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Abstract

Regional facial image synthesis conditioned on se-
mantic mask has achieved great attention in the field
of computational visual media. However, the appear-
ance of different regions may be inconsistent with each
other when conducting regional editing. In this paper,
we focus on harmonized regional style transfer for fa-
cial images. A multi-scale encoder is proposed for accu-
rate style code extraction. As the key part of our work,
a multi-region style attention module is introduced to
adapt multiple regional style embeddings from a ref-
erence image to a target image for generating harmo-
nious result. We also propose style mapping networks
for multi-modal style synthesis. Furthermore, we em-
ploy an invertible flow model which can serve as map-
ping network to fine-tune the style code by reversing
the code to latent space. Finally, we conduct experi-
ments on three widely used face datasets and we evalu-
ate our model by transferring the regional facial appear-
ance between datasets. Experimental results show that
our model can generate reliable style transfer and multi-
modal manipulation results compared with SOTAs.

1. Introduction

Semantic image synthesis [18, 54, 4, 44, 31, 56, 55] that
aims to generate realistic natural images from semantic la-
bels is an active research topic in the past few years. Based
on the difference in the way of involving new styles for syn-
thesis, there are two types of mainstream methods to gen-
erate diverse images: injecting random noise [18, 47, 54]
or transfer from referenced images [13, 25, 55, 43]. Re-
searchers have made great progress in both fields. Choi et
al. [7] employ a style extraction net for facial style transfer

(a) Target (b) Reference (c) SEAN (d) Ours

Figure 1. An example of skin transfer. R-ST&M method can mod-
ify the transferred skin according to the global lighting condition
of target image. However, without considering the relationship
between different regions, the synthesis region in (c) is not harmo-
nized with other regions.

and a mapping network adapted from StyleGAN [21, 22] to
transform Gaussian noise into style codes.

SPADE [31] adopts the idea of VAE [24] to encode the
image style and enables both tasks. However, SPADE is just
able to transfer facial style globally, thus limiting practical
usage. Recent works [13, 55, 56] propose to extract style
codes of all semantic components separately, enabling re-
gional style transfer and manipulation (R-ST&M) for facial
images.

R-ST&M provides a flexible way for facial image edit-
ing. However, new problems arise at the same time: re-
gional appearance editing (i.e., transfer or manipulation)
will lead to the appearance of different regions inconsistent
with each other. For example, when transferring skin style
from a target facial image to another captured with differ-
ent light conditions, the new skin style generated by other
method such as SEAN [55] will be abrupt to the rest regions
in target image (Fig. 1). Similar problems have been real-
ized in the field of image composition [9, 8, 41, 53]. To the
best of our knowledge, there are no prior works that focus
on style consistency and harmony for R-ST&M.

In this paper, we propose a framework which takes style
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Figure 2. Examples of color editing by our model.

consistency of different regions into consideration for R-
ST&M. We design a multi-scale encoder which incorpo-
rates feature maps from all original layers in SEAN en-
coder to extract style codes with richer style information,
since low-level features are important for reconstruction
[18, 54, 34].

In order to make the generated image with transferred
style look plausible in synthesized image, we employ a
multi-region style attention (MRSA) module where the rel-
evance between the reference and target image is computed
to synthesize a calibrated reference style. Apart from re-
gional style transfer, we employ style mapping networks to
map random vectors from latent space to the style spaces
for region-wise multi-modal style synthesis. The idea of
style mapping networks is inherited from StarGAN-v2 [7].
Differently, instead of training the mapping networks by
adversarial loss of fake/real images, we calculate the ad-
versarial loss on the style embedding space. The multi-
scale encoder outputs multi-region style spaces with rela-
tionship among different regions, building the mapping net-
works directly from distributions can generate reliable re-
gional styles. Furthermore, we train a continuous normal-
izing flow (CNF) [5, 12] which can reverse style code gen-
erated by the multi-scale encoder to latent space. Thus, we
can fine-tune style codes from real images in latent space.
To further evaluate “harmony” of synthetic images, we use
a binary classification network to distinguish natural pho-
tographs from composite ones as done in [53]. With the
proposed approaches, we set up two facial editing applica-
tions. Fig. 2 shows the example of harmonized color editing
application.

To summarize, our main contributions are as follows:

• We focus on the appearance harmony among regions
for R-ST&M tasks and introduce a multi-scale encoder
that incorporate low- and high-level features to extract
regional styles and style mapping networks to generate
random styles for different semantics.

• We introduce a multi-region style attention module
which facilitates harmony and consistency in regional
style transfer.

• We conduct sufficient evaluations and show two new
face editing applications to proof that the proposed

framework can generate high quality facial images on
various R-ST&M tasks.

2. Related Work

Facial Image Manipulation with GANs. Generative ad-
versarial nets (GANs) [11, 18, 2, 21, 22, 20] have achieved
great success in image generation. A GAN consists of two
competitors, i.e., a generator and a discriminator. The gen-
erator is trained to synthesize images that cannot be distin-
guished from real ones by the discriminator. However, the
original GAN [11] suffers from mode collapse. Then lots
of works are proposed to improve the generation quality of
GANs, such as [10, 2, 14, 29, 49].

One of the most important applications of GANs is to
generate photo-realistic human face images. PGGAN [20]
is proposed to grow both the generator and discrimina-
tor progressively, allowing users to produce high-resolution
and high-quality face images. StyleGAN [21] and Style-
GAN2 [22] introduce a novel generator architecture bor-
rowed from style transfer literature, enabling indistinguish-
able face images generation. In the field of facial image
editing, significant progress has been made using power-
ful GANs. FaceShop [32] presents a novel system for face
image manipulation by providing both geometry and color
constraints as user-drawn strokes. DeepFaceEditing [6] is
a structured disentanglement framework designed for face
images to support face manipulation with disentangled con-
trol of geometry and appearance. MichiGAN [38] explic-
itly disentangles hair into four orthogonal attributes and
designs a corresponding condition module to process user
inputs for each attribute. DualFace [17] proposes a two-
stage guidance system to help users produce detailed por-
trait sketch with data-driven global guidance and GAN-
based local guidance. InterFaceGAN [35] explores the dis-
entanglement between various semantic attributes and ed-
its several attributes using linear editing path. SeFa [36]
proposes a general closed-form factorization method for la-
tent semantic discovery. StyleRig [40] proposes to provide
a face rig-like control over a pretrained StyleGAN. Style-
Flow [1] presents to utilize normalizing flows [33] for facial
attributes editing interactively with StyleGAN.

Recent works [52, 34] learn to encode facial images for
StyleGAN inversion and facilitate various image editing
tasks. MaskGAN [25] proposes a face dataset with fine-
grained mask annotations and dense mapping network for
attribute transfer and style copy. However, MaskGAN just
allows global style transfer. Sun et al. [37] use partial di-
lated layers to modify a few pixels in learned feature maps
and realize mask-aware continuous facial attributes manip-
ulation. Gu et al. [13] proposes an end-to-end framework
to learn conditional GANs guided by semantic masks, en-
abling facial regional style transfer. SEAN [55] proposes
semantic region-adaptive normalization for GANs condi-
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Figure 3. Whole framework of our model. (a) Multi-level feature fusion part of the encoder. (b) Multi-region style attention module.
(c) An example of style mapping networks. In this example, the mapping network generates styles of skin and nose simultaneously, and
multi-modal results are shown in (d). (d) SEAN generator and results of (a) and (c).

tioned on segmentation masks, and the model can control
the style of each semantic region individually. Our work
improves the SEAN encoder with a multi-scale structure
and a multi-region style attention module for facial image
harmonization. Moreover, we introduce style mapping nets
to generate multi-modal styles regionally with latent codes
sampled from Gaussian distribution.

Self-Attention. Self-attention is first proposed in the nat-
ural language processing literature by Transformer [42].
Then computer vision researchers extend the idea to video
classification [45] and image generation [49]. Recent works
generalize self-attention to extract the correspondence be-
tween source image and reference image for semantic style
transfer [50, 27] and makeup transfer [19]. However,
the self-attention mechanism computes the correspondence
spatially, making it time-consuming and inefficient. Differ-
ently, our style attention inspired by the above works com-
putes the correlation among semantic regional style vectors,
which ensures its computation efficiency.

Multi-Modal Image Synthesis. BicycleGAN [54] mod-
els a distribution of possible outputs in a conditional gener-
ative modeling setting. To ensure that random sampling can
be used during testing, the model employs KL-divergence
loss to enforce the latent style distribution to be close to
a standard normal distribution. [16, 26] extend the idea
of multi-modal to unsupervised image-to-image translation
and generate diverse images. SPADE [31] uses the same
idea to encode image style for semantic image synthesis.

GroupDNet [56] extends SPADE by using KL loss for all
the semantic labels, thus enabling regional multi-modal
synthesis. Recently, StarGAN-v2 [7] is proposed to learn
a mapping network to achieve diversity, and our style map-
ping model is the same as StarGAN-v2 but with different
training strategy which is more suitable for our framework.

Deep Image Harmonization. Deep convolutional mod-
els have achieved significant success for image harmoniza-
tion in recent years. Zhu et al. [53] train a binary classi-
fier to guide color adjustment for composite images. Then,
an end-to-end deep CNN model is proposed to capture both
the context and semantic information during harmonization.
Cun et al. [46] spatial-separated attention module in order
to learn the feature map in the foreground and background
individually. DoveNet [8] translates the foreground domain
to the background domain by using a domain verification
discriminator and generates impressive results. Since facial
regional style transfer may lead to inharmony, we propose a
multi-region style attention module to adjust the transferred
regional style to other regions. The proposed module is in-
serted in the process of style transfer. Therefore, harmo-
nious images can be directly synthesized without a subse-
quent image harmonization process. Moreover, we use the
method proposed by Zhu et al. [53] to evaluate the level of
harmonization of an image.
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Figure 4. Multi-region style attention module. st denotes target
style vectors of all regions. s′r is the concatenation of styles from
target regions in the reference and styles from the rest regions in
the target. Linear projection metricWv ,Wq andWk are adopted
to produce V , Q and K, respectively. Then, V and Q are used to
yield an attention matrix M . Finally, the multi-region style cor-
rection is calculated by M ∗ V which is applied to s′r .

3. Framework Architecture

Fig. 3 shows the framework of the proposed multi-region
style transfer and multi-modal synthesis method. The inputs
are a target image xt that the user wants to edit with seg-
mentation and a reference style. The reference style can ei-
ther be generated from a reference style image xr with seg-
mentation for style transfer, or directly sampled from a nor-
mal Gaussian distribution for manipulation. In this section,
we start from introducing the regional feature encoding, in-
cluding a multi-scale encoder for input images and regional
style mapping (RSM) subnets for multi-modal style syn-
thesis. We then move on to the multi-region style attention
(MRSA) module followed by a semantic region-adaptive
normalization based decoder. Next, we discuss the super-
vised training strategy and details. Finally, we demonstrate
how to fine-tune a real style code based on normalizing flow
models.

3.1. Regional Feature Encoding

Multi-scale Encoder. The encoder in SEAN employs a
“bottleneck” structure with plain convolutional layers to ex-
tract styles of all facial semantic regions. Since the purpose
of the model is to generate images from the output of en-
coder, the low-level features from shallow layers are im-
portant for image reconstruction. Therefore, we compute
the weighted summation of feature maps from all layers in
encoder, as shown in Fig. 3(a). Concretely, we first re-scale
the feature maps to a unified resolution and get new features
{Fi}Kı=1, where K is the number of shallow layers. Then, a
set of learnable parameters {ai}Ki=1 are defined and we feed

them into a softmax function for normalization as:

{αi}Ki=1 ← softmax({ai}Ki=1). (1)

After that, we get the final multi-scale style feature map,

F =

K∑
i=1

αiFi. (2)

The learned weights {ai}Ki=1 indicate the proportion of each
scale for compositing the feature map F . Given an input
target image xt and a reference image xr with their seg-
mentation masks (mt and mr), we employ the region-wise
average pooling layer [44, 55] to transform Ft and Fr to
initial style vectors st and sr respectively.

Regional Style Mapping. In order to synthesize multi-
modal facial images with random styles, we utilize a series
of regional style mapping sub-networks to learn the distri-
butions of styles from different facial regions respectively.
Facial semantic regions can be divided into several groups
according to their relevance, and one network is respon-
sible for one group. For example, some regions such as
skin and nose that share same color and texture appearance
are strongly correlated, so we should define one network
to model them simultaneously. In practice, we only train
hair and skin network as the area of these regions is large
enough. As the correlations among some regions such as
nose and hair are weak, we use two networks to model them
separately. Fig. 3(c) shows an example of the mapping sub-
network for modeling skin and nose. Given a latent code z
sampled from the Gaussian distribution, a random reference
style can be generated with the mapping networkM,

sr =M(z). (3)

In our method, related regions such as skin and nose or two
eyes share a same mapping network. More details of the
training of RSM are in Sec. 3.4. After that, we can feed sr
into the MRSA module and generator G.

3.2. Multi-region Style Attention

If the global appearances (i.e., lighting conditions) in
xt and xr are quite different, regional style transfer results
probably become inharmonious. However, users prefer to
get a harmonious image directly without a subsequent im-
age harmonization process. To this end, we propose a multi-
region style attention (MRSA) module to learn transferred
styles. Fig. 4 illustrates the workflow of MRSA. Different
from the attention modules in [50] and [27] that extract the
spatial correspondence in pixel space, our MRSA module
computes the relevance of regional semantic styles. In order
to correct the styles of different regions, we first concate-
nate the target components in sr with the rest components



in st to form a new s′r. Then we map the style vectors using
Q = Wq(s

′
r), K = Wk(st) and V = Wv(st), whereWq ,

Wk and Wv are linear mappings. After that, an attention
matrix can be computed by Q ∗K> followed by a softmax
function within each row, i.e.,

M = softmax(Q ∗K>), (4)

where * denotes matrix multiplication. After computing the
attention matrix M , we can get the style correction sc =
M ∗ V . Finally, the target style can be computed by

s′t = s′r + αsc. (5)

3.3. Decoder

Given the style vectors generated by MSRA, the SEAN
generator [55] is used as decoder by feeding them into a se-
mantic region-adaptive normalization (SEAN) module. In
the SEAN normalization, target mask along with style map
generated by broadcasting style vectors to the correspond-
ing regions are used to modulate the activation from previ-
ous layer. The decoder employs several SEAN blocks with
upsampling layers and synthesizes images progressively.

3.4. Model Training

The encoder-decoder part in our model is similar with
SPADE and SEAN. We use three loss functions described
in SPADE and SEAN to train this part: adversarial loss,
feature matching loss and perceptual loss. During training,
if we use the sr extracted from a reference different from
the source image xs, this results in an unsupervised training
as there is no ground truth for the new image. To tackle
this problem, we set xr equal to xs for training. We test the
training strategy by mixing supervised with unsupervised
training, but it fails to generate realistic images. The reason
we suppose is that the unsupervised result would disturb
supervised training pace.

As for style mapping networks {Mj}Mj=1, we turn to the
adversarial loss imposed on ss and sr generated by style
mapping. M is the number of mapping networks. In or-
der to train {Mj}Mj=1, a set of discriminators {Dj}Mj=1 are
employed and the adversarial objectives are as follows:

Lj = min
Mj

max
Dj

E[logDj(ss)] + E[log (1−Dj(Mj(z)))].

(6)
A similar style mapping network has been proposed in
StarGAN-v2 [7] which focuses on unsupervised image-to-
image translation. However, StarGAN-v2 trains it with the
adversarial loss defined on image synthesis. The training
strategy in StarGAN-v2 cannot effectively train our style
mapping networks. The reason is that our encoder-decoder
part is trained in a supervised way, and the encoder will
learn expressive style information. It is more effective to
learn the distributions of encoded styles directly.
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Figure 5. Style fine-tuning in z space and style space. Manipula-
tion in style space will lead to a out-of-manifold result.

3.5. Style Random Fine-tuning

If users are not very satisfied with current style, we also
provide a method for style fine-tuning that users can adjust
to a new style based on the current one. A straightforward
idea for doing this is to sample a random unit vector d as
the tuning direction, then we can move the style code st
forward along d. However, the style distribution in style
space is supported on a low dimensional manifold since the
style code s contains abundant semantic information. As
shown in Fig. 5, fine-tuning in z space is more reasonable
as the support of Gaussian distribution is the whole space.
In order to realize style random fine-tuning in z space, we
train a invertible continuous normalizing flow (CNF) [5,
12] which is utilized in [48] for point cloud generation and
[1] for facial attributes manipulation.

Specifically, we first use the ODE below to get zt corre-
sponding to st,

zt = s(l0) +

∫ l1

l0

f(s(l), l)dl, (7)

where s(l0) = st and l denotes time. Then we fine-tune zt
by z′t = zt + η · d, where η is the step size. After that, a
reverse-time ODE is employed to recover a modified mean-
ingful style code,

s′t = z′(l1) +

∫ l0

l1

f(z′(l), l)dl, (8)

where z′(l1) = zt.

4. Experiments

4.1. Experimental Settings

Datasets. We use three face datasets to evaluate our
framework:

• CelebAMASK-HQ [25] consists of 30, 000 face im-
ages with segmentation masks. Each image is anno-
tated with a semantic mask of 19 semantic categories
in total. We use the first 28, 000 images for training
and the remains for evaluating.



• FFHQ [21] contains 70, 000 high-quality images.
We utilize a deeplab-v3 model [3] trained on
CelebAMASK-HQ to parse the facial semantics. We
employ the first 2, 000 images for evaluation.

• LaPa [28] is a new dataset for face parsing which con-
sists of more than 22, 000 images with large varia-
tions in pose, facial expression and illumination. 11-
category semantic label maps are provided. We dis-
card low-resolution images in the dataset. The final
training set contains 19, 770 faces and testing set con-
tains 1, 930 faces.

Metrics. We employ several commonly used metrics to
evaluate our framework and the competing state-of-the-art
methods. Specifically, FID [15] computes the distance be-
tween the distributions of synthesized images and the dis-
tribution of real images, which is used to evaluate the qual-
ity of synthesized results. We also adopt PSNR, SSIM and
LPIPS [51] to assess the similarity between the synthesized
and the ground-truth image in face reconstruction task. In
order to evaluate the performance of our model for regional
multi-modal synthesis with random styles, we utilize mean
Class-Specific Diversity (mCSD) and mean Other-Classes
Diversity (mOCD) [56]. For a fixed semantic region, mCSD
is used to assess the generation diversity of the region while
mOCD is used to assess the diversity of the rest regions.
Apparently, high mCSD and low mOCD indicate good per-
formance for the fixed region.

In addition to the above metrics, we employ harmony
score (HS) to measure the harmony degree between the
transferred region and the rest for regional style transfer.
The idea of harmony score is the same as realism score
[53] predicted by a binary classifier. Concretely, we train
a convolutional neural network to distinguish real images
from synthetic ones and use the output probability as the
harmony score. The real images are set as positive sam-
ples and the unrealistic composite images are set as negative
samples. We use HAdobe5k [8] to train the classification
network and concatenate one image and the corresponding
foreground mask as an input.

Competing methods. We compare our method with five
leading semantic image synthesis models: pix2pixHD [44],
SPADE [31], GroupDNet [56], SEAN [55] and
CLADE [39]. Specifically, pix2pixHD applies an im-
age feature encoder network and instance-wise pooling to
get image features within each object. Then, the features
and the corresponding mask are feed into a coarse-to-fine
generator to reconstruct the image. Therefore, pix2pixHD
is suitable for regional style transfer. SPADE proposes
the encoder and generator to form a VAE [24] and a new
normalization for the generator, enabling global style

Input pix2pixHD SPADE GroupDNet

SEAN CLADE CLADE-ICPE Ours

Input pix2pixHD SPADE GroupDNet

SEAN CLADE CLADE-ICPE Ours

Figure 6. Results of image reconstruction.

transfer and multi-modal synthesis conditioned on semantic
mask. GroupDNet extends the idea of SPADE by encoding
different semantic regions separately and leveraging group
decreasing generator. GroupDNet can be used for regional
style transfer and multi-modal synthesis. SEAN employs
similar structures of pix2pixHD encoder and SPADE gen-
erator, and it improves the generation quality significantly
with the SEAN normalization. CLADE improves SPADE
based on the observation that its modulation parameters
benefit more from semantic-awareness rather than spatial-
adaptiveness. Tan et al. [39] also introduce CLADE-ICPE
where intra-class positional map encoding are proposed to
improve spatial-adaptiveness.

4.2. Implementation Details

We use the TTUR [15] strategy and set the learning rate
to 0.0001 and 0.0004 for the generator and discriminator,
respectively. Following SPADE and SEAN, we apply Spec-
tral Norm [30] to the encoder. Moreover, we use the ADAM
solver [23] with β1 = 0.5 and β2 = 0.999 to optimize
the model. For style mapping, we set the learning rate to
0.0002 for both mapping networks and discriminators. For
both training and evaluation, the input images are resized to
a fixed resolution of 256 × 256.



Table 1. The results of facial image reconstruction. For PSNR and SSIM, the higher the better. For LPIPS and FID, the lower the better.
CelebAMASK-HQ FFHQ LaPa

PSNR↑ SSIM↑ LPIPS↓ FID↓ PSNR↑ SSIM↑ LPIPS↓ FID↓ PSNR↑ SSIM↑ LPIPS↓ FID↓
pix2pixHD [44] 17.32 0.5387 0.2117 21.68 16.08 0.5200 0.2506 45.55 13.16 0.4387 0.3817 68.87
SPADE [31] 16.87 0.5142 0.2462 25.46 15.82 0.4894 0.2923 53.10 14.82 0.4607 0.3927 89.96
GroupDNet [56] 16.40 0.5184 0.2526 38.87 15.27 0.4913 0.2981 71.83 14.22 0.4454 0.3928 93.35
SEAN [55] 18.55 0.5741 0.1749 17.12 17.23 0.5368 0.2099 34.29 14.72 0.4841 0.3281 47.94
CLADE [39] 16.18 0.4863 0.2518 24.47 15.16 0.4653 0.2952 57.45 14.67 0.4681 0.4012 76.58
CLADE-ICPE [39] 16.57 0.4997 0.2507 23.75 15.57 0.4794 0.2967 56.46 14.07 0.4495 0.3925 85.93
Ours 18.60 0.5787 0.1702 15.26 17.41 0.5510 0.2020 32.84 14.75 0.4891 0.3295 46.62

Table 2. The FID↓ results of skin and hair transfer.
CelebAMASK-HQ FFHQ LaPa
skin hair skin hair skin hair

pix2pixHD 26.39 26.58 57.13 56.44 85.49 84.72
GroupDNet 45.65 44.09 77.89 78.20 104.52 104.02
SEAN 24.04 24.59 44.84 43.64 61.19 60.68
SEAN+DoveNet 29.62 24.67 52.96 44.32 65.70 63.46
Ours 22.65 22.97 42.82 41.85 60.14 58.85

4.3. Global Reconstruction

We first evaluate the effectiveness of the proposed multi-
region style control and manipulation network in image re-
construction task, namely transferring the own style to it-
self. Only one image is employed as input. Visual com-
parisons are shown in Fig. 6. Overall, pix2pixHD and
groupDNet cannot maintain the skin color well. Compared
with SEAN, our method can reconstruct more facial de-
tails of the input, e.g. the wrinkles on the left side of the
woman’s face and the left eye under sunglasses of the man.
In terms of quantitative evaluation, as shown in Table 1, our
model outperforms other SOTA methods on all datasets. It
is worth mentioning that although MRSA is designed for
style transfer and manipulation, it exhibits the best recon-
struction quality (i.e., the lowest FID) on all datasets.

4.4. Regional Style Transfer

We further evaluate the effectiveness of the proposed ap-
proach in regional style transfer task. One target image and
one reference image are employed as inputs. We split all
testing datasets into two parts: one half as target images and
the other half as reference images. SPADE is not selected
for comparison since it does not support region style trans-
fer. Fig. 7 (a) shows the quantitative results. We use FID
measured on the whole image as the metric in two trans-
fer tasks: skin (with nose) transfer and hair transfer. The
quantitative results are shown in Table 2. In terms of FID,
our model with style attention achieves the lowest values,
indicating that it synthesizes human faces with the highest
quality.

Transfer Cross dataset. Most images in CelebAMask-
HQ [25] and FFHQ [21] are captured in good lighting con-
ditions. Regional style transfer among these images can

barely lead to inharmony. However, LaPa [28] consists of
facial images with abundant variations in lighting condi-
tions. Therefore, we transfer skin (with nose) and hair of fa-
cial images in the test sets of CelebAMask-HQ, FFHQ and
LaPa to the test set of LaPa separately, and calculate FID
and HS of synthesized faces shown in Table 3. According
to the quantitative results, our method and SEAN [55] per-
form much better than pix2pixHD [44] and GroupDNet [56]
in terms of FID, corresponding to higher image quality. We
can draw the same conclusion from additional visual re-
sults in Fig. 7. HS reflects the harmony degree between
the transferred region and the rest regions. Our method ex-
hibits obviously higher harmony score than SEAN, show-
ing the effectiveness of MRSA. However, pix2pixHD and
GroupDNet reach higher harmony score than our model.
As shown in Fig. 7, although the results of pix2pixHD and
GroupDNet are harmonious, the two methods fail to recon-
struct the transferred styles and the rest regions expected
to keep their appearance change severely. In summary, our
model is the best trade-off considering image quality and
harmony degree.

We can see that the area outside of the region of interest
is also changed a lot especially the background in Figure 7
(b). This is because the background contains rich diversity
and the 512-dimensional (following SEAN) style code can-
not reconstruct background accurately. It is not the trans-
ferred region that affects the background.

User Study. We conduct user studies to further com-
pare the visual performance of ours and the SOAT meth-
ods aforementioned. Firstly, we show the participants each
target-reference pair and tell them which region in the tar-
get image we want to edit. Then we show them four results,
one is by our method and the others are from pix2pixHD,
GroupDNet and SEAN. Each subject are assigned with 30
group results. We receive 59 responses, among which 47 re-
sponses are valid. A total of 1, 410 votes are obtained. Our
model has 627 (44.45%) votes, SEAN has 410 (29.07%)
votes, GroupDNet has 265 (18.78%) votes, and Pix2Pix has
108 (7.66%) votes.



Target Reference pix2pixHD GroupDNet SEAN Ours

(a)

(b)

(c)

Target Reference pix2pixHD GroupDNet SEAN OursSEAN+DoveNet

Figure 7. Results of regional style transfer (segmentation mask shown as small inset). Target and reference images in (a) are from the
same dataset. (b) shows results of cross dataset transfer. We can see that our model generates more harmonious results than DoveNet [8]
performed on the outputs of SEAN [55].

Table 3. Results (PSNR↓/HS↑) for regional style transfer cross dataset. Although pix2pixHD and GroupDNet perform higher HS than
ours, the two methods achieve harmony by modifying other regions severely (Fig. 7). This is contradictory to regional style transfer.

CelebAMASK-HQ→LaPa FFHQ→LaPa LaPa→LaPa
skin hair skin hair skin hair

pix2pixHD [44] 73.62/0.7923 73.80/0.8075 77.36/0.8538 73.98/0.8137 85.49/0.8314 84.72/0.8035
GroupDNet [56] 96.20/0.8965 93.36/0.8752 94.78/0.9131 93.34/0.8753 104.52/0.9093 104.02/0.8736
SEAN [55] 48.25/0.7420 48.43/0.6940 48.17/0.7105 48.62/0.7164 61.19/0.7396 60.68/0.6996
Ours w/o softmax 52.98/0.8071 54.90/0.7353 53.10/0.8100 54.68/0.7495 66.67/0.8003 65.25/0.7348
Ours w/o SA 48.06/0.7749 47.72/0.7130 47.84/0.7598 48.39/0.7310 61.43/0.7872 59.99/0.6964
Ours 47.46/0.8490 47.05/0.7742 46.71/0.8341 47.36/0.7854 60.14/0.8537 58.85/0.7566

4.5. Comparison to DoveNet

Since our work is related to image harmonization, we
utilize a recent deep harmonization model DoveNet [8] to
harmonize the outputs of SEAN for comparison. As shown
in Table 2, DoveNet has adverse effect on image synthesis
quality as DoveNet gets higher FID scores than SEAN. For
image harmonization shown in Fig. 7 (b), DoveNet indeed

harmonize the output of SEAN, but it has limited effect.
Since DoveNet is a subsequent and independent process and
the reference is invisible to it, DoveNet changes the origi-
nal tone from reference during harmonization. More im-
portantly, a separate harmonization process will take extra
time.
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Figure 8. Skin multi-modal synthesis.

4.6. Regional Multi-modal Manipulation

We then evaluate the effectiveness of the proposed ap-
proach in regional multi-modal manipulation task. One tar-
get image and one vector sampled from a normal Gaus-
sian distribution are employed as inputs. SPADE [31],
GroupDNet [56], CLADE [39] and CLADE-ICPE [39]
are selected for multi-modal synthesis. SPADE and
CLADE are proposed for global multi-modal synthesis
while GroupDNet is for regional multi-modal synthesis.
Fig. 8 shows the manipulation of skin, GroupDNet affects

hair more significantly than ours when doing skin multi-
modal synthesis. We further conduct qualitative experi-
ments on manipulation of skin and hair regions. Table 4 re-
ports the FID, mCSD and mOCD calculated over the three
different datasets. In terms of image quality, our method
outperforms other methods by a large margin on all the
datasets. In terms of diversity (mCSD), SPADE, CLADE,
CLADE-ICPE and our method are in the same level. But
SPADE, CLADE and CLADE-ICPE fail to preserve the ap-
pearance of other regions (higher mOCD), as they are de-
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Figure 9. Two examples of style random fine-tuning for skin both in z and style spaces. Tuning in z space can achieve the goal of convincing
style fine-tuning, such as gradually changing skin color and adding wrinkles.

Table 4. Regional multi-modal synthesis.
SPADE GroupDNet CLADE CLADE-ICPE Ours w/ CNF Ours

CelebA
MASK-HQ

Skin
FID↓ 21.09 39.72 21.39 19.40 12.21 12.67

mCSD↑ 0.0354 0.0321 0.0437 0.0416 0.0408 0.0395
mOCD↓ 0.2126 0.1280 0.2561 0.2382 0.0721 0.0752

Hair
FID↓ 21.12 50.43 21.42 19.39 12.84 12.55

mCSD↑ 0.1848 0.0001 0.1855 0.1954 0.2323 0.2078
mOCD↓ 0.1230 0.0000 0.1203 0.1417 0.0585 0.0505

FFHQ

Skin
FID↓ 51.38 72.34 55.38 52.24 30.57 31.43

mCSD↑ 0.0392 0.0360 0.0395 0.0393 0.0458 0.0413
mOCD↓ 0.2020 0.0820 0.2097 0.2278 0.0285 0.0279

Hair
FID↓ 51.36 81.71 55.32 52.28 28.45 28.45

mCSD↑ 0.0723 0.0000 0.1167 0.1533 0.0826 0.0875
mOCD↓ 0.1920 0.0000 0.1757 0.1797 0.0157 0.0150

LaPa

Skin
FID↓ 74.61 96.75 53.83 60.29 40.54 40.47

mCSD↑ 0.0455 0.0446 0.0462 0.0466 0.0685 0.0600
mOCD↓ 0.3005 0.1657 0.3375 0.3201 0.1185 0.1071

Hair
FID↓ 74.68 150.46 53.76 60.21 41.11 41.26

mCSD↑ 0.0512 0.0047 0.0884 0.0957 0.1076 0.0958
mOCD↓ 0.3080 0.0000 0.3299 0.3405 0.1238 0.1004

signed for global synthesis. For skin multi-modal synthe-
sis, our method presents higher mCSD and lower mOCD
than GroupDNet, even though it extends SPADE to regional
style synthesis. That is to say, our method is better at main-

taining the appearance of the rest regions while achieving
high color and texture diversity of skin synthesis. For hair
multi-modal synthesis, GroupDNet generates facial images
with low diversity since mCSD and mOCD of GroupDNet



Table 5. Results (FID↓) for ablation study of RSM.
SEAN+

GroupDNet
SEAN+

StarGAN-v2
SEAN+

Our RSM Ours

CelebA
MASK-HQ

Skin 25.32 27.19 14.53 12.67
Hair 28.82 20.05 14.56 12.55

FFHQ Skin 55.02 40.88 32.06 31.43
Hair 58.07 33.57 30.27 28.45

LaPa Skin 84.72 105.30 41.93 40.47
Hair 87.29 90.75 43.30 41.27

Input Hair Face

Target Input Output

(a)

(b)

Figure 10. Applications (zoom in for details). (a) Shape editing.
(b) Color editing (hair/lips).

are both close to zero. For all the multi-modal synthesis
experiments, we manipulate each image using 10 random
styles.

4.7. Style Fine-tuning

First, we evaluate the style synthesis quality of CNF
model. As shown in Table 4, CNF performs closely to GAN
on style multi-modal synthesis. Although our CNF model
can be used for regional multi-modal synthesis, we only rec-
ommend it for style fine-tuning since the CNF runs much
slower than a GAN model. In practical, our model with
CNF takes 0.2s to generate a style code while our GAN
mapping network takes 6e-4s on a single RTX3090.

Second, we validate the analysis in Section 3.5 by show-

ing examples of style random fine-tuning both on z space
and style space. Concretely, Fig. 9 demonstrates that the
skin tuning results in z space are much better than in style
space. Small step tuning in style space hardly affects the
style of target image while larger step tuning fails to gen-
erate clear results. Recall that skin style code consists of
codes of two parts, tuning skin style code will lead to devi-
ation from the manifold. Thus, the nose presents different
style from face skin even if the step size η is small. We
can get the same conclusion on hair style fine-tuning. More
results are shown in supplementary file.

4.8. Ablation Study

Ablation of MRSA. To validate the effects of the softmax
function and MRSA module in the encoder, we conduct
ablation experiments by not using them in the framework.
“Ours w/o softmax” means we do not use softmax normal-
ization and MRSA and “Ours w/o SA” means we do not use
MRSA in our framework. Results of cross-dataset regional
style transfer in Table 3 indicate that softmax normalization
and MRSA improves image quality and harmony degree,
respectively.

Ablation of RSM. To validate the effects of the RSM
module, we conduct ablation experiments by combining the
encoders and training strategies used in GroupDNet [56],
StarGAN-v2 [7] and ours with the SEAN generator, re-
spectively. We can get three variations for compari-
sions, i.e., “SEAN+GroupDNet”, “SEAN+StarGAN-v2”
and “SEAN+Our RSM”. Table 5 illustrates FID of skin and
hair multi-modal synthesis on all the datasets. “SEAN+Our
RSM” method performs much better than the two variations
in terms of image quality. Our RSM uses similar mapping
network as StarGAN-v2 but different training strategy. If
we use the training strategy in StarGAN-v2, the generator
would be trained in an unsupervised way. However, our
encoder-decoder part is trained in a supervised manner and
the mapping network shares the same generator with the en-
coder. Thus, different objectives would misguide the gener-
ator. Visual comparisons can be found in Fig. 8.

5. Applications

Our framework can enable various applications in fa-
cial image synthesis. Sections 4.4 and 4.6 demonstrate the
effectiveness of regional style transfer cross facial images
and multi-modal synthesis with random styles, respectively.
We now introduce other two applications of interactive face
editing.

Shape editing. Our framework allows users to edit the
shape of facial components directly on segmentation mask
to manipulate face interactively. Fig. 10 (a) shows an exam-
ple of hair and face shape editing.



Color editing. By drawing simple color strokes on facial
components, our method enables color editing on facial se-
mantic regions. The two rows in Fig. 10 (b) demonstrate
hair and lips color editing, respectively.

6. Conclusion

In this paper, we focus on the harmonized region style
editing for facial images. The proposed framework follows
the encoding-fusion-decoding fashion. For the encoder, we
employ a multi-scale structure in order to extract regional
styles more effectively. Then a multi-region style attention
(MRSA) module is proposed for harmonious regional style
transfer, especially when the target and reference face im-
ages are with different lighting conditions. For the sake of
regional multi-modal synthesis, we introduce the regional
style mapping (RSM) net to map random noise to styles.

Although our model can generate high quality regional
multi-modal results with random styles, the styles of spe-
cific region are still in weak control condition. The regional
style transfer is the only way to provide strong control in-
formation. If we want to randomly synthesize regions with
specified appearance, our model, SPADE and GroupDNet
will be helpless. This problem remains to be resolved and it
will be our future work.
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