
ObjectFusion: Accurate Object-level SLAM with Neural Object Priors

Zi-Xin Zou
Tsinghua University

zouzx19@mails.tsinghua.edu.cn

Shi-Sheng Huang
Beijing Normal University

huangss@bnu.edu.cn

Tai-Jiang Mu
Tsinghua University

taijiang@tsinghua.edu.cn

Yu-Ping Wang
Tsinghua University

wyp@mail.tsinghua.edu.cn

Abstract

Previous object-level Simultaneous Localization and
Mapping (SLAM) approaches still fail to create high
quality object-oriented 3D map in an efficient way. The
main challenges come from how to represent the object
shape effectively and how to apply such object represen-
tation to accurate online camera tracking efficiently. In
this paper, we provide ObjectFusion as a novel object-
level SLAM which efficiently creates object-oriented 3D
map with high-quality object reconstruction, by lever-
aging neural object priors. We propose a neural object
representation with only a single encoder-decoder net-
work to effectively express the object shape across var-
ious categories, which benefits high quality reconstruc-
tion of object instance. More importantly, we propose
to convert such neural object representation as precise
measurements to jointly optimize the object shape, ob-
ject pose and camera pose for the final accurate 3D object
reconstruction. With extensive evaluations on synthetic
and real-world RGB-D datasets, we show that our Ob-
jectFusion outperforms previous approaches, with bet-
ter object reconstruction quality, using much less mem-
ory footprint, and in a more efficient way, especially at
the object level.

1. Introduction

Object-oriented 3D map often serves as the basis for
indoor scene understanding and 3D mapping [26, 31, 49,
52], which can facilitate many applications like intelligent
robots, autonomous driving, virtual/augmented reality, etc.
Accurate and efficient object-oriented 3D map generation,
especially the object-level Simultaneous Localization and
Mapping (SLAM) [28, 43, 45, 46, 51], has been receiving
continuous research interest from computer graphics and
computer vision communities these years. However, pre-
vious object-level SLAM approaches would often lead to
incomplete object reconstruction [28] when unsatisfactorily

scanned by non-professional consumers, or fail to recover
3D shapes of various categories [43, 51] in an efficient and
accurate way [45].

One basic challenge to recover high-quality object re-
construction comes from the shape’s geometry represen-
tation. The implicit function on volumetric voxels, such
as signed distance function (SDF) [8], has the advan-
tage of representing 3D objects or scenes at any topol-
ogy, thus serving as the fundamental shape geometry rep-
resentation for current mainstream online 3D reconstruc-
tion approaches [3, 10, 35, 36], object-level SLAM both
in static [28, 51] and dynamic [41] scenarios. Neverthe-
less, this volumetric representation often needs to allocate a
huge amount of GPU memories even for tiny objects, lead-
ing to heavy object fusion systems [28]. Besides, holes
or large missing object surface regions could not be easily
completed since no extra geometry priors could be provided
by such representation.

The latest neural implicit function [4, 22, 37] and its suc-
cess for online 3D scene reconstruction (DI-Fusion [19],
iMAP [45]), motivate us to introduce neural implicit func-
tion as a basic representation for object-level SLAM.
NodeSLAM [46] provides probably the first object-level
SLAM system which leverages neural implicit function as
object representation. However, when applying such neu-
ral implicit function for object reconstruction in object-level
SLAM, the object shape, object pose and camera pose are
often tightly entangled [42] within the neural implicit func-
tion, making it difficult to decode the geometry priors as di-
rect cues for accurate camera tracking in an efficient way.So
it still remains to be a challenging problem to leverage the
neural object priors to object-level SLAM, i.e., efficiently
employing the direct object priors as accurate cues without
sacrificing its effectiveness, to achieve high-quality object-
orientated 3D map generation.

In this paper, we propose to express object shape as a
novel deep implicit object representation. Unlike the occu-
pancy probability used in NodeSLAM [46], our representa-
tion encodes the object shape as an implicit function using

1

⋯

⋯

⋯

RGB-D sequence
Time

Objects placed
in scene

Figure 1. An example demonstration of our ObjectFusion evaluated on ScanNet dataset. Our approach incrementally builds up a map of
objects represented using deep implicit object representation from an RGB-D sequence. For real-time visualization, object meshes are
extracted at lower (323) resolution. The final object meshes which are extracted at higher (2563) resolution and placed in background
scene are shown at right-bottom. Please refer to our supplementary video for more results.

a simple MLP-based encoder-decoder network, which can
effectively express the shape details across various object
categories. What’s more, to convert the object represen-
tation as cues for camera tracking and object reconstruc-
tion, we propose to directly decode the deep implicit object
representation as precise measurements efficiently, with-
out using the time-consuming neural rendering modules as
in [45, 46]. Specifically, we propose an accurate camera
pose estimation directly based on the deep implicit object
representation using a hybrid frame-to-model camera track-
ing. Furthermore, we formulate the deep implicit object
representation as several effective error terms in a joint op-
timization to further refine the object shape, object pose and
camera pose within a local sliding window, thus achieving
the final object-orientated 3D map with high quality in an
efficient way.

To validate the effectiveness of our approach, we con-
duct extensive experiments on both synthetic and real-
world RGB-D public datasets, such as SceneNet RGB-D
dataset [29] and ScanNet dataset [9]. The results show
that our approach can produce better object reconstruction
quality with completed and detailed shape than previous
TSDF-based object-level SLAM approaches [28, 51], while
maintaining at least comparable (sometimes better) camera
pose estimation accuracy, thus serving as a new state-of-
the-art object-level SLAM method for accurate and efficient
object-orientated 3D map generation.

2. Related Work

Our work aims at an accurate object-orientated 3D
map generation using a visual SLAM based on RGB-D.
The visual SLAM is a continuous popular SLAM tech-
nique with many exciting works such as MonoSLAM [11],
LSD-SLAM [14], ORB-SLAM2 [34], RKSLAM [25] and
DSO [13] for static scenes, PL-SLAM [16] for structured
scenes (with point and line features [20]) and LCCRF-
SLAM [12] for dynamic scenes. Here we only discuss rel-
evant works including online 3D reconstruction, deep 3D
representation and reconstruction and object-level SLAM,
and refer readers to [1] for a dedicated survey on the
progress of visual SLAM in the past few decades.

2.1. Online 3D Reconstruction

Inspired by the pioneering work of KinectFusion [48],
the online 3D reconstruction has achieved much progress
in the past decades. VoxelHash [36] and its variations [6]
provided an efficient sparse voxel allocation mechanism,
which is capable of reconstructing large scale 3D scenes ef-
ficiently. The subsequent approaches introduce techniques
such as global pose graph (e.g., InfiniTAM [23]), bundle
adjustment (e.g., BundleFusion [10], SemanticFusion [21],
Noise Resilient Fusion [3]), or deformable loop closure [48]
to reconstruct globally consistent 3D scenes.

One of the main drawbacks of the previous online 3D
reconstruction approaches is that they rely on memory-
consuming geometry representation, i.e., the signed dis-
tance function (SDF) on volumetric voxels [8], which of-

ten leads to a huge amount of GPU memory consumption.
Different from those previous approaches, we introduce a
novel deep implicit object representation to express the ob-
ject shape. Based on such representation, we provide an ac-
curate object-level SLAM approach with much less mem-
ory footprint, while achieving completed and detailed 3D
object reconstruction of high quality.

2.2. Deep 3D Representation and Reconstruction

With the huge progress of deep geometry learning [50],
many deep 3D representations for objects or scenes have
been proposed these years. DeepSDF [38] probably for the
first time proposes to formulate the implicit function as an
MLP-based deep neural network, i.e., neural implicit func-
tion, which enables effective single-view 3D reconstruc-
tion and shape interpolation. DeepLS [4] and LIG [22]
propose to express the local shapes as a neural implicit
function, thus being able to effectively represent complex
scenes or objects across various categories. Convolutional
Occupancy Network [39] introduces a more flexible neu-
ral implicit representation by combining the convolutional
encoders and implicit occupancy decoders, which shows
the impressive ability for high-fidelity 3D reconstruction.
Based on such neural implicit function, many 3D recon-
struction approaches have been proposed for high-quality
3D object or scene reconstruction. DI-Fusion[19] is one of
the first approaches to leverage a deep 3D representation
for online 3D reconstruction, and achieves impressive 3D
reconstruction results. iMAP [45] adopts to use NeRF [30]
as the scene representation, which achieves impressive 3D
scene reconstruction results. Given camera poses estima-
tion, FroDo [42] and NeuralRecon [47] can generate 3D
object or scene reconstruction from monocular RGB frames
with impressively high surface reconstruction quality.

Our approach also adopts to represent the object shape as
a neural implicit function. But different from these previous
works, we contribute to the way that converts the neural
object representation as precise measurements, for accurate
camera pose estimation and object surface generation in an
efficient way, which aims at high-quality object-oriented 3D
map generation.

2.3. Object-level SLAM

As one kind of visual SLAM technique, object-
level SLAM adopts to utilize object instances as land-
marks for accurate camera tracking and surface mapping.
SLAM++[43] for the first time proposes to utilize object
priors to detect object landmarks for camera tracking, al-
though the object priors are simply obtained by retrieving
in manually collected 3D shape sets. The following works
such as Fusion++ [28] directly use the object mask pre-
dicted from 2D CNNs to build object landmarks for cam-
era poses estimation, and formulate the object level bun-

RGB-D with
instance imask

Hybrid Camera
Tracking

Data
Association

Keyframe

Object Initialization

Joint Optimization

Extract keypoints

 and objects

Front-End

Back-End

Update

Build up an object-oriented 3D map

Figure 2. Overview of our ObjectFusion based on deep implicit
object representation. ObjectFusion estimates the camera pose of
each frame and incrementally builds up 3D surface reconstruction
of object instances in the scene.

dle adjustment to further rectify the global pose estimation.
MaskFusion [41], RigidFusion [49], MID-Fusion [51] and
EM-Fusion [44] provide accurate object segmentation in
dynamic scenes and use the object instances as landmarks
for accurate camera tracking or scene reconstruction.

Unlike these previous object-level SLAM approaches
that utilize implicit function as object representation, our
approach proposes to express the object shape as deep im-
plicit object representation, which can effectively represent
the fine geometry details even across various object cate-
gories. Benefiting from the deep implicit object represen-
tation, we show that our approach can achieve much bet-
ter object reconstruction quality in terms of completion and
details than the previous approaches, and serves as a new
state-of-the-art object-level SLAM approach.

3. ObjectFusion

Overview. The overview of our system is illustrated in
Fig. 2. Given a stream of RGB-D images, our ObjectFu-
sion system estimates the camera pose of each frame and
incrementally builds up 3D surface reconstruction of ob-
ject instances in the scene, leading to an object-oriented
3D map as output. Specifically, for each coming RGB-D
frame, we first detect the instance segmentation masks in
the frame, and then encode each object instance to a la-
tent vector using a deep implicit object representation (see
Sec. 3.1). Different from traditional object representations
such as volumetric voxels or discretized surfels, our repre-
sentation can effectively learn the object geometry priors,
and can reconstruct the final mesh at arbitrary resolution
and topology. For each detected object instance, we per-

form object-level data association and initialize the object
shape and pose (see Sec. 3.3). Then the camera pose is es-
timated using our hybrid camera tracking which is based
both on the deep implicit object representation and sparsely
sampled map points (see Sec. 3.4). Finally, in order to ob-
tain the globally consistent object shape and pose, we build
up a joint optimization for object shape, object pose, and
camera pose in a sliding keyframe window (see Sec. 3.5).

Data Association. After extracting objects from RGB
image with instance masks, we need to associate them with
existing objects in the map. To this end, we project the 3D
bounding boxes of all existing objects in the map to the cur-
rent frame, and match these projected 2D bounding boxes
with the mask bounding boxes by computing their Inter-
section over Union (IoU). Kuhn-Munkres Algorithm [32] is
applied to solve this linear assignment problem. If an ob-
ject instance is not associated with any existing object, we
initialize a new object in the map.

3.1. Deep Implicit Object Representation

Different from the implicit function representation used
in previous object-level SLAM approaches, we propose to
represent the object shape using the deep implicit object
representation. Unlike NodeSLAM[46] encoding the object
shape with voxel occupancy grids which has limited repre-
sentation ability for complex objects, we adopt the implicit
function, i.e., SDF, to represent the object underlying 3D
surface, and formulate it as a deep neural network following
the DeepSDF architecture[37], leading to a deep implicit
object representation. Specifically, we adopt an encoder-
decoder architecture for the deep implicit representation, in
which the predicted object instance is encoded as a latent
vector and then decoded as the SDF of the object shape.
The structure of our deep implicit object representation is
illustrated in Fig. 3.

In the deep implicit object representation, we use an L-
dimension latent vector l for the object shape and use Tow
to represent the object pose. Tow denotes a transformation
from the world coordinate system to object canonical coor-
dinate system. For decoder φd, we compute the signed dis-
tance s at any position p ∈ R3 concatenated with the latent
vector l as s = φd(p, l). The final underlying surface is ex-
tracted as the zero iso-surface using Marching Cubes [27].

Following the automatic derivative mechanism from the
deep neural network, we can easily calculate the spatial
derivative of ∂φd(p,l)

∂p via back-propagation of the deep im-
plicit object representation, which can be further used in the
camera tracking and joint optimization described later.

3.2. Object Shape and Pose Inference

One important point for our deep implicit object repre-
sentation is how to infer the object shape and pose from
such neural representation accurately and efficiently. Un-

128D

Encoder

object instance
image

Decoder

Inference object shape Depth points
SDF value Silhouette

V
ie
w
 1

V
ie
w
 n

...

Inference

Tow

128D

Predict

Inference object pose

Figure 3. The backbone of our deep implicit object representation.
The encoder encodes an object instance image as a latent vector,
and then is decoded as a signed distance function of the object.
The signed distance value of surface points (depth) and projection
silhouette are used object shape and pose inference.

like NodeSLAM[46] and iMAP[45] that infer the object
shape and pose via time consuming neural rendering mod-
ules, we propose to address this issue in an optimization
way. Given initial object shape (encoded in latent vector)
and object pose, our strategy is to iteratively update the ob-
ject latent vector and pose using an object shape and pose
optimization. For inference accuracy, we introduce hybrid
cues and formulate them as precise measurements into the
optimization. For efficiency, we adopt to optimize the ob-
ject shape and pose in an alternately iterative way, i.e., we
first optimize the object shape with a shape inference by fix-
ing the object pose and then optimize the object pose with
a pose inference by fixing the object shape. In this way, we
perform inference of object shape and pose accurately and
efficiently from our deep implicit object representation.

Shape Inference. Given the initial object latent vector
l0 from the deep implicit object representation, and trans-
formation Toc from RGB-D frame to object canonical coor-
dinate, which can be calculated by given camera pose Twc
as Toc = TowTwc , we seek to find the optimized latent vec-
tor l∗ by minimizing the object functionEshape considering
the geometry term Eg , silhouette term Es, and regulariza-
tion term Er as:

l∗ = arg min
l
{Eshape = Eg + w1 · Es + w2 · Er} (1)

where w1 and w2 are weight parameters that balance the
silhouette term and regularization term respectively.

The geometry term Eg measures the SDF errors from
each depth point p ∈ P of the current RGB-D frame, by
considering both the SDF value from the point p and its
normal information n respectively as:

Eg(Toc, l) =
1

2|P |
∑
p∈P
{L(φd(Tocp, l), 0)

+ L(φd(Tocp+ (T−Toc n) · t, l), t)}
(2)

L(a, b) = |clamp(a, δ)− clamp(b, δ)| (3)

L(a, b) is the clipped L1 loss function with threshold δ =
0.1, and t denotes the step length parameter.

For the silhouette term Es, we follow the mechanism
introduced by [40, 42] which casts rays from the object’s
mask, uniformly samples points along the rays, and calcu-
lates the probability hitting function from the object surface
as:

Es(Toc, l) =

∫
Ω

{H(Toc, l)Pf (x)

+ (1−H(Toc, l))Pb(x)}dΩ

(4)

H(Toc, l) = 1− exp(
∑

p on ray

log(1− eφd(Tocp,l)ζ

eφd(Tocp,l)ζ + 1
))

(5)
where Pf and Pb are two parameters used to describe
the probability for each pixel whether it belongs to ob-
ject instance or the background region respectively, with
Pf + Pb = 1. Specifically, we set Pf = 1 for pixels x
located in object instance mask, otherwise set Pb = 1 for
those located in background.Parameter ζ controls the func-
tion smoothness and is set to 100.

For the regularization term Er, we adopt to regularize
the latent vector l as Er = ‖l‖2.

Pose Inference. Given the optimized latent vector l∗ for
the object shape, we seek to find an optimized object pose
T ∗ow for each object instance. Our observation is that by ap-
plying the optimized transformation T ∗ow, the decoded SDF
values for depth point p ∈ P in the current RGB-D frame
from the decoder φd(p, l∗) should reach the minimal value,
ideally i.e., zero. So we formulate the pose inference with a
least-squares optimization as:

T ∗ow = arg min
Tow

{Epose(Tow) =
∑
p∈P

ρ(‖φd(TowTwcp, l∗)‖2)}

(6)

with ρ(·) denoting a Huber robust function.

3.3. Object Shape and Pose Initialization

Our object shape and pose inference needs good initial
guesses, which could accelerate the convergence of both
shape inference and pose inference for the final accurate ob-
ject shape and pose.

Shape initialization. DeepSDF [37] proposes to ini-
tialize the object latent vector as a prior with a zero-mean
multivariate-Gaussian distribution. However, this initial-
ization strategy is only suitable for limited object class.
NodeSLAM[46] uses a one-hot vector for different object
classes, but the convergence is slow as extra optimization
iteration is needed during the optimization.

Inspired by FroDo [42], we adopt to train the encoder
network with only object instances, and take the predicted
latent vector as the object shape initialization latent vector,
which can cover different categories of objects. Specifi-
cally, we use ResNet50 [18] as the backbone of the encoder

network and modify the output variable dimension as the
size of the object’s latent vector, i.e., 128.

Pose initialization. A good initialization for object pose
is also important for shape inference. Here, we assume that
all objects are placed vertically on the scene floor, where
the floor plane is estimated by the point cloud of floor sam-
pled in the view of all the past frames. Besides, since the
coordinates of ShapeNet[5] models are between [-1, 1], em-
pirically, we resize the scale of the transformed point cloud
in object canonical coordinate within the range of [-1, 1].
Besides, we enumerate K = 15 rotation angle uniformly
sampled within 360◦ around the vertical axis of the floor,
and use them as the initial object pose for the subsequent
shape inference.

With the above shape and pose initialization, we perform
the object shape and pose inference described in Section 3.2
to generate the object shape and pose respectively, which is
further used to track camera poses. Besides, for real time
front-end tracking, we perform the object and pose initial-
ization and inference in a parallel thread at back-end.

3.4. Camera Tracking

After building up the object shape and pose inference
from the deep implicit object representation, we propose a
hybrid camera tracking to estimate the camera pose of each
RGB-D frame directly based on the deep implicit object
representation. Specifically, at each timestep t, we estimate
the camera pose T twc in the world coordinate using a set
of object instance landmarks {Oti} and the depth map Dt.
First, for each object Oti , we project the depth measurement
Dt back to 3D point cloud through P ti = π−1(Mi(D

t)) us-
ing the given camera intrinsic parameters, where π denotes
the projection function and π−1 is its reverse function. Mi

is the mask function to get the depth measurement of ob-
ject {Oti}. We make an initialization of the current frame
pose T twc as its reference keyframe’s pose T rwc. Then our
goal is to estimate the camera pose T twc by minimizing the
following objective function:

E(T twc) = Esp(T
t
wc) + w3 · Eobj(T twc), (7)

where Esp(T twc) and Eobj(T twc) are the sparse point term
and object term respectively, and parameter w3 controls the
balance between the two terms.

Object Term. Our observation is that the decoded SDF
value for points located at the depth measurement of an ob-
ject should be a small value, ideally i.e. zero, thus the object
term is designed to align the underlying 3D surface of the
object decoded by the latent vector, which is inspired by
SDF tracker[2, 19] that estimates the camera pose by min-
imizing the signed distance value of objects’ depth point
cloud P ti transformed in the object’s canonical coordinate.

We define the object term as:

Eobj(T
t
wc) =

∑
i

∑
p∈P t

i

ρ(
∥∥φd(T iowT twcp, li)∥∥2

), (8)

Since the object term depends on object surface recon-
struction in good quality, to make an accurate camera track-
ing, we only choose ‘good’ object instances for calculating
the object term. Here, we propose to label the object in-
stance as ‘good’ or ‘bad’ during the object shape and pose
inference (Sec. 3.2). Specifically, if the Chamfer distance
between the generated mesh and the corresponding depth
measurements is less than the threshold τok, we set the ob-
ject as ‘good’ to be able to participate in tracking and fol-
lowing pose optimization step. Otherwise, the object is set
as ‘bad’ without being considered as measurement for the
object term. And if the Chamfer distance is larger than the
threshold τfail, we will remove them from the map.

Sparse Point Term. Similar to other sparse SLAM sys-
tems like ORB-SLAM2 [33], sparse point term is the sum of
re-project error between matched 3D map points Xi ∈ R3

and 2D keypoints xj ∈ R2, with (i, j) ∈ χ the set of all
matches:

Ebg(T
t
wc) =

∑
(i,j)∈χ

ρ(‖π(Xi)− xj‖2) (9)

where ρ(·) is the Huber robust function. When perform-
ing the optimization, we apply Gauss-Newton iterative al-
gorithm to solve the optimization problem efficiently.

3.5. Joint Optimization of Object Shape, Object Pose and
Camera Pose

During the long-term camera tracking, the camera poses
estimated by our hybrid camera tracking would occur drift.
To rectify the motion drift, we also build a joint optimiza-
tion in the back-end that jointly rectifies the object shape,
object pose and camera pose. However, performing such
joint optimization for every RGB-D frame would be time-
consuming. For time efficiency, we only perform the joint
optimization for object shape, object pose and camera pose
in the keyframes of a sliding window.

Keyframe Selection. Our keyframe selection strategy
consists of four parts. A new keyframe will be inserted
when any of the following conditions is met:

1. The number of tracked points in current frame is less
than a minimal value τt = 150.

2. No new keyframe is inserted for a long time, i.e., the
number of frames passed since the last keyframe sur-
passes a given threshold τf = 25.

3. A new object is detected and the number of frames
passed since the last keyframe surpasses τo = 10, so
a keyframe is needed to initialize and create the new
object.

4. The frame viewpoint for any of the existing objects is
larger than 18◦.

Joint Optimization. For a sliding window of keyframe
set C which contains object instances O, our goal is to
jointly optimize the camera pose T iwc, i ∈ C, object pose
T jow, j ∈ O and object shape in latent vector lj . In our ex-
periments, we set the keyframe number of the sliding win-
dow as N = 5 in the synthetic dataset and N = 10 in the
real-world dataset.

For efficiency, our joint optimization takes an alterna-
tively iterative strategy to optimize shape and pose respec-
tively, i.e. we firstly apply a pose optimization step by fixing
all object shapes and then apply a shape optimization step
by fixing all camera poses and object poses.

Pose Optimization Step. In pose optimization step,
our purpose is to minimize the following objective func-
tion with respect to sparse point set P and ‘good’ object set
O′ ⊆ O:

min
∑

i∈C,j∈O′

eco(i, j) +
∑

i∈C,k∈P

ecp(i, k) (10)

where the camera-to-object error eco(i, j) and camera-to-
point error ecp(i, k) defined as:

eco(i, j) = ρ(
∥∥∥φd(T jowT iwcP ji , lj)∥∥∥2

) (11)

ecp(i, k) = ρ(
∥∥π(Xk)− xk

∥∥2
) (12)

where xk is the corresponding 2D points of Xk and P ji is
the depth point cloud of the object j measured in the cam-
era i. This optimization can be performed by Levenberg-
Marquardt algorithm using Schur Compliment efficiently.

Shape Optimization Step. Object shape should be op-
timized to fit multi-view observations of keyframes in slid-
ing window, we accumulate all objective functions across
each of object-camera pairs as the whole shape optimiza-
tion function:

min
∑

i∈C,j∈O
{Eg(T jowT iwc, lj) + w1 · Es(T jowT iwc, lj)}

+
∑
j∈O

w2 · Er(lj)

(13)
where Eg, Es, Er are geometry term, silhouette term and
regularization term and use the same weight parameters
w1, w2 as Equation (1). Adam algorithm is applied to opti-
mize the latent vector of all objects in a sliding window.

4. Experiments and Analysis

In this section, we first explain the implementation de-
tails of our method and then compare our method with oth-
ers to demonstrate its effectiveness and efficiency.

Table 1. Comparison of ATE on our synthetic four scenes (measured in centimeters). The best numbers are indicated in boldface.
S1(1) S1(2) S1(3) S1(4) S1(5) S2(1) S2(2) S2(3) S2(4) S2(5) S3(1) S3(2) S3(3) S3(4) S3(5) S4(1) S4(2) S4(3) S4(4) S4(5)

IM 6.19 48.58 29.80 17.75 10.11 23.64 87.37 6.29 5.16 17.94 25.61 16.71 12.40 9.29 5.11 60.90 10.33 52.82 37.15 13.03
MF 8.17 28.36 36.42 18.14 13.19 31.07 40.52 4.89 8.57 28.50 16.67 12.73 30.55 7.19 5.35 30.45 4.41 26.57 17.14 16.29
MID 6.20 4.94 11.10 3.74 3.92 4.55 5.32 4.09 4.01 2.69 4.18 - 9.74 4.06 2.69 3.77 3.00 - 5.92 8.84
BF 5.51 4.60 10.34 1.72 3.83 2.78 13.54 3.07 3.92 4.68 7.94 1.84 3.43 3.97 3.64 8.47 1.19 11.02 7.57 10.46

Ours 1.71 0.58 1.07 0.60 0.86 1.31 1.87 0.87 0.51 1.31 0.88 0.57 1.16 1.00 0.34 0.74 0.95 1.43 1.49 1.05
Ours(w/o Obj) 0.75 0.53 0.57 0.34 0.84 0.88 1.34 0.89 0.53 1.49 1.35 0.57 1.31 1.07 0.33 0.94 1.22 1.63 1.05 0.70

ORB 0.86 0.30 0.59 0.58 0.49 1.14 0.48 0.27 0.34 1.40 0.61 0.54 0.82 0.40 0.29 0.45 0.42 1.29 1.14 0.73

4.1. System Implementation

When implementing the encoder-decoder network of
deep implicit object representation, we use 8 FC layers
for the decoder as like DeepSDF architecture[37], and also
train the networks using the 3D models from ShapeNet
dataset[5]. Different from DeepSDF[37] which trains an
individual decoder for each class, we train one decoder to
represent different sets of object shapes using all models
together. We use the L2 loss like [24, 42] did to train the
encoder to measure the distance between the embedding
vector of the model and the predicted latent vector of its
rendered image. The rendered images are provided by [7].

Parameters. We set the dimensions of the latent vector
in our network to be 128. For optimization term Eshape,
we set silhouette term weight w1 = 1 in a synthetic dataset
and w1 = 0.1 in a real-world dataset, regularization term
weight w2 = 1e−4, and step length of sample points along
normal direction t in is set as 0.05. Threshold parameters of
Huber robust function of object’s depth point cloud term (in
Equation(6),(8),(11)) and sparse map point term (in Equa-
tion(9),(12)) are set 0.05 and

√
5.991 respectively. We also

set object term weight in camera tracking (in Equation(7))
as w3 = 0.2.

Dataset. We evaluate our system performance both on
a synthetic dataset and a real-world dataset. For the syn-
thetic dataset, we create four synthetic indoor scenes with
different objects randomly placed on the floor, and five
camera trajectories are randomly generated for each scene.
The code for the generation and rendering of this dataset
is provided by SceneNet RGBD[29]. We only evaluate
the performance of object reconstruction on the most com-
mon classes in the indoor scenes, i.e., “Chair”, “Table” and
“Sofa”. It’s more difficult to reconstruct these objects since
they have more complex shapes and poses than cylindrical
objects like “cup”, “bottle” or “bowl” which most are ax-
ial symmetry with simple shapes in NodeSLAM [46]. For
real-world dataset, we adopt ScanNet dataset[9] to evalu-
ate the object reconstruction quality of our approach for a
real-world dataset.

4.2. Evaluation on Camera Pose Estimation

In this subsection, we make an evaluation of accuracy of
the camera pose estimation of our approach on the synthetic

Table 2. Object reconstruction results comparison on Chamfer
distance(CD, measured in centimeters) and completeness(COMP,
with 5cm threshold). The best numbers are indicated in boldface.

Methods Chair Table
CD COMP CD COMP

MID-Fusion 10.12 65.80 13.58 60.94
MaskFusion 13.66 47.81 16.05 35.52

Ours(w/o initial Opt) 7.08 80.31 12.22 66.33
Ours(w/o joint Opt) 5.15 85.07 8.21 79.18

Ours 4.90 86.92 7.67 81.58

dataset. Specifically, we compare our system with five pre-
vious different types of baseline systems, 1) sparse SLAM:
ORB-SLAM2(ORB) [34]; 2) TSDF-fusion reconstruction
system: InfiniTAM(IM) [23], BundleFusion(BF) [10]; 3)
object-level SLAM: MID-Fusion(MID) [51] and MaskFu-
sion(MF) [41]. For the accuracy metric, we adopt Root-
Mean-Square-Error (RMSE) of Absolute Trajectory Error
(ATE) as a metric of the accuracy of camera pose estima-
tion. ORB-SLAM2 is a sparse feature point-based SLAM,
which doesn’t reconstruct any object surface. Here, we
adopt ORB-SLAM2 as the baseline approach for the cam-
era pose estimation. InfiniTAM, BundleFusion and MID-
Fusion are TSDF-based 3D surface reconstruction systems,
while MaskFusion is a surfel-based 3D surface reconstruc-
tion system. InfiniTAM and BundleFusion aim at 3D re-
construction for the whole scene while MID-Fusion and
MaskFusion are object-level SLAM for object reconstruc-
tion only. Additionally, we also implement a version of our
system without using object landmarks (i.e., tracking only
with map points) to evaluate the effect of object term in our
camera tracking module.

In order to eliminate the impact from the different im-
plementation of different systems on the results, we per-
form the evaluation for each sequence five times, and cal-
culate the average ATE accuracies by removing the high-
est and lowest ATE scores. Tab. 1 shows the detailed ATE
scores of five random trajectories (the numbers in brackets
are their trajectory index) for each of four synthetic scenes.
‘-’ means that the method gets failed, for which we would
not evaluate the accuracy for such scenes. ORB-SLAM2
achieves the lowest tracking ATE accuracy score in most
sequences of the synthetic dataset benefiting from its sparse

Ours

MID-Fusion

MaskFusion

ShapeNet Model

Figure 4. Qualitative scene reconstruction results on our synthetic dataset, with individual object reconstructions (marked as red and blue
boxes) are also listed below. Objects marked in blue boxes are failure results from some other method. The ground-truth models from
ShapeNet are listed at the bottom row for reference.

feature-point-based tracking method. Our method outper-
forms InfiniTAM, MID-Fusion, MaskFusion and Bundle-
Fusion, which achieves significant ATE score decrement
over these four approaches, and obtains a comparable tra-
jectory accuracy level as ORB-SLAM2. For the object term,
our approach achieves a slightly better ATE score than the
system of Ours (w/o Obj) like some sequences such as S3(1)

and S4(2) indicated in italic in Tab. 1.

4.3. Object Reconstruction Quality Evaluation

Our approach can not only accurately estimate the
camera pose, but also reconstruct the object’s shape in
high completeness and quality. In this subsection, we
evaluate our system’s ability for object reconstruction in

GT scene mesh

Object in scene

Object Reconstruction

Figure 5. Qualitative scene reconstruction result from ScanNet dataset. Top row: object reconstructed by our approach. Middle row:
objects placed in the scenes. Bottom row: ground-truth scene mesh from ScanNet.

terms of both quantitative and qualitative results. We
adopt two metrics are used for object shape reconstruction
evaluation[42, 46], i.e., Chamfer Distance (CD) and Com-
pleteness (COMP), to evaluate the quantitative scores. For
Completeness score, we use the threshold as 5cm.

We compare our method against MID-Fusion and Mask-
Fusion, which are two recent object-level SLAM ap-
proaches. Although MID-Fusion and MaskFusion focus on
object-level SLAM in dynamic scenes, which is different
from our goal for static scenes, we perform the comparison
on the same dataset of SceneNet RGBD dataset. One of the
main drawbacks of MID-Fusion in camera tracking is that
its tracking for object instance could be highly unreliable
for objects moving out of view frustum, leading to severe
object’s pose drift and poor results of object reconstruction.
Since all sequences of our synthetic dataset are in static en-
vironments, we set the object to be static in MID-Fusion
to avoid severe object’s pose drift. For our approach, we
implement two different versions including (1) one without
using the object shape and pose inference, termed as Ours
(w/o initial Opt), and (2) one without using the joint opti-
mization, termed as Ours (w/o joint Opt).

Tab. 2 lists the object reconstruction results from the
five different kinds of approaches. We can see that our ap-
proach achieves the lowest surface distance (CD) and high-
est completeness scores (COMP) comparing the other four
approaches. Benefiting from our accurate camera pose esti-
mation and neural object shape representation, our approach

can reconstruct more complete objects than MaskFusion
and MID-Fusion. Besides, Ours (w/o joint Opt) achieves
better CD (5.15) and COMP (8.21) scores than Ours (w/o
initial Opt) with CD (7.08) and COMP (12.22), showing
that object shape and pose inference plays a major role in
object surface reconstruction. Based on this module, the
joint optimization further improves the object surface re-
construction quality.

Fig. 4 shows some qualitative results compared with
MID-Fusion and MaskFusion, where the corresponding
ShapeNet models are shown at the bottom for reference. We
can see that our approach achieves more complete and bet-
ter quality object reconstruction than the traditional TSDF-
fusion method (e.g. MID-Fusion) and surfel-fusion method
(e.g. MaskFusion). Due to the low accuracy camera pose
estimation of MaskFusion which is evaluated in Sec. 4.2, its
estimated object pose will drift significantly and often leads
to unsatisfied object reconstruction, such as the pink chair
in the middle column of MaskFusion in Fig. 4, and incom-
plete object reconstruction (e.g. chairs in the first column in
Fig. 4). Furthermore, our deep implicit representation only
represents the object shape using a 128-dimensional vector
while MID-Fusion uses a fixed size volumetric voxels that
leads to much more memory footprint. For example, we
only need 512 KB for encoding one object, which is much
less than 64 MB using a 2563 SDF voxels.

GT

Mask R-CNN

QueryInst

Figure 6. Visual comparison of reconstruction result be-
tween Mask R-CNN segmentation, QueryInst segmentation and
GroundTruth segmentation.

4.4. Real World Evaluation

We also evaluate qualitative results on ScanNet
dataset[9], which contains a large scale of real-world RGB-
D sequence and is annotated with instance-level semantic
segmentation. Fig. 1 and 5 show some visual effects of
the object reconstruction results that our system success-
fully generates with high-quality reconstruction. The gen-
erated object surfaces are complete, sometimes even bet-
ter than the ground-truth mesh (obtained with 3D recon-
struction method [10]) benefit from the neural object priors
we used. There would also be some objects that have not
been reconstructed by our approach, which is mainly due
to occlusion and truncation, being one limitation of our ap-
proach.

4.5. Runtime

Our system runs on a platform with an Nvidia RTX 3090
GPU at ∼7 Hz. The average timing of each main compo-
nent is shown in Tab. 3. “Pre-processing” mainly contains
points and objects extraction and data association. “Track-

ing” represents our proposed hybrid camera tracking. “JO”
is the abbreviation of “Joint Optimization”. Since the run-
time of tracking and joint optimization is related to the num-
ber of objects involved, we report average increase in run-
time for tracking or joint optimization when the number of
involved objects increased by one (marked as ‘/O’) and run-
time without any objects respectively. Note that although
our deep implicit object representation is more complex
than the voxel occupancy grids used in NodeSLAM [46],
our approach efficiently converts such deep neural rep-
resentation to reconstruct heterogeneous object shapes at
a fast camera tracking processing rate comparable with
NodeSLAM [46].

Table 3. Runtime analysis of our system.

Pre-processing Tracking Tracking/O JO JO/O
Time 67ms 20ms 50ms 592ms 887ms

Table 4. Ablation study based on three different kinds of in-
stance segmentation, including Mask R-CNN, QueryInst and
GroundTruth.

Methods Chair Table
CD COMP CD COMP

Ours(MaskRCNN) 6.89 84.19 11.05 67.96
Ours(QueryInst) 6.55 84.23 11.70 67.36

Ours(GroundTruth) 4.90 86.92 7.67 81.58

4.6. System Study

Instance Segmentation. In order to demonstrate
the effect of instance segmentation, we make an evalu-
ation between GT and deep models for object instance
segmentation. We evaluate two versions of our ap-
proach for different deep model segmentation. One uses
Mask R-CNN [17] which served as classical segmenta-
tion model to generate object instance segmentation, termed
as Ours(MaskRCNN). And the other uses QueryInst [15]
which served as SOTA segmentation model, termed as
Ours(QueryInst). Table. 4 shows the CD and COMP accu-
racy for the ‘Chair’ and ‘Table’ objects using three kinds
of instance segmentation respectively. We can see that
the accuracy from QueryInst (CD 6.55, COMP 84.23) and
MaskRCNN (CD 6.89, COMP 84.19) is slightly worse than
GT (CD 4.90, COMP 86.92), which is reasonable since
the object segmentation quality would directly influence the
shape generation in our approach. However, our approach
can still achieve consistent object reconstruction in differ-
ent quality of object instance segmentation, which demon-
strates our approach has good robustness for object genera-
tion under different deep models of object instance segmen-
tation. Some visual comparison results are shown in Fig. 6,

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.001 0.002 0.005 0.008 0.010

AT
E

ATE

0.74

0.745

0.75

0.755

0.76

0.765

0.77

0.775

0.08

0.082

0.084

0.086

0.088

0.09

0.092

0.094

0.096

0.01 0.02 0.04 0.08 0.10

CO
M

P

CD

CD

COMP

0.752

0.754

0.756

0.758

0.76

0.762

0.764

0.766

0.768

0.77

0.086

0.087

0.088

0.089

0.09

0.091

0.092

0.093

0.094

0.095

0.10 0.20 0.50 0.80 1.00

CO
M

P

CD

CD

COMP

Figure 7. The ATE, CD and COMP metric curves for main parameters in our approach.

(a) (b) (c)

Figure 8. Failure cases of our system, such as objects that stand
obliquely on the ground, thin parts of object, and those mostly
occluded by other object.

and the last column demonstrates that the object is only par-
tially reconstructed due to incomplete segmentation and is
hard to rectify through optimization.

Parameters. We make a parameter study to evaluate
some key parameters used in our system including ‘good’
object threshold τok, ‘failed’ object threshold τfail, and the
silhouette weight w1. In the parameter evaluation, we first
sample τok in {0.001, 0.002, 0.005, 0.008, 0.01}, τfail in
{0.01, 0.02, 0.04, 0.08, 0.1} and w1 in {0.1, 0.2, 0.5, 0.8,
1.0}, and then study the impact of each parameter on the ac-
curacy of the final result one by one. Fig. 7 shows the ATE,
CD and COMP accuracy curves on average for the three
parameters tested on SceneNet RGB-D dataset we created
separately. For parameter τok, the ATE error increases con-
sistently along with the τok increasing. For parameter τfail,
the CD metric increase and COMP metric decrease consis-
tently along with the τfail increasing. For silhouette weight
parameter w1, when weight for silhouette term increases,
lower chamfer distance will be achieved, but completeness
metric is not well related to the parameter.

4.7. Limitations

There are some limitations of our approach: (1) we make
the assumption that all objects are placed vertically on the
ground, which will benefit for making good initialization of
pose estimation. This may lead to poor performance when
estimating and reconstructing those standing obliquely on
the ground due to bad pose initialization, as Fig. 8(a) shows.
However, since the assumption of vertically placed objects
meets most object cases in indoor scenes, we think such
assumption is still a reasonable point and leave its draw-
backs as a limitation for future work. One possible solution
would be using a deep model to predict initial pose guess
without any constraint. (2) Thin structure objects. The thin
structure objects would be challenging to detect completely
from 2D CNN, which would not be correctly generated by
our approach, e.g. the thin legs and seating part of the chair
shown in Fig. 8(b). (3) The wrong shape generation caused
by occlusion or truncation. If an object is partially observed
with occlusion by other objects, our approach could not give
accurate initial shape estimation, and thus incapable of op-
timizing for the final accurate shape generation(Fig. 8(c)).

5. Conclusion

In this paper, we present a novel object-level RGB-D
SLAM system by using deep neural implicit representation
for objects. Our method can effectively learn object shape
prior and encode object as a latent vector for accurate and
complete object reconstruction while saving large memory
costs. Benefiting from the learned neural object priors, our
proposed accurate camera tracking and joint optimization
for object shape, object pose and camera pose for the final
high-quality object surface reconstruction. We have shown
our approach achieves better performance for accurate cam-
era/object pose estimation and high quality of object shape
reconstruction, evaluated both on synthetic and real-scan
scenes. In the future, we hope to further improve our system
to solve the drawbacks aforementioned for a better object-
level SLAM with more robust camera tracking and better
object surface reconstruction quality, or even in dynamic
scenes.

Acknowledgement

This work was supported by the National Natural Sci-
ence Foundation of China (Grant No. 61902210).

References

[1] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza,
J. Neira, I. Reid, and J. J. Leonard. Past, present, and
future of simultaneous localization and mapping: Toward
the robust-perception age. IEEE Transactions on Robotics
(TRO), 32(6):1309–1332, 2016. 2

[2] D. R. Canelhas, T. Stoyanov, and A. J. Lilienthal. SDF
tracker: A parallel algorithm for on-line pose estimation and
scene reconstruction from depth images. In IROS, pages
3671–3676, 2013. 5

[3] Y.-P. Cao, L. Kobbelt, and S.-M. Hu. Real-time high-
accuracy three-dimensional reconstruction with consumer
RGB-D cameras. ACM Trans. Graph., 37(5):171:1–171:16,
2018. 1, 2

[4] R. Chabra, J. E. Lenssen, E. Ilg, T. Schmidt, J. Straub,
S. Lovegrove, and R. A. Newcombe. Deep local shapes:
Learning local SDF priors for detailed 3d reconstruction. In
ECCV, volume 12374 of Lecture Notes in Computer Science,
pages 608–625, 2020. 1, 3

[5] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan,
Q. Huang, Z. Li, S. Savarese, M. Savva, S. Song, and H. Su.
Shapenet: An information-rich 3d model repository. Com-
puter Science, 2015. 5, 7

[6] J. Chen, D. Bautembach, and S. Izadi. Scalable real-time
volumetric surface reconstruction. ACM Trans. Graph.,
32(4):113:1–113:16, 2013. 2

[7] C. B. Choy, D. Xu, J. Gwak, K. Chen, and S. Savarese. 3d-
r2n2: A unified approach for single and multi-view 3d object
reconstruction. In European conference on computer vision,
pages 628–644. Springer, 2016. 7

[8] B. Curless and M. Levoy. A volumetric method for building
complex models from range images. In ACM SIGGRAPH,
pages 303–312, 1996. 1, 2

[9] A. Dai, A. X. Chang, M. Savva, M. Halber, T. A.
Funkhouser, and M. Nießner. Scannet: Richly-annotated
3d reconstructions of indoor scenes. In IEEE CVPR, pages
2432–2443, 2017. 2, 7, 10

[10] A. Dai, M. Nießner, M. Zollhöfer, S. Izadi, and C. Theobalt.
Bundlefusion: Real-time globally consistent 3d reconstruc-
tion using on-the-fly surface reintegration. ACM Trans.
Graph., 36(3):24:1–24:18, 2017. 1, 2, 7, 10

[11] A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse.
Monoslam: Real-time single camera slam. IEEE T-PAMI,
29(6):1052–1067, 2007. 2

[12] Z.-J. Du, S.-S. Huang, T.-J. Mu, Q. Zhao, R. Martin, and
K. Xu. Accurate dynamic slam using crf-based long-term
consistency. IEEE Transactions on Visualization and Com-
puter Graphics, pages 1–1, 2020. 2

[13] J. Engel, V. Koltun, and D. Cremers. Direct sparse odometry.
IEEE T-PAMI, 40(3):611–625, 2018. 2

[14] J. Engel, T. Schöps, and D. Cremers. LSD-SLAM: large-
scale direct monocular SLAM. In ECCV, pages 834–849,
2014. 2

[15] Y. Fang, S. Yang, X. Wang, Y. Li, C. Fang, Y. Shan, B. Feng,

and W. Liu. Instances as queries. In Proceedings of the
IEEE/CVF International Conference on Computer Vision
(ICCV), pages 6910–6919, October 2021. 10

[16] R. Gomez-Ojeda, F. A. Moreno, D. Zuñiga-Noël, D. Scara-
muzza, and J. G. Jiménez. PL-SLAM: A stereo SLAM sys-
tem through the combination of points and line segments.
IEEE Trans. Robotics, 35(3):734–746, 2019. 2

[17] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask r-cnn.
In Proceedings of the IEEE international conference on com-
puter vision, pages 2961–2969, 2017. 10

[18] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
770–778, 2016. 5

[19] J. Huang, S. Huang, H. Song, and S. Hu. Di-fusion: Online
implicit 3d reconstruction with deep priors. In IEEE CVPR,
pages 8932–8941, 2021. 1, 3, 5

[20] S. Huang, Z. Ma, T. Mu, H. Fu, and S. Hu. Lidar-monocular
visual odometry using point and line features. In 2020 IEEE
International Conference on Robotics and Automation, ICRA
2020, Paris, France, May 31 - August 31, 2020, pages 1091–
1097. IEEE, 2020. 2

[21] S.-S. Huang, H. Chen, J. Huang, H. Fu, and S.-M. Hu. Real-
time globally consistent 3d reconstruction with semantic pri-
ors. IEEE transactions on visualization and computer graph-
ics, December 2021. 2

[22] C. M. Jiang, A. Sud, A. Makadia, J. Huang, M. Nießner, and
T. A. Funkhouser. Local implicit grid representations for 3d
scenes. In IEEE CVPR, pages 6000–6009, 2020. 1, 3

[23] O. Kähler, V. A. Prisacariu, C. Y. Ren, X. Sun, P. H. S. Torr,
and D. W. Murray. Very high frame rate volumetric inte-
gration of depth images on mobile devices. IEEE TVCG,
21(11):1241–1250, 2015. 2, 7

[24] Y. Li, S. Hao, C. R. Qi, N. Fish, D. Cohen-Or, and
L. J. Guibas. Joint embeddings of shapes and images via
cnn image purification. ACM Transactions on Graphics,
34(6cd):234.1–234.12, 2015. 7

[25] H. Liu, G. Zhang, and H. Bao. Robust keyframe-based
monocular SLAM for augmented reality. In W. Broll,
H. Saito, and J. E. S. II, editors, IEEE ISMAR, pages 1–10,
2016. 2

[26] L. Liu, X. Xia, H. Sun, Q. Shen, J. Xu, B. Chen, H. Huang,
and K. Xu. Object-aware guidance for autonomous scene
reconstruction. ACM Transactions on Graphics (TOG),
37(4):104:1–104:12, 2018. 1

[27] W. E. Lorensen and H. E. Cline. Marching cubes: A high
resolution 3d surface construction algorithm. ACM siggraph
computer graphics, 21(4):163–169, 1987. 4

[28] J. McCormac, R. Clark, M. Bloesch, A. J. Davison, and
S. Leutenegger. Fusion++: Volumetric object-level SLAM.
In 3DV, pages 32–41, 2018. 1, 2, 3

[29] J. Mccormac, A. Handa, S. Leutenegger, and A. J. Davison.
Scenenet rgb-d: Can 5m synthetic images beat generic ima-
genet pre-training on indoor segmentation? In IEEE Inter-
national Conference on Computer Vision (ICCV), 2017. 2,
7

[30] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron,
R. Ramamoorthi, and R. Ng. Nerf: Representing scenes
as neural radiance fields for view synthesis. In A. Vedaldi,

H. Bischof, T. Brox, and J. Frahm, editors, ECCV, volume
12346, pages 405–421. Springer, 2020. 3

[31] N. Müller, Y. Wong, N. J. Mitra, A. Dai, and M. Nießner.
Seeing behind objects for 3d multi-object tracking in RGB-
D sequences. In IEEE CVPR, 2021. 1

[32] J. Munkres. Algorithms for the assignment and transporta-
tion problems. Journal of the society for industrial and ap-
plied mathematics, 5(1):32–38, 1957. 4

[33] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardós. ORB-
SLAM: A versatile and accurate monocular SLAM system.
IEEE Trans. Robotics, 31(5):1147–1163, 2015. 6

[34] R. Mur-Artal and J. D. Tardós. Orb-slam2: An open-source
slam system for monocular, stereo, and rgb-d cameras. IEEE
Transactions on Robotics, 33(5):1255–1262, 2017. 2, 7

[35] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux,
D. Kim, A. J. Davison, P. Kohli, J. Shotton, S. Hodges, and
A. W. Fitzgibbon. Kinectfusion: Real-time dense surface
mapping and tracking. In ISMAR, pages 127–136, 2011. 1

[36] M. Nießner, M. Zollhöfer, S. Izadi, and M. Stamminger.
Real-time 3d reconstruction at scale using voxel hashing.
ACM Trans. Graph., 32(6):169:1–169:11, 2013. 1, 2

[37] J. J. Park, P. Florence, J. Straub, R. Newcombe, and S. Love-
grove. Deepsdf: Learning continuous signed distance func-
tions for shape representation. In IEEE CVPR, pages 165–
174, 2019. 1, 4, 5, 7

[38] J. J. Park, P. Florence, J. Straub, R. A. Newcombe, and
S. Lovegrove. Deepsdf: Learning continuous signed dis-
tance functions for shape representation. In IEEE CVPR,
pages 165–174, 2019. 3

[39] S. Peng, M. Niemeyer, L. M. Mescheder, M. Pollefeys,
and A. Geiger. Convolutional occupancy networks. In
A. Vedaldi, H. Bischof, T. Brox, and J. Frahm, editors,
ECCV, volume 12348, pages 523–540. Springer, 2020. 3

[40] V. A. Prisacariu, A. V. Segal, and I. Reid. Simultaneous
monocular 2d segmentation, 3d pose recovery and 3d recon-
struction. In Asian conference on computer vision, pages
593–606. Springer, 2012. 5

[41] M. Runz, M. Buffier, and L. Agapito. Maskfusion: Real-time
recognition, tracking and reconstruction of multiple moving
objects. In ISMAR, pages 10–20, 2018. 1, 3, 7

[42] M. Runz, K. Li, M. Tang, L. Ma, C. Kong, T. Schmidt,
I. Reid, L. Agapito, J. Straub, S. Lovegrove, et al. Frodo:
From detections to 3d objects. In IEEE CVPR, pages 14720–
14729, 2020. 1, 3, 5, 7, 9

[43] R. F. Salas-Moreno, R. A. Newcombe, H. Strasdat, P. H. J.
Kelly, and A. J. Davison. SLAM++: simultaneous locali-
sation and mapping at the level of objects. In IEEE CVPR,
pages 1352–1359, 2013. 1, 3

[44] M. Strecke and J. Stuckler. Em-fusion: Dynamic object-
level slam with probabilistic data association. In Proceedings
of the IEEE/CVF International Conference on Computer Vi-
sion, pages 5865–5874, 2019. 3

[45] E. Sucar, S. Liu, J. Ortiz, and A. Davison. iMAP: Implicit
mapping and positioning in real-time. In International Con-
ference on Computer Vision (ICCV), 2021. 1, 2, 3, 4

[46] E. Sucar, K. Wada, and A. Davison. Nodeslam: Neural ob-
ject descriptors for multi-view shape reconstruction. In 2020
International Conference on 3D Vision (3DV), pages 949–
958. IEEE, 2020. 1, 2, 4, 5, 7, 9, 10

[47] J. Sun, Y. Xie, L. Chen, X. Zhou, and H. Bao. Neuralrecon:
Real-time coherent 3d reconstruction from monocular video.
In IEEE CVPR, pages 15598–15607, 2021. 3

[48] T. Whelan, R. F. Salas-Moreno, B. Glocker, A. J. Davison,
and S. Leutenegger. Elasticfusion: Real-time dense SLAM
and light source estimation. I. J. Robotics Res., 35(14):1697–
1716, 2016. 2

[49] Y. Wong, C. Li, M. Nießner, and N. J. Mitra. Rigidfusion:
RGB-D scene reconstruction with rigidly-moving objects.
Computer Graphics Forum (CGF), 40(2):511–522, 2021. 1,
3

[50] Y. Xiao, Y. Lai, F. Zhang, C. Li, and L. Gao. A survey on
deep geometry learning: From a representation perspective.
Comput. Vis. Media, 6(2):113–133, 2020. 3

[51] B. Xu, W. Li, D. Tzoumanikas, M. Bloesch, A. J. Davison,
and S. Leutenegger. Mid-fusion: Octree-based object-level
multi-instance dynamic SLAM. In IEEE ICRA, pages 5231–
5237, 2019. 1, 2, 3, 7

[52] K. Xu, H. Huang, Y. Shi, H. Li, P. Long, J. Caichen, W. Sun,
and B. Chen. Autoscanning for coupled scene reconstruction
and proactive object analysis. ACM Transactions on Graph-
ics (TOG), 34(6):177:1–177:14, 2015. 1

