs (Ic, Ics) and (Is, Ics),
respectively. In our experiments, we use features extracted
from the last five blocks in the ViT.

3.3. Tr-WCT

To perform arbitrary style transfer with Transformer, we
add an additional Transformer decoder for the style and
content representation coupling and reconstruction. The de-
coder shares the same data shape as the encoder. Detailed
Transformer decoder block has been introduced in Sec.3.1.

Following the single-level WCT [21], we also perform
the whitening and coloring transform in feature space.
Given the content sequence embedding Ec and style em-
bedding Es, we first center Ec and then obtain the whitened
content feature Êc by:

Êc = EcD
− 1

2
c ET

c Ec, (9)

where Dc is a diagonal matrix with the eigenvalues of the
convariance matrix EcET

c ∈ RC×C , and Ec is the cor-
responding orthogonal matrix of eigenvectors, satisfying
EcET

c = EcDcE
T
c . After centering Es, the colored fea-

ture Êcs can be obtained by performing coloring transform,
which is defined as:

Êcs = EsD
− 1

2
s ET

s Êc, (10)

where Ds is a diagonal matrix with the eigenvalues of the
convariance matrix EsET

s ∈ RC×C , and Es is the corre-
sponding orthogonal matrix of eigenvectors. Finally, the Êcs
is re-centered by adding the mean vector ms of the style:

Êcs = Êcs +ms. (11)

Then Êcs is fed into the Transformer decoder to obtained
stylized image. When trained with a pre-trained ViT for re-
constructing an input image, we use the pixel reconstruction
loss [10]:

L = ∥Io − Ii∥22 , (12)

where Ii, Io are the input image and reconstruction output.
When retraining the whole auto-encoder with the strategy
introduced in Sec.4.3, we use the perceptual loss introduced
in Sec.3.2 to alleviate the shape bias.



2D
 In

st
an

ce
 N

or
m

𝝁𝝁|
𝝈𝝈 𝝈𝝈 𝝁𝝁

𝐻𝐻𝑐𝑐

𝑊𝑊𝑐𝑐

𝐶𝐶

𝐻𝐻𝑐𝑐

𝑊𝑊𝑠𝑠

𝐶𝐶
𝐻𝐻𝑐𝑐

𝑊𝑊𝑐𝑐

𝐶𝐶

𝝈𝝈 𝝁𝝁

𝐻𝐻𝑐𝑐

𝑊𝑊𝑐𝑐

𝐶𝐶

𝐶𝐶 𝐶𝐶

(a) AdaIN

𝝈𝝈 𝝁𝝁

𝐿𝐿
𝐶𝐶

𝐿𝐿
𝐶𝐶

𝐿𝐿
𝐶𝐶

𝐿𝐿
𝐶𝐶

𝐿𝐿
𝐶𝐶

𝝈𝝈 𝝁𝝁
𝐶𝐶𝝁𝝁

|𝝈𝝈
1D

 In
st

an
ce

 N
or

m

(b) Tr-AdaIN

Figure 4. AdaIN and Tr-AdaIN. For AdaIN, C refers to the channel
number of CNN features; for Tr-AdaIN, C refers to the feature
dimension of tokens.

3.4. Tr-AdaIN

Another mainstream arbitrary style transfer method is
adaptive instance normalization (AdaIN) [14]. We pro-
pose the Tr-AdaIN by replacing the Tr-WCT transform
with AdaIN and retaining the decoder architecture. Given
the content feature Ec and style feature Es, the output
stylized feature Ecs from AdaIN is computed as Ecs =

AdaIN(Ec, Es) = σEs
(
Ec−µEc

σEc
) + µEs

, where σEc
, µEc

,
σEs

and µEs
refer to dimension-wise variance and mean of

Ec and Es, respectively. The detailed comparison against
AdaIN and Tr-AdaIN is also illustrated in Fig. 4.

For the model optimization, we use an additional pre-
trained VGG to support matching the mean and vari-
ance of VGG features. The content loss is defined as
Lc = 1

Nl

∑Nl

i=0 ∥(Φi(Ecs))− (Φi(Ec))∥2, where Φ(·) de-
notes output feature of the VGG relu layer.

The style loss is defined as:

Ls =
1

Nl

Nl∑
i=0

∥µ(Φi(Ics))− µ(Φi(Is))∥2+

Nl∑
i=0

∥σ(Φi(Ics))− σ(Φi(Is))∥2,

(13)

where µ(·) denotes the mean of features, and σ(·) denotes
the variance of features.

L = Lc + λLs. (14)

In our experiments we use relu1 1, relu2 1, relu3 1, relu4 1
and relu5 1 layers of the pre-trained VGG-19.

4. Experiments

4.1. Setup

Datasets. We use MSCOCO [22] and WikiArt [26] as
content and style dataset, correspondingly. During the train-
ing stage, each image is resized to 512× 512 and then ran-
domly cropped into 256 × 256 by default. The image can
be any size during the test stage.

Implementation details. We use two NVIDIA RTX 3090
cards to train our model using the Adam optimizer with
lr = 5e−4. For Tr-AdaIN and Tr-WCT, the model is trained
for 160000 iterations. The warmup strategy is used during
the first 10000 iterations. For Tr-NST, the Ics is trained for
4000 iterations. We use λ = 1 in Equation 8 and Equa-
tion 14 for perceptual loss; for the decoder training in Tr-
WCT, we use a single pixel reconstruction loss. We counted
the inference speed of each method, as shown in Table 1.

Table 1. Inference speed (FPS) and FLOPs of different methods
on image size 512 × 512. For NST and Tr-NST, the FLOPs only
counts single iteration; the inference speed describes how many
iterations per second. For other methods, the inference describes
frames per second (FPS) and the FLOPs are computed for single
pair of content and style images.

Methods Frames per second (FPS) FLOPs

AdaIN 7.204 266.693G
Tr-AdaIN 5.666 231.628G

WCT 4.225 189.991G
Tr-WCT 3.281 231.628G

NST 10.269 63.339G
Tr-NST 9.922 87.578G

Different from traditional VST approaches where the en-
coder is pre-trained on image classification tasks and not
involved in the training process, we discuss the differences
of CNN-based and Transformer-based VST approaches by
controlling the parameter training of the encoder. Given the
Transformer-based visual style transfer methods described
in Sec.3, we implement Tr-NST-p, Tr-AdaIN-p, and Tr-
WCT-p by using pre-trained ViT as the encoder. The train-
ing process only influences the decoder for Tr-AdaIN-p and
Tr-WCT-p. We further implement Tr-NST, Tr-AdaIN, and
Tr-WCT by random initializing and training the encoder.
The encoder of Tr-AdaIN and Tr-WCT is optimized based
on the losses calculated on pre-trained VGG. After training,
we use the encoder of Tr-AdaIN for Tr-NST. In general, the
parameters of the encoder in Tr-VST and Tr-VST-p are af-
fected by a pre-trained Transformer and a pre-trained CNN
respectively. Since researchers have pointed out that the
self-attention module can mimic a convolution layer [6], we
try to figure out whether the influence of the Transformer’s
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Figure 5. Visual style transfer results using different methods.

structure could be reduced with a properly set training con-
figuration.

4.2. Are CNN-based VST approaches proper for Trans-
former?

In this section, we discuss the influence of adopting the
Transformer structure for VST tasks. As shown in Fig.5, the
CNN-based methods (NST, AdaIN, and WCT) can generate
stylized images with high quality, but the methods adopted
for Transformer (Tr-NST-p, Tr-AdaIN-p, and Tr-WCT-p)
fail to some extent. Proposed by Gatys et al. [11], CNN-
based NST is regarded as the benchmark in this field. How-
ever, the Tr-NST-p fails to render any style elements from
the style image, and disturbs pixels and produces bound-
aries between patches. In the sense of style transfer, Tr-
NST-p behaves no effect at all. AdaIN [14] provides a sim-
ple but effective way to match the style factors to the content
image. Although Tr-AdaIN-p can also transfer the styles,
the results appear boundary artifacts and unreasonable pat-
terns.

WCT vs Tr-WCT-p. As a learning-free transformation,
WCT can be performed with a reconstruction auto-encoder,
generating high-quality stylized images in a coarse-to-fine
manner. In this paper, we only consider single-level styl-
ization. Compared to WCT, the Tr-WCT-p generates unex-
pected results, only retaining the incomplete outlines from
the content image and little style pattern from the style im-
age. Such results motivate us to go through the intermediate
results of Tr-WCT-p.

To test and verify the conclusion, we reconstruct im-
ages with whitened features, following the original WCT.
The whiten results generated with Tr-WCT-p and VGG are
shown in Fig.6. When performed on VGG features, the

whitening transform removes style information by remov-
ing the correlation between each channel. But this opera-
tion fails to disentangle style and content on Transformer
features which do not provide sufficient style information.
The stylized images from CNN can render the style from
the reference image and save the content simultaneously,
where the Transformer-based WCT can’t even preserve the
detailed content, only maintaining the blurred outline.

(a) Ic (b) whiten Ic by
Tr-WCT-p

(c) whiten Ic by
WCT

(d) Ics by Tr-
WCT-p

(e) Is (f) whiten Is by
Tr-WCT-p

(g) whiten Is by
WCT

(h) Ics by WCT

Figure 6. Stylized results and inverted features for WCT and Tr-
WCT-p.

All the phenomena mentioned above show that Trans-
formers pre-trained on ImageNet have strong shape prefer-
ence. We argue that pre-trained ViT is not valid for extract-
ing features to perform style transfer, due to the strong bias
from both parameters learned from the classification task
and the structure design. On the one hand, Transformers
can obtain long-distance dependence, i.e. global receptive
field with the help of multi-head attention mechanism. The



multi-head attention mechanism is position-agnostic, which
computes the attention score over all the sequence tokens,
focusing on the relationships between tokens. These rela-
tionships between image patches are often reflected in form
of shape. Although Cordonnier et al. [6] proves that a self-
attention can express any convolution, but the classification
task doesn’t provide valid a guide to that mimic, making the
strong bias and the reconstruction error. On the other hand,
all the pixels in the same block are treated as a token, los-
ing both the spatial information and texture detail. In the
next section, we will give a simple but efficient solution to
alleviate this shape bias phenomenon.

4.3. Is the shape bias from model parameters or model
structure?

A shape-biased model prefers to make predictions re-
lying more on shape; on the contrary, a texture-biased
model makes predictions towards texture more than shape.
Baker et al. [2] introduce that CNNs have been shown
to have stronger texture bias rather than shape bias in
the image classification task. Tuli et al. [30] introduce
that ViT pre-trained on ImageNet dataset has a stronger
shape bias than traditional CNNs (like ResNet). The
ViT family and ResNet are trained on ImageNet-21K and
ILSVRC-2012[27] datasets. When testing on the Stylized
ImageNet[12], ResNet shows poorer performance whereas
ViT can maintain part of accuracy. Naseer et al. [24] find
that ViTs with higher shape bias not only perform better
than ResNet but also more robustly. Following DeiT[29],
they obtain a ViT with stronger shape bias with shape dis-
tillation training strategy.

For VST tasks, we tend to seek a texture-biased model,
rather than a shape-biased one. A model with strong
texture bias can capture various style elements like pat-
terns and strokes, thereby representing style factors. For
Transformer-based VST approaches, we suppose that part
of the shape bias comes from the parameters, while the
model structure provides an additional part on this trend.
We propose Tr-NST, Tr-AdaIN, and Tr-WCT by adding
constraints to the Transformer encoders by an additional
pre-trained VGG.

We show the detailed qualitative examples in Fig.7. The
Tr-AdaIN succeeds to fuse the content feature Ec with style
feature Es from the Transformer encoder. The decoder in
Tr-AdaIN maps the fused feature Ecs back to the image do-
main, generating the stylized image Ics. Compared to the
failed cases generated by Tr-AdaIN-p, the Tr-AdaIN out-
performs original AdaIN results based on pre-trained VGG.
By performing Tr-WCT, we obtained the stylized images
which also achieve comparable quality with original WCT
based on pre-trained VGG.

Tr-NST vs Tr-NST-p. As shown in Fig. 5, results of Tr-
NST are still not visual good compared with original NST.
Fig. 8 shows another example. The Tr-NST-p fails to ex-
tract required style information, and the optimization only
adds noise on the content image. In contrast, Tr-NST can
optimize the content image using the Transformer encoder
in Tr-AdaIN, rendering and coloring towards the stylized
image. The results from both Tr-NST and Tr-NST-p appear
boundary artifact between each image patch. This observa-
tion can be attributed to the reason that all pixels within a
certain patch are optimized towards the same direction.

(a) Ic (b) Is (c) Tr-NST (d) Tr-NST-p

Figure 8. Visual comparisons against Tr-NST and Tr-NST-p.

Comparison with other transformer-based VST works.
To date, several previous studies have investigated perform-
ing VST with transformers [25, 35]. SANet [25] intro-
duced attention mechanism as style transfer module, utiliz-
ing normalized content and style features to calculate the
attention map. StyleFormer [35] improved the transformer-
driven style composition approach which can learn content-
consistent style composition for the style transfer task.
SANet and StyleFormer achieve the SOTA stylization re-
sults, but both these works are still based on features ex-
tracted from a fixed VGG network. The Tr-VST methods
are designed to investigate the discrepancy of represent-
ing style patterns between the transformers and CNNs. For
our Tr-VST, the transformers are used as feature extractors
instead of the style transfer module to be compared with
VGG-based VST approaches.

4.4. Is position embedding fitting for style transfer with
Transformer?

The multi-head self-attention layer is in a position-
agnostic manner and can not naturally make use of the po-
sition in sequence tokens. Researchers introduce position
embedding to provide relative or absolute positional infor-
mation. Vaswani et al. [32] introduce the sinusoidal posi-
tional encoding to inject positional information. Dosovit-
skiy et al. [9] add a 1D learnable embedding to the tokens
to retain the sequence order.

We test SPE and LPE which are introduced in Sec. 3.1 on
Tr-AdaIN. Besides, we add results generated by the model
trained without position embedding. Results are shown in
Fig. 9. Notice that the resolution during the training stage
is 256 × 256, thus other scales are unseen at training and
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Figure 7. Comparison of visual style transfer results. The first row shows style images, the second row shows content images. The rest
rows are stylized results of different methods.



only used for the inference stage. When performing LPE at
other resolutions, we use nearest neighbor interpolation on
PE to match the input shape. The model with LPE exhibits
similar results to the model without any PE, but the one
with SPE fails to maintain the consistent style rendering. It
binds style to position, also increases the image brightness
at other scales.

(a) Inputs
(b) 2562 (c) 5122 (d) 7682 (e) 10242

W/o
PE

LPE

SPE

W/o
PE

LPE

SPE

Figure 9. Visual results of different position embedding setting on
Tr-AdaIN.

(a) LPE

(b) SPE

Figure 10. Visualization of position-wise cosine similarity of LPE
and SPE on different inference resolutions.

We visualized the position-wise cosine similarity of LPE
and SPE on different resolutions, as shown in Fig. 10. When
performing LPE on other resolutions, the nearest neighbor
interpolation allows the model to perceive the relative po-
sition of the image at a larger scale, due to the consistent
position embedding value at the same relative position, as
shown in Fig. 10(a). When performing SPE at larger reso-
lutions, the SPE at longer distance are computed following
sinusoidal position encoding, which are unseen at training
stage and differs from the low resolution SPE, as shown in

Fig 10(b). The model fails to render style patterns with un-
seen position information, making the different results at
different resolutions.

4.5. Effect of upsampling methods for VST tasks

An additional decode block is necessary to translate the
sequence tokens back into images owing to the inconsistent
shape. Recently Transformer-based generative models de-
sign various decode blocks to invert the tokens into an im-
age. TTSR [38] chooses to stack Transformers, and apply
convolution layers to transform the concatenated features
back into high-resolution images. IPT [4] introduces multi-
tail to deal with different tasks, and each tail uses convolu-
tion and pixel shuffle layers to up-sample the features.

We adopt CNNs and MLP into our proposed Trans-
former auto-encoder model as the upsampling block. The
results are shown in Fig.11. Observing that images gen-
erated by MLP appear severe checkboard artifact, adjacent
patches exhibit inconsistency in perception and produce dis-
tinct boundaries. MLP also fails to render complex textures,
so that the same pattern appears in each patch. The same ob-
servation occurs on both reconstruction and stylization re-
sults, implying that directly using MLP is not an appropriate
choice for inverting features into images.

(a) Ic (b) Is (c) Up-CNN (d) Up-MLP

Figure 11. Visual comparisons against CNN and MLP as upsam-
pling decoder. Zoom in for better view.

5. Conclusion

In this paper, we compared CNN and Transformer on the
view of style transfer, studied essential elements for design-
ing Transformer-based style transfer models. We adopted
three typical visual style transfer algorithms (Tr-NST, Tr-
AdaIN, Tr-WCT) into Transformers. We demonstrated that
these original CNN-based VST methods don’t work on a
pre-trained ViT, due to its shape bias both from the learned
parameters and the model structure design. By experiment-
ing on setting model variations, we gave the solution for
alleviating the strong shape and performing Transformer-
based style transfer by retraining our proposed model with
additional perceptual loss. We also explored the impact of
position embedding and upsampling methods on the styl-
ization results. Using learnable position embedding and
not using any position embedding produced similar results,
where the sinusoidal positional encoding is not valid due to
the learned binding relationship between the style factors



with position information. Moreover, we also demonstrated
that combining CNN as the upsampling method is an appro-
priate choice for avoiding checkboard artifacts and repeated
patterns. In the future, we will explore the impact of Trans-
former design on shape bias and style transfer.
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