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Abstract

This paper presents a novel deep neural network for
designated point tracking (DPT) in a monocular RGB
video. More concretely, the aim is to track four des-
ignated points correlated by a local homography on a
textureless planar region in the scene. DPT can be ap-
plied to augmented reality and video editing, especially
in the field of video advertising. Existing methods pre-
dict the location of four designated points without ap-
propriately considering the point correlation. To solve
this problem, our network predicts the motion of the
four designated points correlated by a local homogra-
phy within the heatmap prediction framework. Our net-
work refines the heatmaps of designated points through
two stages. On the first stage, we introduce a context-
aware and location-aware network to learn a local ho-
mography for the designated plane in a supervised way.
On the second stage, we further introduce an iterative
heatmap refinement module to improve the tracking ac-
curacy. We propose the DPT dataset focusing on tex-
tureless planar regions, named ScanDPT, for training
and evaluation. We show that our algorithm outper-
forms the state-of-the-art approaches on ScanDPT.

1. Introduction

Tracking is a widely studied topic for video understand-
ing and editing. In general, tracking algorithm could be
categorized into two types: object-level tracking and pixel-
level tracking. Object tracking aims to locate the important
object in each video frame, usually providing a bounding
box, while pixel-level tracking, known as optical-flow esti-
mation, aims to find pixel correspondence between current
frame and the next one.

In this work, we investigate a different problem, called
designated point tracking (DPT). This problem is depicted
in Figure 1. In video editing, people often need to mod-
ify a rectangular region on a textureless plane, for example,
putting a poster on the wall. Obviously, tracking the pla-
nar region is equivalent to tracking the four corner points.
Given the initial state (four corner points on a target rect-

Figure 1. Task Explanation. Designated point tracking (DPT)
takes as input four corner points of the first frame like (A) and
a video sequence like (B). It outputs four target corner points in
the subsequent frames. Finally a prepared image like (C) can be
inserted into the video sequence with the assistance of the local ho-
mography between four estimated designated points in each frame
and the image corner points of the prepared image. (D) is the com-
position result.

angle) in the first frame of a video sequence, the aim of
DPT is to automatically obtain the states of the four target
corner points in the subsequent frames. Designated point
tracking is of great value in the field of augmented reality
and video editing. We can map a prepared image to the des-
ignated region on each frame to obtain a new video. This
problem has two major characteristics. Firstly, the four des-
ignated points are on the same plane of a complex scene. In
other words, they are correlated by a local homography be-
tween frames. Secondly, different from planar object track-
ing, four designated points are usually on the background
where few features inside the four designated points could
be extracted for tracking. Compared to textured planar ob-
ject, textureless background regions, e.g. walls and doors,
are more common in general videos.

It is nontrivial to predict the motion of the four desig-
nated points correlated by a local homography on texture-
less background regions with existing methods. If we use
optical flow methods [44, 7, 18, 29, 51, 55, 65, 57], the
motion of four designated points are predicted individu-
ally without considering the correlation. Object tracking
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Figure 2. The overall network structure. The context encoder encodes contextual information with the input of a video sequence. The
location encoder encodes the spatial information from heatmap proposals. The location features and contextual features are fused in a
multi-scale way. Then the fused features are decoded into a latent hidden state h0 and intermediate heatmaps Ĥ0

t . The predicted heatmaps
and the latent hidden state are jointly refined to produce better heatmaps ĤN

t in the proposed iterative heatmap refinement module (IHRM)
after N iterations.

methods are inappropriate for tracking background points
as they are generally designed to track foreground ob-
jects such as pedestrians, animals, bikes, vehicles and so
on [4, 41, 52, 3, 27, 50, 35, 34, 25, 24, 11, 58]. Those
objects being tracked have more discriminative features
than the background rectangle defined by the designated
points. Homography estimation methods consider the prior
that four designated points are on the same plane visu-
ally [40, 17, 43, 54, 30, 19, 20, 6, 9, 8]. However, inside
the region of four designated points, few features can be
detected. Under these circumstances, template-based ho-
mography estimation methods are unable to get a reason-
able local homography. With the input of full images, these
methods extract and match features in two frames, and then
a global homography is estimated by using almost all the
matched features after removing outliers. When a local ho-
mography is needed for a designated plane, it is nontrivial to
select the relevant features for the designated planar region
using existing methods. If we directly apply a plane detec-
tion method like [39, 38, 31] to filter feature points with the
plane mask, we may neglect important feature points on the
edges of the plane. Besides, these plane detection methods
are not robust to small planar region.Without enough ap-
propriate corresponding features relevant to the designated
plane, the estimated homography matrix deviates from the
actual one.

We adopt 4-point parameterization [16] to represent ho-
mography. Different from HomographyNet [16], the four
points in our methods are user-specified and can be placed
on any plane in a complex scene while four points in Ho-
mographyNet are the first input image corner points by de-
fault. As the template has few features, we have to input

the full image with the contextual information as the ref-
erence. HomographyNet tends to predict a global homog-
raphy by predicting image corner points. In contrast, our
network is dedicated to predict a local homography for a
designated plane with the input of full image and four des-
ignated points.

In detail, we use state-of-the-art optical flow method
RAFT [57] to calculate coarse-grained location individu-
ally for each point in the next frame. We adopt heatmaps
to represent the locations of designated points and try to op-
timize them through a two-stage network. The first stage
contains two encoder branches (location encoder and con-
text encoder) and one decoder, and the second stage con-
tains an iterative heatmap refinement module (IHRM). We
improve the result of RAFT with a local homography con-
straint in a supervised way. On the first stage of our net-
work, the designated plane in each frame is emphasized by
explicitly feeding four coarse-grained points into our net-
work for each frame. In addition, the location of each point
is refined by aggregating the spatial information of other
three points. And according to the setting of 4-point pa-
rameterization, our network learns a local homography for
the designated plane by jointly supervising the locations of
the four designated points. Besides, we leverage a context
encoder to complement the features of surrounding edges
besides the inner region of four designated points, which
benefits a lot especially when features are rare inside the
designated plane. Due to the dual-encoder structure and the
local homography supervision, our network can get fine-
grained predictions. On the second stage, inspired by the
success of iterative methods in other fields [57, 32], we pro-
pose to utilize a iterative heatmap refinement module to re-



fine the locations of four designated points and the latent
hidden state repeatedly. In each iteration, the predictions are
constrained by the local homography of designated points,
which is the same as that on the first stage. After several it-
erations and intermediate supervision, we can get more ac-
curate fine-grained predictions.

Existing planar object tracking benchmark datasets [37,
53, 22, 36, 9] focus on textured objects. Instead, we con-
structed a video dataset (ScanDPT) based on ScanNet [13]
mainly for textureless background regions.

Our contributions can be summarized as follows. 1) We
propose a context-aware and location-aware network which
predicts a local homography for a textureless plane in a su-
pervised way. 2) We propose an iterative heatmap refine-
ment module to further improve the tracking accuracy. 3)
We construct the first dataset mainly for textureless planar
background regions named ScanDPT, on which our network
makes significant improvements over the current state-of-
the-art methods.

2. Related Work

We firstly review a potential approach, 3D reconstruc-
tion, for the DPT task. And then we review three relevant
types of 2D approaches, including homography estimation,
object tracking and optical flow estimation.

2.1. 3D reconstruction

Some methods like [47, 59, 14, 49] can well reconstruct
3D scenes for RGB-D cameras since both depths and cam-
era parameters are provided. 3D objects or 2D objects can
be inserted into these scenes and keep relatively static in the
video. Some other methods utilize additional sensors like
inertial measurement unit (IMU) to support the reconstruc-
tion [46]. Without any other sensor, some researchers use
structure from motion (SFM) or visual simultaneous local-
ization and mapping (vSLAM) methods to estimate camera
poses, and then estimate dense depth maps with deep neu-
ral networks. And finally these depths are fused to generate
surface mesh [61, 64]. However, these methods still need
camera intrinsic matrices obtained by calibration to assist
the calculation of re-projection errors. A group of people
like [63] utilize other SFM methods such as OpenSfM [1]
to estimate both camera intrinsic and extrinsic matrices.
Nevertheless, the reconstructed scene is unreliable without
enough different views. We assume that designated point
tracking (DPT) is a task constrained in monocular RGB
videos without given camera parameters. And for these
methods in 3D reconstruction, most of cases encountered in
DPT do not provide enough different views to reconstruct a
proper 3D geometry and estimate accurate camera parame-
ters.

2.2. General Object Tracking

General object tracking methods include statistical learn-
ing [4], subspace learning [52], template matching [41], dis-
criminative correlation filters [27], particle filters [3] and
deep neural networks [50, 35, 34, 25, 24, 11, 58]. These ob-
ject tracking methods are inappropriate for the designated
point tracking (DPT) task. They solely predict one coarse
rectangular bounding box for one object, not for a single
point. Besides, the aim of the DPT task is to track four
designated points on the background while object tracking
methods are designed to track a foreground object, such as
pedestrians, animals, vehicles, etc. In practice, large track-
ing drifts often occur when object tracking methods are ap-
plied to background points.

2.3. Optical Flow Estimation

Traditional optical flow estimation method like [28] for-
mulates dense pixel tracking as an energy minimization
problem based on the prior of spatial smoothness and
brightness constancy. To solve large displacements bet-
ter, the coarse-to-fine strategy is widely used [7]. Some
later works propose to match features using CNN [60].
FlowNet [18] is the first end-to-end optical flow estima-
tion network and is trained on a synthetic dataset. Af-
terwards, many follow-up works improve the initial net-
work [29, 51, 55, 65]. Recently, RAFT [57] has achieved
state-of-the-art accuracy as it maintains and updates a sin-
gle fixed flow field at high resolution with a recurrent and
lightweight updating operator. As for the designated point
tracking (DPT) task, optical flow methods estimate four
designated points individually without considering the cor-
relation of a local homography, so the trajectories of the four
points could deviate, leading to the deformation of rectan-
gular region defined by them. We use the optical flow pre-
diction to initialize the heatmap for designated points and
improve it through our network.

2.4. Homography Estimation

Homography estimation is of great importance in com-
puter vision. A homography is a 3×3 matrix that relates two
images of a planar scene. It consists of 8 degrees of freedom
(DOF), with 2 parameters for scale, translation, rotation
and perspective respectively [2]. Feature-based methods
detect feature points, such as SIFT [40], SuperPoint [17]
and ASLFeat [43]. They match the corresponding feature
points with Nearest Neighbor (NN) search [45] or a learned
matcher like SuperGlue [54]. Some methods like DFM [19]
and COTR [30] refine the feature extraction and matching
jointly. A robust homography estimation algorithm like
RANSAC [21] and MAGSAC [5] is often used to reject
outliers. Seminal Lucas-Kanade algorithm [42] updates ho-
mography and guides the shift of the image by calculating
the sum of squared differences (SSD) between template and



the target image. To improve the accuracy, robust enhanced
correlation coefficient (ECC) is used to replace SSD [20].
More later works like ESM [6], GO-ESM [9] and GOP-
ESM [8] improve the initial template-based methods. Some
deep-learning methods predict homography in an end-to-
end way. HomographyNet [16] is an end-to-end network
to estimate the homography between image pairs using the
4-point parameterization. An unsupervised deep learning
algorithm [48] is proposed to estimate homography by min-
imizing a pixel-wise photometric error. Besides, a content-
aware robust network structure with a triplet loss improves
the initial idea by predicting a mask highlighting the aligned
inliers [62].

These homography estimation algorithms are not de-
signed to predict the homography for a textureless plane.
They assume that the inner region of the template has rich
textures and thus they can use only the template as the ref-
erence. On the other hand, when inputting the full image
to previous algorithms as the reference, they generally pre-
dict a global homography. Moreover, it is nontrivial and
infeasible to select features relevant to the designated plane
with plane detection algorithms since the plane mask pre-
dicted by these plane detection algorithms cannot include
all edges relevant to the plane. These plane detection al-
gorithms might fail to detect the designated plane when it
occupies a very small region. Consequently, the estimated
homography deviates from the actual one without enough
corresponding features relevant to the designated plane. In
contrast, our method is dedicated to predict the local ho-
mography for a textureless plane by explicitly feeding the
four designated points and full images into our network and
the output locations of the four points are jointly supervised
during training.

3. Proposed Method

3.1. Input Preparation and Overview

It is nontrivial to directly estimate the locations of the
designated points in the subsequent frames by deep neu-
ral networks. Empirically, it is uneasy for the network to
search the optimal location in a large image domain without
given location proposals. Therefore, we adopt the current
state-of-the-art optical flow method RAFT [57] to estimate
the target points’ location proposals of subsequent frames.
We generate heatmaps with 2D Gaussian filter centered on
the locations of the proposal points, i.e., current coordinate
(x, y) plus the motion vector (u(x, y), v(x, y)), and feed
them into our network.

Optical flow includes the displacement of every pixel be-
tween two neighboring frames. Since the DPT task requires
sub-pixel level accuracy, i.e., float value coordinates, we use
bilinear interpolation to calculate the displacements u(x, y)
and v(x, y) from the four neighboring pixels of (x, y). Be-

sides, previous template-based methods which use the tem-
plate as the reference are unable to handle textureless pla-
nar regions. Consequently, full images are fed into our net-
work to leverage the contextual hints such as the outer edges
of textureless planar regions. Besides, to learn a local ho-
mography for a designated plane the locations of designated
points are embedded

The overall network structure is illustrated in Figure 2.
The network includes two encoders, a heatmap decoder
and an iterative heatmap refinement module. The input
heatmap is refined through two stages: an context-aware
and location-aware structure as well as an iterative heatmap
refinement module (IHRM). We calculate the point coordi-
nates from predicted heatmap using integral regression.

3.2. Stage 1: Context-aware and Location-aware Refine-
ment

On the first stage, we adopt an dual-encoder network to
improve the accuracy of heatmaps. This model receives
a video frame sequence {It−32, It−24..., It}, aflow-to-
heatmap proposals {H̃t−24, H̃t−16, ..., H̃t} and estimated
locations of the (t − 32)-th frame Ĥt−32. It predicts the
refined heatmaps of current frame Ĥ0

t . These flow-to-
heatmap proposals {H̃t−24, H̃t−16, ..., H̃t} are calculated
from Ĥt−32 frame by frame according to the state-of-the-
art optical flow method RAFT.

The dual-encoder structure we proposed is composed of
a context encoder and a location encoder. The context en-
coder is designed to extract contextual information from a
large receptive field because features are usually rare inside
the designated rectangular area. We utilize the backbone of
ResNet-50 [26] as the context encoder. This encoder only
processes the video frames. The feature maps of three dif-
ferent levels from the first convolution, layer 1 and layer 4,
with 1/2, 1/4 and 1/8 resolution of the input image respec-
tively, are selected for later processing. The highest level
feature map from layer 4 is then processed by an ASPP
block proposed in DeepLab [10]. These feature maps are
denoted by fk

in, k = 1, 2, 3 respectively.
The video frames {It−32, ..., It} and prior heatmaps

{Ĥt−32, ..., H̃t} are embedded as feature priors by our lo-
cation encoder. We emphasize the designated plane in each
frame by explicitly inputting four coarse-grained points into
our network for each frame. The location of each point is
refined by aggregating the spatial information of other three
points. Parameter maps wk and bk in three different lev-
els are predicted for each corresponding feature layer of the
context encoder. To spread further the prior location infor-
mation, dilated convolution is utilized to expand the recep-
tive field with stride = 2. We fuse contextual features
and prior location features by applying element-wise linear
transform to feature maps at each level:

fk
out = fk

in · wk + bk, k = 1, 2, 3. (1)



A low level of feature map denoted as f0
out is extracted

using a single convolution layer from the video sequence
and prior heatmaps. The feature maps f0

out maintain the
same resolution as the input. Then the feature maps f0,1,2,3

out

are decoded into the latent hidden state h0. Skip connec-
tion is used in the decoder to exploit different feature layers.
Higher level features are fused and upsampled first and then
concatenated with lower level features. The predicted latent
hidden state also has the same resolution as the input. Then
the latent hidden state h0 is used to regress the intermediate
heatmaps Ĥ0

t with a single convolution layer. The detailed
structures of our location encoder and decoder are listed in
the supplementary.

3.3. Stage 2: Iterative Heatmap Refinement Module

Figure 3. An updating block inside IHRM.

Inspired by the success of iterative refinement methods
in other fields [57, 32], we propose the iterative heatmap
refinement module as shown in Figure 3. We use intermedi-
ate heatmaps Ĥ0

t to update the latent hidden state by explic-
itly enhancing the location information of the current frame.
Then the updated latent hidden state can be used to predict
more accurate heatmaps constrained by the intermediate su-
pervision of the local homography.

A sequence of heatmaps {Ĥ1
t , ..., Ĥ

N
t } are estimated

from intermediate heatmaps Ĥ0
t . In each iteration, the mod-

ule predicts residuals ∆Hk
t which is added to the previous

estimation: Ĥk
t = ∆Hk

t + Ĥk−1
t . An update block inside

IHRM takes heatmaps Ĥk−1
t and a latent hidden state hk−1

as input, and outputs four updated heatmaps Ĥk
t and an up-

dated latent hidden state hk.
The core part of IHRM is a gated recurrent unit

(GRU) [12] with fully connected layers replaced by con-
volutions:

zk = σ(Conv3×3([h
k−1, Ĥk−1

t ]),Wz), (2)

rk = σ(Conv3×3([h
k−1, Ĥk−1

t ]),Wr), (3)

h̃k = tanh(Conv3×3([r
k ⊙ hk−1, Ĥk−1

t ]),Wh), (4)

hk = (1− zk)⊙ hk−1 + zk ⊙ h̃k. (5)

3.4. Supervision of Local Homography

The four designated points represented by heatmaps are
jointly supervised. In other words, our network is super-

vised by a local homography for a designated plane accord-
ing to the concept of 4-point parameterization. After our
network outputs refined heatmaps, we need to acquire lo-
cations at sub-pixel level according to the heatmaps. Here
we obtain the sub-pixel level locations using integral regres-
sion [56].

Firstly, we use softmax function to normalize the
heatmap. For each pixel p, we define

H̃i(p) =
eHi(p)∑
q∈Ω eHi(q)

(6)

where Hi is the i-th output heatmap and q is a pixel in the
image domain Ω.

Then, we compute the weighted average to estimate the
i-th sub-pixel level location Pi:

Pi =
∑
p∈Ω

p · H̃i(p), i = 0, 1, 2, 3 (7)

We measure the difference between network prediction
and ground-truth position with smooth L1 loss [23]. Be-
sides, with to handle multiple outputs in IHRM, we adopt
exponentially increasing weights. The total loss is defined
as

Ltotal =

N∑
k=0

γN−kSmoothL1(P k, Pgt) (8)

where P k are the predicted points of k-th iteration in IHRM
and Pgt are their corresponding ground-truth coordinates.
We set N = 7 and γ = 0.8 in our experiments.

3.5. ScanDPT Dataset

Training deep neural networks requires a large amount of
data. To meet this requirement, we generated a large num-
ber of labeled training examples based on ScanNet [13], a
large-scale RGB-D video dataset. We did not directly la-
bel the ground-truth designated points by hand on every
frame, because it is error-prone and takes too much time.
Instead, we labeled the four designated points in the 3D
scenes reconstructed by BundleFusion [14]. For each video,
we chose a textureless planar region in the corresponding
3D scene and then recorded four corner points of an ap-
proximate rectangle denoted as V on the plane:

V =
(
V 1, V 2, V 3, V 4

)
. (9)

Then we projected the points to the image plane and ob-
tain the corresponding coordinates P :

P = Mint ×Mext × V (10)

We represent the points V and P in the homogeneous
coordinate system, while Mint and Mext represent cam-
era intrinsics and extrinsics respectively, which have been



Figure 4. Example frames from ScanDPT dataset. The four corner points of blue quadrangles in each frame are the ground truth.

provided in ScanNet. We convert the coordinates into 2D
form and obtain the ground-truth location of four designated
points.

We played the labeled video and chose appropriate clips
including the labeled areas by manually labeling the start
time when the designated plane appears and the end time
when the plane disappears.

The final dataset (ScanDPT) is composed of 225 videos,
which are split into 161 training videos and 64 test videos.
Some examples in our dataset are shown in Figure 4. More
details of the dataset ScanDPT can be seen in the supple-
mentary.

4. Experiments

4.1. Implementation Details

To train our network, we resized the video frame to a
resolution of 320 × 240 for efficiency. The ResNet-50
backbone in the context encoder was pre-trained on Ima-
geNet [15] and fine-tuned during the training process. We
adopted ADAM [33] optimizer with β1 = 0.9 and β2 =
0.999. The batch size was set to 16. The initial learning
rate was set to 2e-5, and multiplied by 0.5 every 5 epochs.
We terminated the training process of our network at the 20-

th epoch. The whole training process took about 24 hours
on four TITAN RTX graphics cards.

We utilize the fMSE metric to evaluate various methods
on the DPT task. This metric is used to evaluate the aver-
age performances of various algorithms in each video. It is
defined as follows:

fMSE =
1

f

f∑
j=0

∑3
i=0(xi − xgt

i )2 + (yi − ygti )2

4
(11)

where f denotes the number of frames in each video. Then,
we calculate the mean value of fMSE for all videos.

4.2. Comparison With Existing Methods

We compared our method with other existing methods
including optical-flow-based methods, homography-based
methods and object-tracking-based methods on the Scan-
DPT dataset.

Optical-flow-based methods: We compared our al-
gorithm with several optical flow methods, including
FlowNet2.0, SPyNet, PWCNet, MaskFlownet and the state-
of-the-art network RAFT. As dense optical flow methods
calculate pixel-level displacements, bilinear interpolation
was used to get the final sub-pixel level displacements. For



Figure 5. Comparison of our method, RAFT and SP+SG. The two test images are the 120th frame of the test videos. The corner points of
the blue quadrangles are the ground truth and the corner points of the red ones are the predictions of corresponding approaches.

Figure 6. Sequential predictions of our method on two test videos. The corner points of the blue quadrangles are the ground truth and the
corner points of red ones are the predicted by our network.

current frame, the locations of fours points were updated
from the location of previous frame by Pt = Pt−1 +∆P .

Homography-based methods: We used SIFT and
ASLFeat as the feature descriptors and Nearest Neighbor
(NN) search as the feature matcher. SuperPoint was com-
bined with the learned matcher SuperGlue (denoted by
SP+SG). Besides, DFM and COTR were chosen as two
baselines which extract features and match features jointly
in one framework. RANSAC algorithm was chosen to
regress the homography. For the current frame, the loca-
tions of four points were updated from those of previous
frame by Pt = M×Pt−1. M is the 3×3 estimated homog-
raphy matrix between the neighbor frames. Pt and Pt−1 are
represented in homogeneous coordinate system.

Object-tracking-based methods: We chose
SiamRPN++, SiamCAR, SiamGAT, TransT and TrDiMP
as object tracking baselines. With each point centered in a
bounding box at the initial frame, object tracking methods

tracked the location of each bounding box in subsequent
frames. Then the center of the predicted bounding box
in subsequent frames was considered as the final result.
We experimented with bounding boxes sized 25 × 25,
20 × 20, 15 × 15, 10 × 10 and 5 × 5 respectively for each
object tracking algorithm. The best results of different
bounding box sizes for the five object tracking algorithms
are reported in Table 1.

We demonstrate the performance of our method by com-
paring it with all of the methods above quantitatively. We
report the errors for the overall average error fMSE in Ta-
ble 1. We measure the mean error in the first 30, 60, 90, 120
frames of all the testing videos respectively. Our method
outperforms the others in fMSE. Our error is about 29%
lower than the best other method RAFT in fMSE when
testing in the first 120 frames of testing videos. Super-
Point+SuperGlue worked best in homography-based meth-
ods, but its fMSE is higher than ours by 127% in the first



frame intervals [0, 30) [0, 60) [0, 90) [0, 120)
SiamGAT 339.72 628.20 898.82 1164.05

TransT 184.67 420.77 687.44 904.48
TrDiMP 93.50 291.04 546.34 826.04

SiamCAR 135.88 324.24 530.27 720.12
SiamRPN++ 106.48 279.49 476.79 665.05

DFM 47.50 163.81 327.10 508.25
COTR 18.82 60.10 113.17 171.20

SIFT+NN 18.30 55.41 103.38 164.96
ASLFeat+NN 25.38 62.63 100.90 161.00

SP+SG 4.09 10.87 17.02 22.61
SPyNet 13.56 40.31 78.01 121.36

MaskFlownet 6.66 18.54 31.23 42.47
PWCNet 4.51 13.13 24.40 35.76

FlowNet2.0 4.99 13.20 23.14 33.98
RAFT 2.45 6.11 10.12 14.09
Ours 2.05 4.51 7.26 9.98

Table 1. Comparison with existing methods. Each row (except the
first column) reveals the tracking statistics on dataset ScanDPT in
fMSE. The first row shows the frame intervals we used. SP+SG
denotes SuperPoint+SuperGlue. NN denotes Nearest Neighbor
search.

120 frames. All the five object tracking methods have very
poor performances as large tracking drifts often occur in
these object tracking methods especially when tracking the
background points.

As shown in Figure 5, our method predicts the most ac-
curate locations because it learns the local homography for
the textureless planar region in a supervised way. Sequential
predictions of the two examples can be found in Figure 6.
More implementation details of other methods can be seen
in the supplementary.

4.3. Ablation Study

On the ScanDPT dataset, we also conducted the ablation
study of alternative input solutions, loss function and en-
coder based on our basic model excluding IHRM. And then
we added IHRM to the basic model to validate its effective-
ness.

Input solutions: Firstly we test our network with differ-
ent frame sequences during training. We utilize two input
variations:

(a): input multiple neighbor historical frames as
(It−4, It−3, It−2, It−1, It, Ĥt−4, H̃t−3, H̃t−2, H̃t−1, H̃t);

(b): input two non-neighbor frames as
(It−8, It, Ĥt−8, H̃t);

Corresponding performances are reported in Table 2.
The information from multiple non-neighbor frames helps
the network perform better.

Loss function: To validate the effectiveness of the inte-

frame intervals [0, 30) [0, 60) [0, 90) [0, 120)
Input (a) 3.82 10.64 19.77 30.94
Input (b) 7.19 23.11 47.66 80.59

w/o integral 2.49 6.47 52.76 83.64
w/o context 3.04 6.94 11.23 15.58
Ours(basic) 2.18 4.98 8.08 11.12

Ours(IHRM) 2.05 4.51 7.26 9.98
Table 2. Ablation study of input solutions, loss function and en-
coder. Each row (except the first column) reveal the tracking statis-
tics on dataset ScanDPT in fMSE. The first row shows the frame
intervals we used. The next two rows of statistics show perfor-
mance of the alternative input solutions. Then the results without
the integral loss function and without the context encoder are pre-
sented in the fourth and fifth row respectively. The next-to-last
row shows the performance of the proposed basic network with-
out IHRM. The last row shows the performance of whole network
including IHRM.

gral loss, we tested the proposed network by replacing the
integral loss Equation 8 with the heatmap loss, which super-
vised output heatmaps directly without integral regression:

Ltotal =

N∑
k=0

γN−kSmoothL1(Hk, Hgt) (12)

We observe that the network supervised by the integral loss
performs much better.

Encoder: We used two encoders to extract location fea-
tures and contextual features respectively. The location en-
coder is indispensable as it encodes the locations of four
points in the previous frame. We removed the context en-
coder and kept other parts unchanged. As a result, the track-
ing performance without context encoder is inferior to that
of the full model we proposed as the context encoder pro-
vides discriminative features of the surrounding edges for
the designated planar region.

IHRM: To evaluate the effectiveness of IHRM, we
added IHRM to the basic model. As shown in Table 2, the
network with IHRM reaches 9.98 in fMSE and has lower
fMSE by about 10% than that without IHRM when testing
in the first 120 frames.

5. Conclusion

In this work, we propose a new network to tackle the
practical problem, designated point tracking, for textureless
planar regions. Existing template-based methods can only
track the textured objects since the features are rare inside
the template of textureless planar regions. On the other
hand, with the input of full image as reference, existing
methods do not well handle the prior local homography cor-
relation of four designated points. Our network learns the
prior correlation of the four designated points even with the



full images in a supervised way. Given the initial heatmap
prediction from optical flow method RAFT, our model pre-
dicts intermediate heatmaps by an dual-encoder structure
and further refines them using an recursive module. More-
over, to train and evaluate our network, we present the first
dataset ScanDPT mainly for textureless planar regions for
the DPT task. Comparative experiments and ablation stud-
ies demonstrate the effectiveness of our network design and
show the superiority of our method over other methods.
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