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Abstract

Unsupervised image translation (UIT) studies the
mapping between two image domains. Since the map-
ping is under-constrained, existing research has pur-
sued various desirable properties such as distributional
matching or two-way consistency. In this paper, we re-
examine UIT from a new perspective: distributional se-
mantics consistency, based on the observation that data
variations contain semantics, e.g. shoes varying in col-
ors. Further, the semantics can be multi-dimensional,
e.g. shoes also varying in styles, functionalities, etc.
Given two image domains, matching these semantic di-
mensions during UIT will produce mappings with expli-
cable correspondences, which has not been investigated
previously. We propose the first UIT method, Distribu-
tional Semantics Mapping, which explicitly matches the
semantics between two domains. We show that distribu-
tional semantics has been rarely considered within and
beyond UIT, and is a common problem in deep learn-
ing. We evaluate DSM on several benchmark datasets,
demonstrating its generalizability in capturing distribu-
tional semantics. By extensive comparisons, we show
that DSM not only produces explicable mappings but
also improve the image quality in general.

1. Introduction

Unsupervised image translation (UIT) has been inten-
sively studied in recent years. Its ability of building map-
pings between two image domains has inspired many ap-
plications. Since there can be theoretically an infinite num-
ber of mappings between two domains, UIT is in nature an
under-constrained problem. Naturally, different approaches
have been developed to ensure certain desirable proper-
ties, such as shared latent spaces [25], two-way consis-
tency [39], pair-wise distance preservation [3], and image
semantics [33]. While existing researches tend to focus on
general distributional matching [1, 3], we aim to investigate
a rarely examined perspective: the distributional semantics
during UIT.

We define distributional semantics as the visually under-
standable variations in samples (not within a single sample).
Shoes vary in colors, styles (e.g. low/high collars), func-
tionalities (e.g. sneakers/high heels). Similarly, bags also
vary in colors, styles (e.g. with/without handles), function-
alities (e.g. purses/backpacks). During UIT, we argue that it
is not enough to simply translate images. It will be desirable
if these distributional semantics can be maintained,e.g. red
high-collar high heels mapped to black purses with handles,
while white low-collar sneakers mapped to blue backpacks.
This is exactly the goal of this research.
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Maintaining distributional semantics during UIT re-
quires answers to two key questions. The first question is
what semantics to maintain. Due to the unsupervision re-
quirement, no labeling should be required, which means
that the data variations (the distributional semantics) should
be characterized without prior knowledge but interpretable
to humans. Second, distributional semantics are seldom
considered in deep learning in general where data are nor-
mally transformed many times in the model. To maintain
such semantics, we need a mechanism to ensure that the
data distribution is as least distorted as possible, especially
in the dimensions of the semantics in which we are inter-
ested, during transformations when mapping two domains.

In this paper, we propose a new deep learning method
called Distributional Semantics Mapping (DSM). Given
two image datasets x ∈ A and y ∈ B, to characterize
visual semantics in an unsupervised manner, we find that
the covariance structure of the data naturally reflects im-
portant visual semantics. We choose Principal Component
Analysis (PCA) to characterize the covariance structure be-
cause Härkönen et al. [9] show that interpretable controls
for image synthesis can be achieved by PCA applied in fea-
ture space. Next, our approach is agnostic about specific
network architectures and consists of three key modules.
The first module is a semantic-preserving transformation e
where the variations of xs in a direction (e.g. the first prin-
cipal component of A) has to be consistent with the varia-
tions of zx = e(x) on its corresponding direction (e.g. the
first principal component of e(A)) in the latent space. We
use two such encoders eA and eB to project A and B into
a shared latent space. The second module aligns the key
dimensions of eA(A) and eB(B). The last module is a de-
coder/generative network g which decodes y′ = g(eB(y))
and translates x by ŷ = g(eA(x)).

Formally, as far as we know, we propose the very first
distributional semantics preserving method for UIT. We
identify the importance of preserving distributional seman-
tics, which has a wide range of implications within and
beyond image translation. We propose a new approach
that helps preserve the distribution semantics during image
transformations.

2. Related work

Generative adversarial networks (GANs). GANs [8]
have achieved a great success in a fast-growing number of
computer vision tasks, such as image generation [2, 15],
image colorization [14], image inpainting [12], and image
super-resolution [21]. Conditional GANs [31] can be used
to perform image-to-image translation [17, 36, 39]. More
recently, GANs supported interactive system is proposed
for real-time editing of portrait images [4, 22]. Our work
also utilizes GANs conditioned on an input image, but it
does not rely on any specific GAN model. To validate its

generalizability, we employ two widely used GAN models
(LSGAN [29] and NSGAN [8]).

Image-to-image translation. To perform image-to-
image translation, early methods often require the net-
works to be trained with paired training data, such as
pix2pix [14, 35]. Recently, a variety of approaches [17, 36]
have been proposed to learn the image translation from un-
paired data. For example, CycleGAN [39] leverages cycle
consistency to constrain the mapping. Lu et al. [28, 27]
show that optimal transport cost can improve the genera-
tive network. UNIT [25] assumes two image domains can
share the same latent space. By decomposing the image
into the style (domain-specific) code and content (domain-
invariant) code, MUNIT [11] and DRIT [23] can synthe-
size diverse outputs for an input image. Mejjati et al. [30]
and Kim et al. [16] improve the translation results with
the attention mechanism. Choi et al. [5] propose StarGAN
which can perform image translation for multiple domains
using a single GAN. More recently, DRIT++ [24] extends
DRIT to support multiple domains, while StarGAN v2 [6]
extends StarGAN to generate diverse images across mul-
tiple domains. FUNIT [26] can works on previously un-
seen target classes only by a few example images. To en-
able unsupervised one-sided mapping, Benaim and Wolf [3]
present DistanceGAN that maintains the distances between
images, and Fu et al. [7] employ other geometric constraints
(e.g., rotation). Our method differs from existing methods
in that it explicitly preserves and matches the distributional
semantics in domains during UIT, which generates explica-
ble mappings between images.

3. Methodology

Given two image datasets x ∈ A and y ∈ B, we aim
to compute a mapping M : A → B, so that the distribu-
tional semantics of A are aligned with that of B. We use
the principal components (PCs) to describe the semantics
and first project A by an encoder to zA = eA(A) while
keeping the distributional semantics of A and zA aligned.
We then do a similar projection for B by zB = eB(B).
Next we ensure the PCs of zA to be aligned with those of
zB. Finally, we use a generative network g to reconstruct B
by y′ = g(eB(y)) and translate x by ŷ = g(eA(x)). The
model is shown in Figure 1. Below, we give the details of
the components.

3.1. Semantics-preserving Transformation

The images need to go through a series of transforma-
tions during translation, which in deep learning are usually
some encoding processes such as convolutions. However,
as far as we know, the shape of the latent distribution is
rarely considered in terms of its semantic consistency with
the data distribution itself. Existing efforts such as impos-
ing a prior distribution [19] or geometric constraints [3] are



Figure 1: DSM framework. Two image domains are aligned
along their data-space PCs via a shared latent space before
translation.

mainly to encourage good behaviors of the latent distribu-
tion but not to match it with the data distribution. As a re-
sult, current encoders may not to be able to preserve the
distributional semantics, shown in the experiments. We,
therefore, introduce a new general autoencoding scheme to
preserve the distributional semantics:

zx = e(x), x′ = d(zx)

subject to Ux = V zx U, V have K rows. (1)

where x is a data sample, e and d are some encoding and
decoding schemes. U and V are the first K PCs of A
and zx. The autoencoder can be trained by e.g. minimizing∑
||x− x′||22. Equation 1 states the key difference between

our autoencoder and existing autoencoders: it requires the
projections of x on the data-space PCs U are equal to the
projections of zx onto the latent-space PCs V . Note that
a standard dimensionality reduction using PCA is a spe-
cial case of Equation 1, when V = U and e(A) = VA.
But Equation 1 is more general because it does not dictate
what V is, nor does it require the latent space to have fewer
dimensions than the data space. Equation 1 only requires
the covariance structure to persist during encoding along the
first K PCs in both the data and latent space. One key ques-
tion is why not just set V = U . This is because we need the
flexibility of encoding data into an arbitrary V during UIT
while keeping the general shape of the data distribution, as
explained later.

Equation 1 is general but difficult to optimize because it
needs to be computed on the whole dataset, requiring a high
memory consumption, and V is unknown. Therefore, we
propose a local scheme which keeps the global alignment
by enforcing local alignments on samples:

llocalAlign =
1

N

N−2∑
i=0

(langle + lnorm)

langle = | cos(xi, xi+1)− cos(zxi
, zxi+1

)|

lnorm =
||xi||2
||xi+1||2

− ||zxi
||2

||zxi+1 ||2
(2)

where cos() is the cosine distance, N is the batch size and
zxi

= e(xi). llocalAlign dictates that for any two data sam-
ples, their length ratio and angle should remain the same
after they are projected into the latent space. langle tends
to keep the overall shape of the distribution when the data
is projected into a latent space, while lnorm allows scal-
ing but prefers uniform scaling. llocalAlign has an effect of
preserving the covariance structure of data during transfor-
mations. Further, its locality (only considering two samples
a time) essentially makes the covariance structure invariant
under homogeneous transformations of the basis in the la-
tent space, letting the autoencoder automatically decide the
best V that can help reconstruction but also keep the covari-
ance structure.

3.2. Semantics-based Manifold Alignment

Given zA = eA(A) and zB = eB(B), we have two
latent distributions with their respective covariance struc-
ture characterized by their latent space PCs VA and VB . To
make sure the UIT maintains the distributional semantics,
we need to align zA and zB, e.g. aligning the direction in
which zA shows the biggest variation with that of zB by
aligning their first PCs. Further, the visual semantics can
manifest on multiple dimensions, corresponding to aligning
the top K PCs in VA and VB . There are several alternative
methods such as aligning VA and VB directly, or fix one
and try to align the other to it. Since both VA and VB are
unknown, directly aligning VA and VB corresponds to:

minimize llatentA + llatentB + lalign

llatentA =
1

NA

NA−1∑
i=0

||zxi
− VAV TA zxi

||22

llatentB =
1

NB

NB−1∑
i=0

||zyj − VBV TB zyj ||22

lalign =
1

K

K−1∑
k=0

||V kA − V kB ||22 (3)

where NA and NB are the number of images in A and B.
V kA and V kB are the kth PCs of VA and VB . After experi-
ments, we find that allowing VA and VB to simultaneously
change makes the optimization suffer from sub-optimal lo-
cal minima. Therefore, we fix VA but let VB to align with



VA, which also means that eA can be pre-trained and we
can compute VA from zA via PCA.

Next, aligning VB to VA still presents challenges because
directly learning VB requires to simultaneously transform
all zys which is again equivalent to operating on the whole
B. This is a similar difficulty to the one in Section 3.1.
Again, we propose to operate only on a batch of N samples
to ensure the global alignment of VA and VB :

lmaniAlign =
1

N

N−1∑
i=0

||zyi − VAV TA zyi ||22 + ke−α||zyi ||
2
2

(4)

where yi ∈ B and VA contains the first K PCs of zA in
interest. lmaniAlign requires zy to be reconstructable af-
ter projecting them into the basis of zA, which essentially
encourages the covariance structure of zB to be similar to
that of zA and the two bases to be aligned. ke−α||zyi ||

2
2 is

to prevent zyi from shrinking, which is a trivial solution of
Equation 4. Since the covariance structure of A and B and
kept in zA and zB via Equation 2, lmaniAlign finishes the
semantics-based alignment of two domains.

3.3. Simultaneous Decoding and Translation

After semantics-based manifold alignment, we trans-
form zA and zB into the space of B to finish the UIT.
Since zA and zB are aligned, we combine the reconstruc-
tion and translation tasks together by using one network g
which serves both as a decoder and a translator. This is be-
cause the general shapes of the two latent distributions are
similar after alignment. When the decoder is trained by the
reconstruction loss on zB, it already to some extent learns
to translate zA. We reconstruct B by y′ = g(zy). Mean-
while, we treat g as a generator in a Generative Adversarial
Network by ŷ = g(zx) and use a discriminator network
h(ŷ, y) = [0, 1] to further improve the translation.

Overall, given a pre-trained eA and zA, hence also VA,
we minimize the following objective function:

l =ω1
1

NB

NB−1∑
i=1

||yi − y′i||22 + ω2lg + ω3ld

+ ω4l
B
localAlign + (1−

4∑
i=1

ωi)lmaniAlign (5)

where lg and ld are the GAN loss that depends on the cho-
sen GAN model. NB is the total number of images in B
and ωs are weights. In lBlocalAlign, we apply Equation 2 to
both the y-to-zy , and zx-to-ŷ mapping. All details are in the
appendix for the sake of simplicity.

4. Implementation Details

We pre-train an autoencoder in dataset A with llocalAlign
to get eA and calculate VA from zA using PCA. Next, for
eB and g, we adopt the network architectures from UNIT.
In all experiments, we set ω1 = 0.033, ω2 = ω3 = 0.333
and other weights depend on the experiment. Please refer
to the appendix for details. eA is trained for 100 epochs
and the rest is trained for 300 epochs on all datasets, using
Adam [18] with a batch size of 16, a learning rate of 0.0001,
and exponential decay rates (β1;β2) = (0.5; 0.999). All the
experiments are conducted on 2 NVIDIA 1080 Ti GPUs,
implemented in PyTorch. The training takes between 6 to
18 hours.

5. Experiments

5.1. Data

We employ several benchmark datasets to extensively
validate our method, including SummerWinter [39], Cat-
Dog [23] and ShoeHandbag [37, 38]. Moreover, we build
a very challenging dataset named MMISTHandbag by us-
ing hand-drawn digits from MNIST [20] and handbags ran-
domly sampled from [38], which has two distinctive distri-
butions and distributional semantics. All results shown are
computed using LSGAN. Please refer to the appendix for
details.

5.2. Evaluation Metrics

In addition to visual evaluation, we employ the Frechet
Inception Distance (FID) [10] as a quantitative measure.
However, there is no good metric to measure the faithful-
ness of the preservation of distributional semantics. We,
therefore, propose a new evaluation metric called Ordering-
Tolerance curve (OTC). Given images x ∈ A and their
translations ŷ ∈ B, we can define the OTC as:

c =
1

NA
card({x|d(x, ŷ)

NA
≤ β, x ∈ A}), β ∈ [0, 1]

d(x, ŷ) = |rank(ŷ)− rank(x)| (6)

where card(·) is the cardinality of a set, rank(x) is the
rank of x in A along a chosen PC among all data samples
in A and NA is the total number of data samples in A.
rank(ŷ) is the rank of ŷ along a chosen PC in B. d(x, ŷ)
is equal to zero if the rank of x is kept during translation,
and non-zero otherwise (the larger the worse). c is the Per-
centage of Correct Ordering of xs whose normalized rank
errors are within β, the Ordering Error Tolerance.

5.3. Semantics-preserving Transformation

A key contribution of our work is a straightforward but
extremely effective transformation scheme that preserves



Figure 2: Top: original data. Mid: latent samples
of DSM. Bottom: latent samples of a standard autoen-
coder. From left to right: the images ranked the 4th,
19th,24th,37th,44th,52th,94th and 97th on the first PCs of
the data (top) and latent space (mid and bottom).

the distributional semantics. To show the necessity of such
transformations in UIT, we train an autoencoder on cat im-
ages in CatDog then compute the 1st PCs of A and zA. The
autoencoder is based on the encoder and decoder of UNIT.
Please refer to the appendix for details. We then rank all the
images along the two PCs in Figure 2.

In the original data, the variation on the 1st PC is
mainly the color transition from light to dark (Figure 2:
Top). However, without semantics-preserving transforma-
tions, the shape of the latent distribution is already changed,
unable to preserve the visual semantics (Figure 2: Bot-
tom). In contrast, DSM preserves the distributional seman-
tics (Figure 2: Mid). We also show the OTCs in Figure 3
Left where DSM can contain the rank error within 3% while
a standard autoencoder fails systematically. Although we
only show the results from a specific autoencoder, this is
a common problem of autoencoders shown by preliminary
experiments.

5.4. Ablation Studies

Two main adjustable components of DSM are the GAN
architecture and the number of PCs, K. We first evaluate
DSM on the first K PCs on all datasets and present the FID
scores in Table 1. Different from our expectation that a
larger K will result in a harder optimization problem and
hence lower quality, the results show that it depends on the
dataset. After looking into the data, it is understandable be-
cause different datasets have different amounts of variances
distributed on PCs, e.g. some have large variances on the 1st
PC while others have more even distributions of variances
on the firstK PCs, which affects the behavior of Equation 4.
Although control can be added, e.g. by adding weights on
different PCs, we choose not to do so and let DSM adapt
to the data. Also, we only test DSM up to K = 3. This is
mainly because although DSM can work for K ≥ 3 numer-
ically, it is usually hard for humans to visually understand
the semantics in PCs where K ≥ 3. We also compare two
GAN architectures LSGAN and NSGAN on ShoeHandbags

K = 0 K = 1 K = 2 K = 3
CatDog 64.5159 58.0004 96.1909 84.4792
SummerWinter 100.9174 90.4108 107.5985 99.4951
ShoeHandbag 123.6028 129.7010 155.5799 128.9304
MNISTHandbag 172.6736 180.5911 149.3162 171.7602

Table 1: FID scores on four datsets with the first K PCs
aligned. K = 0 means DSM is trained without alignment
loss.

and show the OTCs in Figure 3 Mid. Both can keep the
rank error within around 20%, showing that alignment con-
straints can improve translation ability visibly on different
GAN architectures. More results can be found in the ap-
pendix.

5.5. Image Quality in Translation

Although normally the first K PCs bear visually under-
standable semantics, the specific K however depends on
the dataset. The first PC is almost always visually inter-
pretable across datasets and some datasets have meaning-
ful variations on other PCs. We show the images from the
four datasets ranked along their respective meaningful PCs
in Figure 4. For CatDog, SummerWinter and ShoeHand-
bags, the first PC (PC0) shows color variations from light to
dark; for MINST, it is mainly the shape varying from slim to
round; for ShoeHandbags, the second PC (PC1) is the shoe
collar height variation for shoes and handle length variation
for handbags.

In Figure 5, we show our results in mappings of cat-to-
dog, summer-to-winter, shoes-to-handbags, and digits-to-
handbags. The PC0s of CatDog and SummerWinter are
color variations (light to dark). The major difference is
the color variations in CatDog are clearly separated into
foreground (faces) and background while there is no such
separation in SummerWinter. In both cases, DSM success-
fully translates the images with high quality while simulta-
neously matching the semantics. In cat-to-dog, DSM trans-
forms the faces and maintains the separation of the fore-
ground and background, while in summer-to-winter, the
changes are more heterogeneous depending on the scenes
where DSM lays snow on different landscapes. In shoes-
to-handbags, unlike CatDog and SummerWinter, the color
variation is restricted to the object itself, where DSM faith-
fully keeps the semantics. Finally, to push DSM further,
we test a digit-to-handbags translation. These two datasets
have distinctive distributions. The results show that long
slim digits are translated to handbags in light colors while
fat round digits are translated to handbags in dark colors,
which are consistent with Figure 4 along their respective
PC0s. We also show the OTCs in Figure 3 Right.



Figure 3: Ablation Studies. Left: OTC along PC0 with/without semantics-perserving transformation on CatDog. Mid:
LSGAN vs NSGAN along PC0 on ShoeHandbags. Right: OTC along PC0 on four datasets.

Figure 4: Top to bottom: CatDog(PC0), SummerWin-
ter(PC0), ShoeHandbags(PC0), MNIST(PC0), and Shoe-
Handbags(PC1).

Method/Data CatDog ShoeHandbag
Ours 58.0004 128.9304

CycleGAN 95.1197 135.5504
DistanceGAN 63.6016 185.2788

DRIT++ 61.9530 185.0121
UNIT 64.6241 140.8820

Table 2: FID scores on CatDog and ShoeHandbag.

5.6. Comparisons

We compare our model with UNIT, CycleGAN, Dis-
tanceGAN and DRIT++ on CatDog and ShoeHandbag, by
using the official code shared by the authors of the base-
line methods. We first show the FID scores of all meth-
ods in Table 2 and the OTCs in Figure 6. By aligning two
data manifolds based on their semantics, DSM is able to
improve the translation quality, which is observed on both

Figure 5: Top to bottom: CatDog, SummerWinter, Shoe-
Handbag and MNISTHandbag, ordered along PC0. In each
group, the first row is the input images and the second is the
translated images.

datasets. The OTCs show clearly that DSM can keep the
semantics on PC0 better than others by containing the rank
error within around 30% and 18% (Figure 6 Left and Mid).
The second best methods come with roughly only 50% and
40%. On PC1 of ShoeHandbag (Figure 6 Right), Cycle-
GAN is close to DSM. However, we argue its behavior is
inconsistent, especially considering Figure 6 Left and Mid
where the variance is large and contains large amounts of
semantics information.

Visual comparisons can be found in Figure 7. Overall,
DSM generates images with higher visual qualities. Fur-
ther, the distributional semantics cannot be preserved and
matched by other methods. In Figure 7 Left, the major vari-
ation of the input images (left-to-right) is the color varia-
tion (light-to-dark). While DSM obviously keeps the same
variations during UIT, it is hard to find similar variations



Figure 6: Left: CatDog. Mid: Shoe-to-Handbags on PC0 of Handbags. Right: Shoe-to-Handbags on PC1 of Handbags.

Input

Ours

UNIT

DRIT++

Cycle
GAN

Distance
GAN

Figure 7: Left and Mid: ordered along PC0 of Dogs and Handbags. Right: ordered along PC1 of Handbags.

in other methods. Similar results can also be found in Fig-
ure 7 Mid. To further explore semantics in other PCs, we
show Figure 7 Right. While the input varies from slippers
to sneakers, our results generates handbags varying from
without handles to with handles. In contrast, other methods
struggle to generate consistent semantics variations. More
results can be found in appendix.

6. Discussions and Conclusion

Although PCA is a straightforward choice to character-
ize the distributional semantics, our method can incorporate
other methods such as Kernel PCA, Multidimensional Scal-
ing, etc. which can characterize the covariance structure via
‘flattening’ the data manifold after which DSM can be per-
formed.

We only evaluated DSM up to K = 3 because the se-
mantics start to become not visually obvious after K ≥ 3.
However, we argue that DSM is effective and useful for two
reasons. First, for almost all datasets, the first PC bears the
majority of the variances, and the distributional semantics
captured by the variance are always visually interpretable.
Second, aligning the PCs of the two distributions improves
the image quality during translation.

In summary, we proposed the first UIT method DSM
which preserves and matches the distributional semantics
of two image domains. It is straightforward and effec-
tive, proven on multiple datasets, and capable of improv-
ing translation quality compared with many state-of-the-art
methods. DSM is also general in its capacity of incorporat-

ing any GANs and autoencoder models. In future, we will
incorporate human-labelling into a semi-supervised setting
of DSM where humans can arbitrarily decide the semantics
by ranking images. This will enable DSM to encode arbi-
trary semantics and open it to many other applications.
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Appendix

A. Implementation Details

Loss functions. In Equation 5 of the paper, we have a
local alignment loss lBlocalAlign, which applies Equation 2
to both y-to-zy , and zx-to-ŷ. Applying Equation 2 to y-to-
zy is straightforward, which ensures semantics-preserving
transformation between B and zB, just as the encoder of
A. Here we explain why applying Equation 2 to zx-to-ŷ is
essential. As mentioned in Sec. 3.3 of the paper, we have
aligned zA and zB, and use a single network g serving as
both the decoder for zB and the generator for zA. Such
mechanism provides an implicit constraint on the translated
images B̂ from zA so that it has a similar distribution as
the reconstructed images B′ from zB. However, as there
is an additional GAN loss which will modify the distribu-
tion of translated images, the alignment between B̂ and B′

could be affected, which will compromise the distributional
semantics matching. To this end, we apply Equation 2 to
zx-to-ŷ to explicitly preserve the semantics.

ω4l
B
localAlign = ωe

4 l
e
localAlign + ωg

4 l
g
localAlign (7)

where lelocalAlign and lglocalAlign are the loss terms of y-to-
zy and zx-to-ŷ. In all experiments, we set ω1 = 0.033, ω2 =
ω3 = 0.333, ωg

4 = 0.167 in Equation 5 of the paper. We set
ωe
4 = 0.066 in ShoeHandbag align 3PCs experiments and
ωe
4 = 0.05 in all else experiments. We set k = 15, α =

10−6 for the regularization term in Equation 4 of the paper.
Network Architecture. Our image translation network

architecture is based on the one from UNIT [25]. For the
encoder, to ensure the latent vector size is smaller than the
input image size in the case of resolution 256 ∗ 256, we
halve the kernel numbers in the second and third convolu-
tional layers and add one more convolutional layer (see Ta-
ble 3 for details). Besides, instead of using instance normal-
ization (IN) [34], we utilize batch normalization (BN) [13]
in the encoder and generator. For the discriminator net-
work, we employ spectral normalization [32], and multi-
scale discriminators at 3 scales. The network architecture
is illustrated in Table 3. We use the following abbreviation
for ease of presentation: N=Kernel number, K=Kernel size,
S=Stride size. The 2 nearest-neighbor upsampling layer is
denoted as UP and the residual basic block is denoted as
RESBLK. For the pre-trained autoencoder for A, the de-
tailed network architecture is listed in Table 4.

B. More Experiment Results

B.1. Data Details

For all datasets, the images are resized to 256x256.
In Catdog, 871 cat (birman) images, 1364 dog (husky,
samoyed) images are randomly divided into 771 (cat)



Layer Encoder Generator Discriminator
1 CONV(N64,K3,S1),RELU CONV(N512,K3,S1),RELU CONV(N64,K4,S2),LeakyReLU
2 CONV(N64,K3,S2),RELU RESBLK(N512,K3,S1) CONV(N128,K4,S2),LeakyReLU
3 CONV(N128,K3,S2),RELU RESBLK(N512,K3,S1) CONV(N256,K4,S2),LeakyReLU
4 CONV(N128,K3,S2),RELU RESBLK(N512,K3,S1) CONV(N512,K4,S2),LeakyReLU
5 RESBLK(N128,K3,S1) RESBLK(N512,K3,S1) CONV(N512,K1,S1),LeakyReLU
6 RESBLK(N128,K3,S1) UP+CONV(N256,K3,S1),RELU
7 RESBLK(N128,K3,S1) UP+CONV(N128,K3,S1),RELU
8 RESBLK(N128,K3,S1) UP+CONV(N64,K3,S1),RELU
9 CONV(N3,K7,S1),TanH

Table 3: Network architecture for the distributional semantics mapping experiments

Layer Encoder Decoder
1 CONV(N64,K3,S1),RELU RESBLK(N128,K3,S1)
2 CONV(N64,K3,S2),RELU RESBLK(N128,K3,S1)
3 CONV(N128,K3,S2),RELU RESBLK(N128,K3,S1)
4 CONV(N128,K3,K2),RELU RESBLK(N128,K3,S1)
5 RESBLK(N128,K3,S1) UP+CONV(N128,K3,S1),RELU
6 RESBLK(N128,K3,S1) UP+CONV(N128,K3,S1),RELU
7 RESBLK(N128,K3,S1) UP+CONV(N64,K3,S1),RELU
8 RESBLK(N128,K3,S1) CONV(N3,K7,S1),TanH

Table 4: Network architecture for the autoencoder in ablation study

Figure 8: Top: Shoe dataset. Bottom: Handbag dataset.
From left to right: the images ordered along the correspond-
ing PC

and 1264 (dog) for training and the remaining for test-
ing. For SummerWinter, it consists of 1540 Summer Pho-
tos and 1200 Winter photos, randomly divided into 1231
(summer), 962 (winter) for training and the rest for test-
ing. For ShoeHandbag, we randomly sample images from

edges2shoes and edges2handbags, with 3726 (shoe), 3822
(handbag) for training and 101 (shoe), 178 (handbag) for
testing. For MNISTHandbag: 1600 MNIST images and
1600 handbag images are randomly selected from MNIST
and edges2handbags, with 1500 of each for training and
100 for testing. We show the images from ShoeHandbag
datasets along the first 3 PCs in Figure 8. Please note that
the MNISTHandbag dataset is very challenging, because
the distributions of MNIST and handbags are very differ-
ent. The top five variance ratios along PCs in MNIST are
[0.095, 0.071, 0.066, 0.052, 0.047], while in handbags such
ratios are [0.274, 0.115, 0.065, 0.054, 0.026].

B.2. Our OTCs on CatDog, MNISTHandbag and Summer-
Winter

Figure 10 shows the OTCs of our method on the Cat-
Dog, MNISTHandbag and SummerWinter datasets, with
the first 2 and 3 PCs aligned respectively. We can see that
our method always keeps the semantics best on PC0, and
the rank errors become larger on PC1 and PC2. We find
that it is mainly because the variance ratio along PC0 is al-
ways much larger than those along other PCs. For example,
in the Handbag dataset, the ratios of variances along the first
3 PCs are around 4:2:1. As a result, the network prefers to
perform the alignment along PC0 as priority to minimize the
total loss. We also notice that the performance of seman-
tics preserving varies largely across different datasets. In
the challenging MNISTHandbag dataset which has two dis-



Figure 9: LSGAN/NSGAN

tinctive distributions, our method preserves semantics well
along PC0, while in the SummerWinter dataset, our method
is capable of preserving the semantics on the first 3 PCs.
Although control can be put e.g. via weighting to enforce
the alignment of multiple PCs, we choose not to do so and
make DSM adapt to data, as the distribution of variances on
different PCs is an intrinsic property of the data itself and
should be respected during translation.

We evaluate the semantics preservation only on the first
3 PCs mainly because of two reasons. First, in most image
datasets, compared to the variances on the first 3 PCs, the
variances on the remaining PCs are very small. For exam-
ple, in the Summer dataset, even the sum of variances on the
4th to 20th PCs is smaller that the variance of PC0. Enforc-
ing alignment along these directions with very small varia-
tions does not contribute to the explicability of the mapping
while adding more complexity to the optimization. Second,
after investigating the popular datasets (e.g. Shoes, Hand-
bags, Cars, Animals, Faces, Art works), we find that in all
datasets people can easily perceive semantics on the first
PC, but can only perceive semantics on the second PC in
the Shoe, Handbags and MNIST. People cannot perceive
any semantics on the 4th and subsequent PCs. Hence we
focus on the first 3 PCs.

B.3. Ablation Study on LSGAN and NSGAN

K = 1 K = 2 K = 3
LSGAN 129.7010 155.5799 128.9304
NSGAN 172.8317 186.9708 154.8572

Table 5: FID scores on ShoeHandbag with the first K PCs
aligned

We demonstrate the results of using LSGAN and using
NSGAN in Figure 9 and Table 5, which give the image
translation results on the ShoeHandbag dataset by aligning
the first 1PC, 2 PCs and 3 PCs respectively. From the OTCs
of LSGAN and NSGAN, we can see that the two GAN
models have very similar performance on semantics pre-
serving in all cases, which validates that our method does

not rely on a specific GAN model and can ensure seman-
tics preserving with different GAN models. We also notice
that the FIDs of NSGAN are higher than that of LSGAN. It
is mainly because that the inherent image generation capa-
bility of NSGAN is weaker than LSGAN. Employing other
GAN models such as StyleGAN [15] can improve the FID
scores.

B.4. Alignment of PCs

Equation 4 in the paper dictates that the first K PCs of
two domains need to be aligned. However, it does not spec-
ify the order of alignment. In other words, it does not spec-
ify if PC1 of the first domain needs to be aligned with PC1
of the second domain. We have two choices. The first one is
to enforce the order, PC0-to-PC0, PC1-to-PC1, and so on.
However, we find it sub-optimal in the sense that Equation 4
is affected by the amounts of variances distributed on PCs.
For a dataset with its majority variances distributed on PC0,
the alignment forces by Equation 4 for its PC1 and subse-
quent PCs are small. We argue that they should be small as
the dataset has less explicable variances on PC1 and higher
PCs. Hence, the major force by Equation 4 should naturally
change according to the variance distribution. We there-
fore do not enforce the order of alignment of PCs for two
datasets. As a result, although PC0-to-PC0 is always en-
sured in all experiments, sometimes PC1 of a dataset can
be mapped to PC2 of the other. However, we argue that
the mapping is still valid because it is also explicable and
reflects the distributional semantics.



Figure 10: Top: Aligning the PC0 and PC1; Bottom: Aligning PC0-2; Left to Right: CatDog, MNISTHandbag and Summer-
Winter


