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Abstract

Most current online multi-object tracking (MOT)
methods usually include two steps: object detection and
data association, where the data association step re-
lies on both object feature extraction and affinity com-
putation. This often leads to additional computation
cost, and degrades the efficiency of MOT methods. In
this paper, we consider combining the object detection
and data association module in a unified framework,
while getting rid of the extra feature extraction process,
to achieve a better speed-accuracy trade-off for MOT.
Considering that pedestrian is the most common object
category in real world scenes and has particularity char-
acteristics in objects relationship and motion pattern,
we present a novel yet efficient one-stage pedestrian ob-
ject detection and tracking method, named CGTracker.
In particular, our CGTracker detects the pedestrian tar-
get as the center point of object, and directly extracts the
object features from the feature representation of the
object center, which is used to predict the axis-aligned
bounding box. Meanwhile, the detected pedestrian ob-
jects are constructed as an object graph to facilitate
the multi-object association process, where the seman-
tic features, displacement information and relative po-
sition relationship of the targets between two adjacent
frames are used to perform the reliable online tracking.
It is evaluated on the popular MOT17 challenge, and
achieves 65.3% MOTA at 9 FPS. Extensive experimen-
tal results under widely used evaluation metrics demon-
strate that our method is one of the best techniques on
the leader board for the MOT17 challenge at the time of
submission of this work. The code will be made publicly
available.

1. Introduction

Online multi-object tracking (MOT) aims to take advan-
tage of the object information contained in the previous

and the current frame to match the objects across differ-
ent frames in a video stream, and the motion trajectories
of different objects can thus be derived according to the
cross-frame matching results. Since there is less informa-
tion available, it is extremely challenging for online track-
ing methods to satisfy both high tracking accuracy and low
time delay.

Currently, tracking-by-detection [1, 36, 19, 7, 14, 4, 29]
has become the main framework in the field of MOT. In this
framework, the detector is used to locate the object frame by
frame, and the data association method [29, 24, 10] is then
used to associate the same target across different frames.
Although a considerable progress has been made in the field
of MOT in the past few years, the existing MOT methods
still have two problems: i) Data association often depends
on the quality of object detection. Therefore, in order to ob-
tain a good performance of data association, most tracking-
by-detection methods use a anchor-based object detection
method [27, 25, 26, 5], which greatly increases the time cost
of the entire tracking solution. In addition, existing track-
ers often adopt a pre-trained feature embedding network to
extract discriminative feature representation of detected ob-
jects for object association. However, this multi-stage net-
work structure not only makes the model more complex,
but also reduces the tracking efficiency. ii) Most MOT
methods focus on associating objects based on appearance
features of the detected objects through Intersection over
Union (IOU). This data association, however, does not con-
sider the spatial relationships between different objects in
the same frame and same objects in the consecutive frames.

Pedestrian is the most common and major object cate-
gory in real world scenes. Especially, pedestrian detection
and tracking is the key and fundamental technique for many
applications, such as auto-driving and video surveillance.
As multiple pedestrian targets often appear in the visual
scenes in company, pedestrian tracking is taken as the main
problem of MOT. In order to realize high efficient and ac-
curate online multi-pedestrian object tracking, we design a
novel one-stage multi-object detection and tracking method,
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named Center Graph Tracker (CGTracker) by jointly learn-
ing the multi-object detection and tracking prediction in
an unified framework. CGTracker takes two consecutive
frames as input, and both of the frames perform the cen-
ter point based object detection to recognize, localize and
extract features of the objects simultaneously. By consider-
ing the continuous property of spatial relationship between
pedestrian objects, an object graph is then constructed from
the extracted pedestrian object features and spatial relation-
ships between objects in a frame and across frames to learn
the object association under the online MOT objectives.

In the tracking-by-detection based MOT implementa-
tion, object detection aims to provide accurate object local-
ization and discriminative feature representation for subse-
quent data association. Recent MOT methods usually apply
generic anchor based object detectors, e.g., Faster RCNN
[27], YOLO [25, 26, 5], etc., to locate object as a regu-
lar bounding box. These detectors, on one hand, need to
generate lots of region proposals or anchors, which is less
efficient or leads to inferior detection performance. On the
other hand, the detected bounding box contains more infor-
mation than the object location only, e.g. some background
pixels. In fact, object detection for MOT does not require to
detect the entire object body, especially for pedestrian ob-
ject, but some key point that is able to provide the pedestrian
location information is sufficient.

Moreover, as demonstrated in anchor-based object detec-
tion methods, the high-level features that are extracted from
the backbone network, e.g. darknet-53 in YOLOV3 [26],
will provide semantic object information for object clas-
sification and localization. Hence, the feature points that
are corresponding to the detected anchor and the resulted
object are effective object feature representation. Follow-
ing this idea, we propose to extract the feature of the de-
tected object directly from the multi-scale features of the
backbone network according to the detected object center
point. As a result, the pedestrian object detection module in
our CGTracker would provide both the object location and
corresponding feature representation that are required by
the subsequent multi-object association process. This facil-
itates the more efficient one-stage multi-pedestrian-object
detection and tracking implementation.

Furthermore, most of current MOT methods only con-
sider the appearance feature of the object for object as-
sociation. While we believe that besides appearance fea-
ture, the relative relationship between pedestrian objects
in the same frame, and temporal correlation between same
identity in consecutive frames are also importance tracking
cues. Hence, inspired by the object graph representation for
videos [9], we build an object graph based on the detected
objects for each frame, and convert the object association
problem in MOT into the graphs matching process. Specif-
ically, we denote both the appearance feature and the posi-

tion of the object as the node description, and the position
difference between two pedestrian objects in a frame as the
edge description of the object graph. We then consider the
association process as matching between two object graphs,
where the appearance matching between nodes of the two
graphs, the edge matching between the edge description of
the two graphs, and the relative displacement matching be-
tween the nodes of the two graphs are fused together to de-
rive the final MOT results.

To summarize, our main contributions are as follows:

1. We propose a simple yet effective one-stage tracking
method, which combines both multi-object detection and
data association modules in an unified framework.

2. We detect the pedestrian object as a center point, and di-
rectly extract the target features based on the center point
from multi-scale feature representations of the backbone
network according to the center point coordinates of the
object. Our experiment verifies the effectiveness of the
extracted features for the MOT task well.

3. In order to ensure the accuracy of the CGTracker, we
build an object graph based on the detected pedestrian
objects in a video frame, and apply the matching be-
tween two object graphs of two consecutive frames from
three aspects: (i) the appearance association for nodes
between the two graphs; (ii) the relative relationship sim-
ilarity for edges between the two graphs ;(iii) the dis-
placement constrains between the nodes (objects) of the
two graphs.

The rest of this paper is organized as follows. In Sec-
tion 2, we introduce some latest work in the field of MOT.
In Section 3, we describe our tracking method in detail.
Section 4 gives experimental details and results, and evalu-
ates the effectiveness of our tracking components on widely
used benchmark MOT17 by some ablation experiments. Fi-
nally, Section 5 summarizes this paper.

2. Related work

In recent years, with the development of deep learning,
MOT techniques have also made great progress. The ex-
isting MOT methods are mainly divided into the following
research directions.

Tracking-by-detection method. DeepSORT [33] is
the first deep learning based tracking-by-detection MOT
method. It applies the two-stage object detection method
“Faster R-CNN” for detection, a pre-trained network for
object feature extraction and Kalman filter to realize the
whole MOT process. Yu et al. [38] then show that high-
performance detection and appearance features that are ex-
tracted from multi-scale deep neural network layers are sig-
nificant factors to improve MOT results in both online and
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Figure 1. The architecture of the proposed CGTracker, consisting of: (i) object as a point for detection; (ii) object graph based data
assoiation

offline tracking. These tracking-by-detection based meth-
ods, however, have some weakness in: (i) The overall track-
ing performance is highly dependent on the detection re-
sults. (ii) There are several independently trained modules,
such as detection, feature extraction and data association
in the MOT pipeline, which makes the whole MOT system
complex and time-consuming.

Partially end-to-end MOT method. In this strategy,
researchers mainly combine object detection, feature ex-
traction, and data association to form a partially end-to-end
method. Sun et al. [28] propose to perform an end-to-end
data association by modeling the appearance and learning
the affinity between the targets in different frames. Wang et
al. [32] propose a joint detection detection and embedding
MOT paradigm by incorporating the embedding learning
into the object detector for fast MOT system. Similarly, Lu
et al. [17] propose single-stage RetinaTrack by improving
the single-stage RetinaNet, which combines target detection
with feature extraction. Zhu et al. [42] combine Bi-LSTM
network with attention mechanism to achieve an end-to-end
matching attention network. Although these methods at-
tempt to jointly learn some of the modules of MOT in the
end-to-end manner, they have not incorporated the entire
detection and association learning in an unified framework
for more efficient and accurate MOT system.

Future prediction MOT method. Very recently, the
MOT system is proposed to jointly learn the object detector
and moving offset in an unified framework [2, 23, 40, 6].
In these methods, the predicted bounding boxes are further
used as region proposals for both detection and tracking in
the future frames. The simplicity of this approach is very
attractive, but the accuracy of its tracking results needs to

be further improved.

3. Methodology

Given a sequence of video frames, the goal of MOT task
is to associate the same identity in different frames and as-
sign it a unique trajectory ID. Existing MOT methods of-
ten divide the task into three parts: object detection, feature
extraction and object association. These methods, however,
often simply apply generic methods to implement each step,
without fully investigate the characteristics of object cat-
egory for detection and tracking, especially for the com-
monly appeared pedestrian objects. By exploring the ad-
vantage of the center point based object detection method,
and the relationship of the detected pedestrian objects in a
frame and across frames, we propose a center graph neural
network for one-stage multi-pedestrian-object detection and
tracking, referred to as CGTracker, which unifies object de-
tection and association into a single framework, and simul-
taneously completes object detection, feature extraction and
object association in the network inference. In the follow-
ing subsections, we introduce the pipeline of our method,
and describe the proposed multi-object detection and asso-
ciation modules, and our adopted loss functions.

3.1. Architecture of proposed method

CGTracker aims to realize high efficient deep learning
based pedestrian multi-pedestrian-object tracking to facili-
tate online tracking in real-time tracking applications, such
as auto driving, etc. The method takes two consecutive
frames with n-frame interval as input, and the multi-object
detection and tracking are mainly implemented in the center



point based object detection and object graph based associ-
ation module. The entire framework is shown in Figure 1.

First, in order to render a more effective pedestrian ob-
ject detection for multi-object tracking, we propose to de-
tect the object as the center point by following the idea of
CenterNet [41]. Because the multi-object tracking eventu-
ally relies on object feature association, highly discrimina-
tive feature representation of the detected objects is very im-
portant for accurate MOT. Since using extra feature extrac-
tion is time consuming, in CGTracker, we propose to extract
multi-scale features from the backbone network, which is
the DLA34 network proposed in [39], according to the ob-
ject center point coordinate Pt of the tth frame. The Nm

multi-scale feature maps are then fused effectively to rep-
resent the appearance feature of the detected object. As a
result, the object detection module in CGTracker will out-
put both the pedestrian center-point coordinates and the rep-
resentative appearance features, which is expected by the
subsequent object association step for high efficient MOT.

In the data association process, unlike recent object as-
sociation methods that mainly rely on the appearance of the
object, CGTracker proposes to construct an object graph
based on the center-point of the detected pedestrian ob-
jects for each frame, so as to effectively combine the rela-
tive position constraint between pedestrians in a frame, and
the displacement constraint between objects across different
frames, in addition to the appearance feature association.
As shown in Figure 1, two object graphs Gt and Gt−n are
constructed for frame t and t − n respectively. The nodes
in each graph encode the detected objects described by its
appearance feature At (or At−n) and position feature Pt (or
Pt−n), and the edges of a graph encode the spatial relation-
ship between different pedestrian objects in the frame. The
two object graphs then facilitate an object graph associa-
tion network to realize the multi-constraint data association
between frame t and t − n through matching of nodes ap-
pearance similarity MA

t,t−n, edge (or structure) similarity
MS

t,t−n and nodes displacement similarity MP
t,t−n. Finally,

the three matching matrices are then integrated to generate
the object association result MP

t,t−n and the final result of
object tracking is obtained by the Hungarian algorithm.

3.2. Object as a point for detection

As aforementioned, pedestrian object detection for MOT
does not need to detect object as a regular bounding box, but
only some key point that is able to represent the location and
salient features of the object is sufficient. Therefore, differ-
ent from recent tracking-by-detection based MOT methods
that simply adopt generic object detection, CGTracker ex-
plores the ways to detect the pedestrian object as a point.

As is well known, the center of an image region is
the most representative point. In addition, there are many
saliency based object detection methods consider center
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Figure 2. Illustration of center point based object detection and
multi-scale feature extraction from DLA [39]. The red frame indi-
cates the structure of the backbone network DLA [39], where each
green box represents the process of extracting high-level features
from the initial feature layer through multiple convolutional lay-
ers. The solid green cubes indicate the extracted feature tensors.

point and its surroundings as the most salient representation
of an object [31]. On the other hand, the recent anchor-free
based deep learning methods [41, 15, 30] have greatly ad-
vanced the object detection field. These methods learn to
detect the object as key points, and have shown to be more
efficient than the two-stage anchor based object detection
methods and more accurate than the anchor based one-stage
object detection methods. Inspired by these techniques, we
propose to detect the center point of the pedestrian object
for object detection of MOT. By following CenterNet [41],
our center-point based object detection does not require pre-
set anchors and the undifferentiable NMS [20] operation,
but learns to locate the center point that is described by a set
of neighbor points in the end-to-end manner, which greatly
improves the detection and MOT efficiency.

Besides object localization, MOT needs to associate the
same identity in different frames based on the feature repre-
sentation of the object. Instead of applying an extra object
re-identification network for object association, we propose
to extract feature representation from the backbone network
of object detection according to the center point coordinate
of object. Specifically, we use the Deep Layer Aggregation
(DLA) [39] network as the backbone for pedestrian object
feature extraction. As shown in Figure 1, DLA is a net-
work building in tree structure, which can deeply aggregate
multi-scale object features from low-level to high-level con-
volution layers.

In CGTracker, the two consecutive frames are first fed
into the DLA network for feature extraction, respectively.
And inspired by [10], we intentionally make the two-stream
DLA network with shared weights. After inference on the
center based object detection network, the center position
of the detected pedestrian objects can be located. We then
trace back to the backbone network to search for the best



RoI (region of interest) feature representation according to
the center location of the object Pt. It is shown that high-
level semantic features is good representation for object
recognition, while data association in the MOT task requires
feature representation that can distinguish different objects,
but not recognize the object categories only. Hence, we pro-
pose to extract the multi-scale features from different down-
sample layers of DLA network, as is shown in Figure 2.
The extracted feature tensors are then passed to an addi-
tional 3× 3 convolution layer and aggregated to be the final
appearance feature representation for object association.

3.3. Object graph for association

In real world scenes, multiple pedestrian objects often
appear in crowds and groups. Although some of the ob-
jects may be occluded or motion blurred at some time t so
that their trackers get lost, their relative position, in other
word, the spatial relationship between objects will be main-
tained in a short time period. This observation motivates
us to investigate the temporal continuity of both individual
object motion and the relationship between objects in the
same frame.

In CGTracker, we construct an object graph Gt for each
frame It at time t, where the node of the object graph is
composed of the object feature descriptors, and the edge
is represented by the relative position between objects.
Specifically, each node Oi

t in Gt is described by the appear-
ance features Ai

t ∈ R520 and position information P t
i ∈ R2

of the object i. In addition, the edge Ei,j
t ∈ R2 of object

graph Gt is described by the difference between center co-
ordinates of the detected objects i and j. As illustrated in
Figure 3, two object graphs Gt and Gt−n are derived from
frame It and It−n respectively, where Gt = (Ot, Et), with
Ot = {(Ai

t, P
i
t )}

Nm
i=1 and Et = {(Ei,j

t )}Nm
i=1

Nm
j=1, Nm de-

notes the maximum number of objects detected in frame It.
With the object graph representation for each frame, the

MOT task can thus be translated into a graph matching pro-
cess through optimization of both node-to-node and edge-
to-edge association between two consecutive frames.

3.3.1 Node association

Based on the object graph for each frame, we perform node
matching to realize object association for multi-pedestrian
tracking. Node association is carried from matching of
nodes descriptors: the appearance feature Ai of object i
and the position displacement P i of object i in consecutive
frames.

As shown in Figure 4, the nodes in object graph for frame
It are associated with the corresponding objects nodes in
object graph of frame It−n, which is the association results
learned through the appearance similarity and displacement
similarity between objects in frame It and It−n.
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Figure 3. Illustration of two object graphs constructed from the
tth frame and (t− n)th frame. The solid blue lines in each object
graph are the edges between adjacent objects, the red dash lines
denote the object node correspondences, and the gray dash lines
indicate the edge correspondences.
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Figure 4. The node association and edge association between two
object graphs of It and It−n. The red solid line represents the
object node that is successfully matched by the node association
strategy; the orange solid line represents the structural similarity
information of the object node learned by the edge association
strategy.

Appearance association of object nodes: The appear-
ance feature of each detected object is extracted from multi-
scale CNN layers of backbone network according to the
center position of the object, as shown in Figure 2. The
selection of multi-scale CNN layers will be discussed in
Section 4.4. The appearance features of all the objects
in frame It are aggregated, and through the one-to-one
correspondence of appearance features of objects in the
two object graphs, an appearance feature matrix AN

t−n,t ∈
R1040×Nm×Nm is obtained. This matrix is then fed into a
node association network, which is composed of 5 3×3 con-
volution layers with [512, 256, 128, 64, 1] for channel num-
ber of each layer, to learn the appearance similarity matrix
MA

t−n,t ∈ RNm×Nm under the MOT objective.
Position association of object nodes: As is known that

the movement of pedestrian objects is temporally coherent,
which means the position of an object would have few vari-
ance in short time period. We then consider measuring the
displacement similarity between objects in different object
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frame image It−n into the object graphs Gt and Gt−n, we use information such as appearance, displacement, and relative position, and
use different association strategies to obtain the association matrix Mt,t−n of the pedestrian objects in the two frames.

graphs of consecutive frames. In special, the position dis-
tance between objects of the same identity in consecutive
frames would be smaller than objects of different identities.
Hence, we calculate the position distance between all nodes
in two consecutive object graphs and form the position sim-
ilarity matrix MP

t,t−n, where each item is computed as:

MP
i,j =

e−di,j/Dia(I) − e−1

1− e−1
. (1)

where di,j is the Euclidean distance between the center po-
sition of ith object node in frame It−n and the jth node in
frame It. By taking the length of image diagonal Dia(I)
as the largest distance between object i in frame It and cor-
responding object j in frame It−n, di,j is first normalized
by Dia(I) to the range of [0, 1]. Here, we do not normal-
ize di,j by the relative largest distance between objects in
two consecutive frames is because we tend to normalize the
movements of all the objects over time with respect to the
largest distance across the entire video, so that the whole
tracking trajectory is smoothly correlated. The normalized
di,j is then converted to the similarity measurement by the
exponential decay function in Equation (1).

3.3.2 Edge association

In multi-object tracking scenario, a moving pedestrian often
moves along certain trajectory, while the relative position
between this pedestrian and other objects will also be main-
tained in a moment. For example, object a is to the right of
object b at time t − n, a will most likely be at the right of
b at time t as well, when n is a short interval. Therefore,
besides tracking over individual moving object, we propose
an additional tracking objective by taking relationship con-
sistency over time into account.

As shown in Figure 3, based on the edge descriptor that
calculates the direction vector between objects in the same
frame, CGTracker performs the edge-to-edge association
between consecutive object graphs to realize the relation-
ship correspondence of pedestrian objects. In addition, the
learning process of edge association is illustrated in Fig-
ure 5. St

i ∈ R320 denotes the aggregated descriptors of all
edges that are connected to object i, and by combining the
edge descriptors of all edges of both object graphs, we de-
rive the relation structure matrix SE

t−n,t ∈ R320∗Nm∗Nm .
Similar with node association, we construct an edge associ-
ation network to learn the relation structure similarity ma-
trix MS

t−n,t ∈ RNm∗Nm , which also consists of 5 3×3 con-
volutional layers with [160, 80, 40, 20, 1] as channel number
for each layer.

Finally, by comprehensively fusing the node association
and edge association results of the two consecutive object
graphs, we obtain the final object incidence matrix:

Mt−n,t = (MA
t−n,t +MS

t−n,t)⊙MP
t−n,t. (2)

where ⊙ represents the dot product between two matrix.
In order to solve the objects entering or leaving problem
in consecutive frames, we add an extra row and column
to Mt−n,t, and obtain the final object association matrix
Mt−n,t ∈ R(Nm+1)∗(Nm+1) followed by row and column
regularization for MOT optimization, as shown in Figure 5.

3.4. Network loss

In order to facilitate the whole network for learning, we
optimize the object detection loss for object classification
and center localization, and the graph association loss for
multi-object association for MOT.

Object detection loss. We follow the object learn-
ing strategy of CenterNet [41] to predict the object center,



which is mainly carried out by combining the prediction of
the object category and the regression of the center loca-
tion. In order to recognize the pedestrian object and lo-
calize the object center, we use Gaussian kernel function:

Hxyc = exp(− (x−⌊ xk
r ⌋)2+(y−⌊ yk

r ⌋)2
2σ2

k
), to distribute the

centers of all GT targets on the heatmap, H ∈ RW
R ×H

R ×C

where R is the number of down-sampling operations, r is
the rth down-sampling pooling in the network, (xk, yk) is
the center coordinate of GT object k, and σk is an object
size-adaptive standard deviation [15].

With the Gaussian based center point representation, we
optimize the loss between predicted and GT center category
by following the focal loss in [16] to derive Lcls, and L1
loss for the object size Lsize and offset Loff regression. In
summary, the overall object detection learning objective is:

Ldet = λ1Lcls + λ2Lsize + λ3Loff . (3)

where λ1 = 1, λ2 = 1, λ3 = 0.1.
Object association loss. For object association, we

mainly follow the loss function designed in DAN [28].
Specifically, our loss function combines the following four
considerations:

(1)Forward association loss L1. We first learn to asso-
ciate objects forwardly from frame It−n to It. Let’s denote
M1 ∈ RNm∗(Nm+1) as the first m rows of data of the object
incidence matrix Mt−n,t ∈ R(Nm+1)∗(Nm+1), with Nm+1
represents the maximum number of objects in a frame plus
an extra column of the newly entered target in It. The for-
ward association objective can thus be supervised by the
one-to-one correspondence matrix Gt ∈ RNm∗(Nm+1) con-
structed from the tracking ground truth of object in It−n to
object It as:

L1 =

∑
coeff

(Gt ⊙ (−log(S(M1))))∑
coeff

(Gt)
. (4)

where S is the softmax function, coeff represents sum-
mation of all the coefficients of a matrix, and ⊙ is the
Hadamard product.

(2) Backward association loss L2. In order to learn
more accurate data association result, we further consider
the backward object association from frame It to It−n.
The ground truth matrix Gt−n ∈ R(Nm+1)∗Nm is con-
structed from the one-to-one correspondence of objects in
It to frame It−n, with Nm + 1 here represents the maxi-
mum number of objects in a frame plus an extra row of the
disappeared target in It. The backward association loss L2

is then calculated as:

L2 =

∑
coeff

(Gt−n ⊙ (−log(S(M2))))∑
coeff

(Gt−n)
. (5)

where M2 ∈ R(Nm+1)∗Nm represents the first m
columns of data of the object incidence matrix Mt−n,t ∈
R(Nm+1)∗(Nm+1).

(3) Consistency judgment loss L3. Basically, the forward
and backward association between objects in frame I and In
would be consistent, hence, we formulate the bi-direction
association consistency between (1) and (2) as:

L3 =
∥∥∥Ŝ(M1)− Ŝ(M2)

∥∥∥
1
. (6)

(4) Joint judgment loss L4. Similar with [?], we perform
the non-maximum suppression for both forward and back-
ward object association results, which is formulated as:

L4 =

∑
coeff

(Gt−n,t ⊙ (−log(max(Ŝ(M1), Ŝ(M2)))))∑
coeff

(Gt−n,t)
.

(7)
By combining the four loss functions, we have the overall
object association loss as:

Lass =
L1 + L2 + L3 + L4

4
. (8)

Finally, the total loss of CGTracker can be summarized:

Lall = η1Ldet + η2Lass. (9)

According to our experimental results, the hyper-
parameters of η1 and etc.2 can be set as η1 = 1 and η2 = 0.1
for the best results.

4. Experiments

4.1. Dataset

We conduct experiments on the widely used Multi-
Object Tracking (MOT) benchmark: MOT17 [18]. MOT17
is one of the latest released online challenges in pedestrian
tracking, which contains 7 training sequences and 7 test se-
quences. These videos mainly come from a stationary or
moving camera in an unconstrained environment. Pedes-
trians in the scene have frequent access, crowding and oc-
clusion, and the frame rate is 25-30 FPS. The video se-
quences used for training model all provide accurate anno-
tations, and the detection results from three different detec-
tors, namely DPM [8], SDP [35], and Faster R-CNN [27].
For a fair comparison, labels of test data are not publicly
released. Since the dataset does not provide an official val-
idation set, we split the training data into training set and
validation set, each containing roughly half of the whole
training data, where the first half frames are used for train-
ing, and the second for validation. Because of limited ac-
cess to the test server, we evaluate our main results on the
test set, but other results on the validation set, e.g., ones
from ablation experiment.



Table 1. Evaluation results on the MOT17 test set using public detection and our private detection. The symbol ↑ indicates that higher is
better, ↓ means that that lower is better. The best result is highlighted in bold.

Detector AP↑ TP↑ FP↓ FN↓ Rcll↑ Prcnn↑
DPM [8] 0.61 78077 42308 36577 68.1 64.8

Faster R-CNN [27] 0.72 88601 10081 25963 77.3 89.8
SDP [35] 0.81 95699 7599 18865 83.5 92.6

Ours 0.75 105694 12901 8813 92.3 89.1

Table 2. Tracking performance of different detectors on the MOT17 test set.
Method MOTA↑ MOTP↑ IDF1↑ MT↑ ML↓ FP↓ FN↓ IDSw ↓

SDP [35]+DAN [28] 55.1 76.1 52.9 20.8 31.7 27792 218973 6915
SDP [35]+Objectgraph 56.8 76.7 51.4 23.9 29.7 22773 213459 7419

4.2. Evaluation metrics

In order to quantitatively evaluate our results on the
MOT17 challenge, we choose the official evaluation stan-
dard CLEAR MOT metrics [3], including the multiple
object tracking accuracy (MOTA), multiple object track-
ing precision (MOTP), false positives (FP), false negatives
(FN), identity switches (IDS) and IDF1 score. In addition,
evaluation criteria such as the percentage of mostly tracked
targets (MT) and the percentage of mostly lost targets (ML)
have also been adopted. MT refers to the ratio of ground-
truth trajectories that are covered by any track hypothesis
for at least 80% of their respective life span. ML is com-
puted as the ratio of ground-truth trajectories that are cov-
ered by any track hypothesis for at most 20% of their re-
spective life span.

4.3. Implementation details

We implement our proposed approach using Pytorch
framework [22]. Training is performed on an NVIDIA
GeForce RTX 2080ti GPU with standard SGD for 35
epochs. The input resolution is resized to 544× 960. Other
hyper-parameter values used in our implementation include
batch size batch size=3, maximum number of object
detection per frame Nm = 80, and initial learning rate
learning rate=0.01. The learning rate is decreased
by 10 at the 13th, 22nd, 28th, and 35th epoch. During
training, we select targets with visibility greater than 0.3 for
association, and the maximum time interval between two
frames n = 30.

4.4. Results and analysis

In this section, we intend to explain why our proposed
approach is effective from the following three aspects. First,
we compare the performance of different detectors on the
tracking. Second, we prove the effectiveness of the selected
semantic features of the target. Finally, we compare the
performance of our tracker under different constraints.

Detection results on tracking task. We compare our
proposed object detection method with the three public de-

tection results provided on MOT Challenge official website.
These results are shown in Table 1. It can be seen from Ta-
ble 1 that although our detector is lower than the SDP [35]
in Average Precision (AP), it can better detect the existing
targets with a higher recall rate, and is more beneficial for
multi-object tracking tasks.

Data Association. Table 2 shows the performance com-
parison between our proposed CGTracker and DAN [28]
using the same detector. In order to obtain the comparable
results, we choose VGG16 as the feature extraction module
for the two methods. It can be seen that our tracking method
is superior to DAN [28] in terms of tracking accuracy and
continuous tracking ability.

Feature extraction layer. We believe that the fusion of
different layers of features can make objects contain multi-
scale information. As shown in Table 3, when we compare
multi-scale feature fusion with only deep semantic features,
we find that the multi-scale features we selected are far su-
perior compare to the tracking with only high-level features
in terms of all evaluation metrics.

The object graph based multi-object association. As
aforementioned, we propose to associate the pedestrian tar-
gets between two frames through the appearance feature in-
formation, displacement information and relative position
information of the object. In order to explore the influence
of different information on the tracking results, we gradu-
ally add other association information based on appearance
feature association to prove the effectiveness of our object
graph structure. The experimental results on the MOT17
test set are shown in Table 4.

(1) Only appearance information. This is the simplest
implementation of our CGTracker. When we only use ap-
pearance feature information, our tracker will confuse those
pedestrians with similar appearances, thus leading to an in-
crease in the IDSw.

(2) Appearance information and displacement informa-
tion. When the displacement information of the object is
added, although the FP has a small increase, compared with
only the appearance feature information, the position asso-
ciation branch effectively reduces the situation of the target



Table 3. Comparisons of tracking results using different feature selection methods on the MOT17 validation set.
Layers MOTA↑ IDF1↑ MOTP↑ MT↑ ML↓ FP↓ FN ↓ IDSw ↓

Multi-scale feature fusion 61.5 76 64.2 58 7 2420 1880 178
Only deep semantic features 56.5 76 53.3 59 8 2444 1888 727

IDSw. Therefore, our tracker has a certain improvement in
MOTA.

(3) All information. As we can see, after using all as-
sociation branches, our tracker achieves the best in most
metrics. As shown in the table 4, CGTracker significantly
reduces the number of IDSw and improves the stability of
tracking. In addition, it reduces the number of missing ob-
jects.

As shown in Figure 6, we selects three consecutive video
sequences in the test set to show the results of pedestrian
multi-object tracking in our ablation experiment. The first
line of each video sequence shows the tracking results using
only the appearance features of the object, and the second
line of pictures demonstrates the tracking results after using
all the information. In the first row, the target in the red area
is similar in shape to the distant target in the previous frame,
and there is a mismatch, resulting in an abnormal trajectory.
In the second line of the picture, after adding the spatial
information between the targets, the wrong matching of the
targets disappeared.

4.5. Benchmark evaluation

Since the test sequence does not contain annotations, we
can only submit the results of our test to the official website
of MOT Challenge to obtain the final evaluation result of
our method. Table 5 shows some of the results from the
methods disclosed by the challenge server and the results of
the current most popular multi-object trackers. Though our
method is an online tracking one, it performs competitively
with the best offline tracking methods. From Table 5 we can
see that:

(1) In the part of the tracking method using the public
detector, because the offline tracking method can use the
information of the entire video stream, good results can be
obtained in IDSw, but our method is significantly better than
them on the main metric MOTA. Compared with the online
tracking method, we can see that our method is superior to
other methods in most metrics. Part of the reason is that our
detector performs better and faster than other methods.

(2) In the private detection part, our MOTA is only 2.5
lower than CenterTrack [40] and 1.3 lower than CTracker
[23], which is the best online tracking algorithm today.
These methods either only consider the displacement in-
formation of the target or only the appearance information
of the target. The CGTracker comprehensively considers
all the information of the target, so our tracker is obvi-
ously stronger than them in MT, ML and other metrics,
which shows that our tracking algorithm has excellent per-

formance in continuous tracking ability.

5. Conclusion

In this paper, we introduce a graph based one-stage
multi-pedestrian-object detection and tracking method, re-
ferred to as center graph network (CGTracker). It first
detects pedestrian object and locates the object center for
two consecutive video frames respectively. And the fea-
ture of the object is extracted directly from the feature map
of backbone network based on the objects center location.
It then constructs an object graph for each frame to real-
ize the cross-frame object association, where the node of
the graph consists of object appearance feature and center
coordinate, while the edge of the graph describes the rela-
tive position between any two objects in a frame. With the
proposed object graph, we cast the online MOT task into
a graph matching process by not only considering the fea-
ture association of individual objects across frames, but also
the consistency of relative relationship between objects in
consecutive frames. Extensive experimental results demon-
strate that CGTracker achieves the most advanced tracking
accuracy in the MOT17 benchmark, and is also very effi-
cient in terms of inference speed. CGTracker is an end-
to-end framework that jointly learns the multi-pedestrian-
object detection and tracking, which is highly efficient and
can be applied in real-time MOT applications, such as auto-
driving.
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Figure 6. Comparison of CGTracker tracking results with DAN [28]. Example frames are extracted from three video segments of MOT17:
MOT17-01 (the first and second rows), MOT17-06 (the third and forth rows), MOT17-08 (the last two rows). The first row for each video
segment indicates the tracking results with appearance association only, which is the data association part in DAN[28]. And the second
row for each video segment is the tracking results of our proposed CGTracker. The predicted objects and trajectory IDs are identified by
different colors of bounding boxes and lines.

In 2020 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 6307–6317, 2020. 10

[22] A. Paszke, am Gross, S. Chintala, G. Chanan, E. Yang,
Z. DeVito, Z. Lin, A. Desmaison, L. Antiga, and A. Lerer.

Automatic differentiation in pytorch. In Proceedings of the
31st Conference on Neural Information Processing Systems
(NIPS 2017), pages 1–4, Long Beach, CA, USA, December
2017. 8



[23] J. Peng, C. Wang, F. Wan, Y. Wu, Y. Wang, Y. Tai, C. Wang,
J. Li, F. Huang, and Y. Fu. Chained-tracker: Chaining paired
attentive regression results for end-to-end joint multiple-
object detection and tracking. In A. Vedaldi, H. Bischof,
T. Brox, and J.-M. Frahm, editors, Computer Vision – ECCV
2020, pages 145–161, Cham, 2020. Springer International
Publishing. 3, 9, 10

[24] H. Possegger, T. Mauthner, P. M. Roth, and H. Bischof. Oc-
clusion geodesics for online multi-object tracking. In 2014
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 1306–1313, 2014. 1

[25] J. Redmon and A. Farhadi. Yolo9000: better, faster, stronger.
In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 7263–7271, 2017. 1, 2

[26] J. Redmon and A. Farhadi. Yolov3: An incremental improve-
ment. arXiv preprint arXiv:1804.02767, 2018. 1, 2

[27] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: To-
wards real-time object detection with region proposal net-
works. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama,
and R. Garnett, editors, Advances in Neural Information Pro-
cessing Systems, volume 28, pages 1–14. Curran Associates,
Inc., 2015. 1, 2, 7, 8

[28] S. Sun, N. Akhtar, H. Song, A. Mian, and M. Shah.
Deep affinity network for multiple object tracking. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
43(1):104–119, 2021. 3, 7, 8, 10, 11

[29] S. Tang, M. Andriluka, B. Andres, and B. Schiele. Mul-
tiple people tracking by lifted multicut and person re-
identification. In 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 3701–3710, 2017. 1

[30] Z. Tian, C. Shen, H. Chen, and T. He. Fcos: Fully convo-
lutional one-stage object detection. In 2019 IEEE/CVF In-
ternational Conference on Computer Vision (ICCV), pages
9626–9635, 2019. 4

[31] X. Wang and Z. Liu. Salient object detection by optimiz-
ing robust background detection. In 2018 IEEE 18th Inter-
national Conference on Communication Technology (ICCT),
pages 1164–1168, 2018. 4

[32] Z. Wang, L. Zheng, Y. Liu, Y. Li, and S. Wang. Towards
real-time multi-object tracking. In A. Vedaldi, H. Bischof,
T. Brox, and J.-M. Frahm, editors, Computer Vision – ECCV
2020, pages 107–122, Cham, 2020. Springer International
Publishing. 3

[33] N. Wojke, A. Bewley, and D. Paulus. Simple online and
realtime tracking with a deep association metric. In 2017
IEEE International Conference on Image Processing (ICIP),
pages 3645–3649, 2017. 2

[34] J. Xu, Y. Cao, Z. Zhang, and H. Hu. Spatial-temporal relation
networks for multi-object tracking, 2019. 10

[35] F. Yang, W. Choi, and Y. Lin. Exploit all the layers: Fast and
accurate cnn object detector with scale dependent pooling
and cascaded rejection classifiers. In 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages
2129–2137, 2016. 7, 8

[36] J. H. Yoon, C.-R. Lee, M.-H. Yang, and K.-J. Yoon. Online
multi-object tracking via structural constraint event aggre-
gation. In 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 1392–1400, 2016. 1

[37] Y.-C. Yoon, D. Y. Kim, Y.-M. Song, K. Yoon, and M. Jeon.
Online multiple pedestrians tracking using deep temporal
appearance matching association. Information Sciences,
561:326–351, 2021. 10

[38] F. Yu, W. Li, Q. Li, Y. Liu, X. Shi, and J. Yan. Poi: Multiple
object tracking with high performance detection and appear-
ance feature. In G. Hua and H. Jégou, editors, Computer
Vision – ECCV 2016 Workshops, pages 36–42, Cham, 2016.
Springer International Publishing. 2

[39] F. Yu, D. Wang, E. Shelhamer, and T. Darrell. Deep layer
aggregation. In 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 2403–2412, 2018. 4

[40] X. Zhou, V. Koltun, and P. Krähenbühl. Tracking objects
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