
Neural Temporal Denoising for Indirect Illumination

Yan Zeng
Shandong University

Jinan, China
yanzeng@mail.sdu.edu.cn

Lu Wang
Shandong University

Jinan, China
luwang hcivr@sdu.edu.cn

Yanning Xu
Shandong University

Jinan, China
xyn@sdu.edu.cn

Xiangxu Meng
Shandong University

Jinan, China
mxx@sdu.edu.cn

Ours

Ref

Ref

Noise (1spp) OursNTASD

SVGF TRMV

Noise

Figure 1. We present a novel learning-based temporal denoiser for indirect illumination of sparse Monte Carlo path traced sequences at real-time rates. Our
method significantly alleviate the overblur and ghosting artifacts in dynamic occluded regions. We compare with the state of the art methods: SVGF [24],
TRMV [29] and NTASD [9].

Abstract

The state of the art temporal reuse methods with tra-
ditional motion vectors cause artifacts in motion occlu-
sions. We propose a novel neural temporal denoising
method for indirect illumination of Monte Carlo (MC)
ray tracing animations at 1 sample per pixel. Based
on the end-to-end multi-scale kernel-based reconstruc-
tion, we apply temporally reliable dual motion vectors
to better reconstruct the occlusions, and introduce ad-
ditional motion occlusion loss to reduce ghosting arti-
facts. Experiments show that our method significantly
reduces the overblur and ghosting artifacts while gener-
ating high quality images at real-time rates.

1. Introduction

MC integration [23] is pervasively applied in rendering
physics-based realistic images from virtual modeling scenes
in recent years [19]. However, it requires heavy computer
calculations and enormous samples per pixel, usually tak-
ing hours to generate a plausible image. Due to the require-
ments of real-time (at 30 FPS) and the limitations of hard-
ware, MC ray tracing can only use 1 path per pixel, which
brings inevitable and unbearable noise to rendered images.
Since the improvement of NVIDIA RTX hardware could
hardly achieve the requirements of real-time ray tracing for
the foreseeable future, researchers focus on reconstruction
algorithm with low sample counts to obtain noise-free im-
ages at interactive or even real-time rates.

1



Recent learning-based offline denoising methods bring
the possibility of sparse MC reconstruction. Bako et al. [2]
propose Kernel Predict Convolutional Networks (KPCN) to
predict the locally optimal neighborhood weights per pixel,
Vogels et al. [27] introduce hierarchy multi-scale module to
KPCN, and extend the network to temporal domain. These
methods generate high-quality results, however, they need
16-32 spp, which are far more than the sample counts toler-
able at real-time rates.

The Recurrent Auto-Encoder (RAE) network [6] de-
noises the MC renderings at interactive rates by adding a
recurrent convolutional block to each encoder layer of a U-
Net [21] architecture. The Spatiotemporal Variance-Guided
Filtering (SVGF) method [24] reconstructs direct and indi-
rect illumination separately, using temporal accumulation
and Temporal Anti-Alising (TAA) [25] to generate tempo-
rally stable sequences. These methods denoise the sparse
rendered images at interactive or real-time rates and reduce
flickering between successive frames, however, still remain
significant overblur and ghosting artifacts, especially when
occlusion happens.

Inspired by hierarchy KPCN [27], The Neural Tempo-
ral Adaptive Sampling and Denoising (NTASD) method [9]
applies multi-scale kernel predict module to the Deep Adap-
tive Sampling and Reconstruction (DASR) network [1],
adds temporal optimization to sample predictor and de-
noiser, thus produces better images with high-frequency de-
tails and increases temporal stability. The quality of all
those TAA based methods is related to the correctness of
motion vectors. Zeng et al. [29] propose reliable motion
vectors for shadows, glossy reflections and occlusions sepa-
rately, but the quality of denoising results is unstable caused
by empirically based temporal filtering. Since indirect il-
lumination is very important for complex scenes with a
large number of occlusions, we pursue stable diffuse in-
direct lighting effects in the occlusion case. Note that the
direct illumination can be reasonably denoised using the
Linear Transformed Cosines (LTC)[10], however, the indi-
rect illumination is difficult to be solved by LTC, and there
are serious ghosting artifacts when moving objects or view-
points changing rapidly in the scene, so we focus on indirect
illumination denoising.

Based on the idea of NTASD [9] and hierarchy
KPCN [27], we propose a learning-based end-to-end de-
noising network. In addition to the generation of high-
quality noise-free images and the preservation of temporal
stability, our method aims at generating reasonable warped
previous images with temporally reliable dual motion vec-
tors (TRMV) [29], and using motion occlusion loss function
to reduce the ghosting artifacts. The main contributions are
as follows:

• propose a learning-based temporal denoiser network
for indirect illumination of MC path tracing at sparse

sample counts (1 ray per pixel) at real-time rates,

• generate a more plausible warped previous denoised
image aligned with current frame in temporal reproject
process by using dual motion vectors, and

• introduce a motion occlusion loss function to substan-
tially reduce the ghosting artifacts in dynamic occlu-
sions.

2. Related work

2.1. Traditional adaptive sampling and reconstruction
methods

To reduce the visually annoying noise caused by rela-
tive low sample counts in classical MC rendering estima-
tions [23], traditional algorithms [30] control the sampling
density and aggregate samples. Some of traditional meth-
ods [26, 15, 11] obtain sampling rates and filters by an-
alyzing the light equations [12], other image-space meth-
ods [20, 22, 4, 5] based on linear regression usually exploit
auxiliary features (such as per-pixel albedo, depth, normal
or diffuse reflectance), estimate the errors of the filtered out-
put and compute the kernel weights. However, these tradi-
tional methods are still far from real-time and rarely used in
animation sequences.

2.2. Learning-based post-processing methods

Thanks to recent advanced deep learning frame-
works [14], MC denoising methods have made great
progress in post-processing reconstruction [28]. Among
which the pixel denoising methods stand out, this kind of
methods predict the per-pixel results, become the most gen-
eral and popular solutions. The pixel denoising researches
can be divided into categories by the prediction targets (pa-
rameter, kernel and radiance) [28], and our research mainly
focuses on the kernel prediction methods.

Bako et al. [2] propose a supervised KPCN, instead of
their previous direct prediction framework (DPCN) that di-
rectly predicts the final pixel value by training a deep convo-
lutional network (CNN) [14], this network manages to pre-
dict the local reconstruction kernel weights of each pixel,
perform a filter operator by applying the kernel to each
pixel, and then obtain the final pixel color indirectly.

To deal with the temporal stability, hierarchy KPCN [27]
extend the network to temporal domain. They also in-
troduce a hierarchy multi-scale module to increase robust-
ness and an asymmetric loss function to preserve details.
Sample-based Kernel-Splatting network [16] reconstructs
MC renderings directly from the samples by splatting them
onto neighbor pixels. Xu et al. [3] propose an adver-
sarial approach that uses generative adversarial networks
(GAN) [8], they also adapt a feature modulation method to
utilize auxiliary features.



These methods maximize the use of relative a few sam-
ples (8-32 spp) and generate fine-grained results, but the
requirements of the sample counts are still too high for real-
time rates.

2.3. Interactive and real-time denoising methods

In order to achieve plausible images at interactive and
real-time speed, researchers pay more attention to recon-
struct noise-free results with only 1 ray per pixel. RAE [6]
adds a recurrent convolutional block to each encoder layer
of a U-Net [21] architecture, which uses the hidden infor-
mation of previous frame as part of the input of the current
encoder layer.

Inspired by TAA [25], real-time SVGF method [24] uses
temporal accumulation to preserve temporal stability and
applies a clamping operator to reduce the serious ghosting.
However, they still remain apparent overblur and ghosting
artifacts in occlusions. Since it is not a learning-based ker-
nel prediction network, the results are not sufficiently fine-
grained.

NTASD method [9] denoises at near real-time rates, it
applies multi-scale kernel predict module [27] to the DASR
network [1], adds temporal optimization to sample predic-
tor and denoiser, thus produces better images with high-
frequency details and increases temporal stability. Simi-
larly, our network applies a circulate feedback block to clas-
sical U-Net to reuse the temporal features, and uses a hier-
archy multi-scale kernel prediction module to increase ro-
bustness.

2.4. Motion vectors

Previous methods [24, 27, 9] use the traditional screen-
space motion vector, a two-dimensional vector points from
each pixel coordinate of the current frame to the corre-
sponding pixel coordinate of the previous frame, to obtain
the reprojected warped previous denoised image.

The utilization of motion vectors makes better use of his-
torical information to smooth temporal flickering. But in
some cases, the motion vectors are incorrect or even no-
exist [29], for example, an occluded region in the back-
ground is blocked by an object in previous frame, and then
appears in current frame as the moving object leaves (a dis-
cussion of another two failure cases: shadows and glossy
reflections, is available in [29]).

In this paper, we generate reasonable warped previous
images with temporally reliable dual motion vectors [29],
and exploit them (both traditional and dual motion vectors)
to provide the novel motion occlusion loss function. In or-
der to avoid being affected by another two failure cases (ig-
nore the shadows and glossy reflections), we apply our net-
work to indirect illumination (focus on occlusions).

3. Background and motivation

3.1. Temporal accumulation and learnable per-pixel
blending weight

Many methods [24, 27, 9] use traditional screen space
motion vectors to generate warped previous images or take
them as part of network input. In fact, traditional screen
space motion vectors do introduce historical reuse accumu-
lation information and remove temporal flickering artifacts
of animation sequences. However, they fail in the occluded
regions.

With the help of traditional motion vectors, pixels in
the occluded regions will always point to the previous oc-
cluders, which often have completely different colors with
background. The final pixel value in temporal accumulation
method is obtained with follow blending equation:

c̄current(x, y) =

α · c̃current(x, y) + (1− α) · c̄warped(x, y),
(1)

where α is a fixed scalar weight (usually set to 0.1 or 0.2
in practice) for blending the color of current filtered im-
age c̃current and warped previous blended one c̄warped,
that means their heavy temporal dependences on previous
frames causing significant ghosting artifacts.

To reduce the main ghosting problems caused by in-
correct historical information, SVGF [24] applies a clamp-
ing operator [25], that clamps the previous pixel color to
the current value interval by using a local Gaussian distri-
bution. Despite the presence of clamping operator, fixed
scalar weight is still not flexible for different parts of image.
SVGF forcibly reuses much historical information which
are still incorrect after clamping, causing noticeable bright
color blocks at the tails of moving objects.

Denoisedi-1 Warpedi

Warpedi

y xi

y xi-1
xiz

Denoisedi-1

o

Figure 2. Illustration of the computation of traditional (first line)
and dual motion vectors (second line) for occlusions. For a pixel
xi that is visible now but was occluded in the previous frame at
y, using the traditional motion vector will directly assign the color
of y to xi, while the dual motion vector finds where the occluder
y is in the current frame at z, then assigns the color of xOi−1 to xi
(yellow arrow).



Trad mvec

Warped

Dual mvec

Warped

Trad mvec

Warped

Dual mvec

Warped

Figure 3. Visualizations of traditional motion vectors (Trad mvec)
and dual motion vectors (Dual mvec) as well as the warped repro-
jections they produced. We set the opacity of motion vectors to
0.8 for intuition.

Different from non-neural temporal reuse methods [24,
29], we use a net similar to other learning-based net-
works [27, 9], to implicitly train the spatial filter and the
per-pixel scalar weight α (temporal accumulate) to get more
stable denoising results. We use a trainable weight tensor of
the same size as the images, that is, each pixel has a train-
able weight instead of a fixed 0.1 or 0.2 value.

Although clamping operator and learnable blending
weight solve the most obvious ghosting problems, there are
still overblur and minor ghosting artifacts in occlusions. All
these are caused by the large differences between warped
history and current in the occluded areas.

3.2. Dual motion vectors and warped previous reprojec-
tion

In our method, we use the temporally reliable dual mo-
tion vector [29], a motion vector for the just-appeared re-
gion occluded previously, to find a similar correspondence
and then close the gap between c̃current and c̄warped.

We reproduced the explanation of dual motion vec-
tors [29] here for completeness: See Fig. 2, the traditional
motion vector gives the xi → y correspondence but un-
fortunately cannot be easily used. The dual motion vector
tracks the movement of y → z from the previous frame to
the current, using the motion of the occluder. Then, based
on the relative positions of xi and z (red dotted arrow), it
finds the location xO

i−1 in the previous frame. This process
can be simply represented as:

xOi−1 = y + (xi − z) , (2)

where y = Pi−1T
−1 (xi)P

−1
i xi and z = PiT (y)P−1

i−1y

(P : the viewport*modelview projection transformation per
frame, T : the geometry transformation between frames).

As can be seen from Fig.3, The box and the ball move
from right to left, the traditional motion vector tightly fits
the edges of the moving object, whereas the dual motion
vector appears to have a tail in the opposite direction of
the object’s movement, as a result, in the occlusion area,
the former (Trad mvec) creates the repetition of moving ob-
jects whose colors are often different from the background,
while the latter (Dual mvec) reuses background information
to solve the problem.

4. Method

4.1. Network

Inspired by NTASD [9], we propose a learning-based
end-to-end denoising network, an overview is shown in
Fig.4. The main differences between our network and
NTASD are:

• the motion vectors used in reproject process (NTASD
uses traditional motion vectors, while we use dual mo-
tion vectors),

• the warped previous denoised images (part of the in-
put), and

• our novel motion occlusion loss function.

4.2. Temporal reprojection process

Based on a classical U-net [21], our denoiser has a cir-
culate feedback block to reuse the temporal features, this
module aligns the previous denoised result c̄history with
the current noisy frame ccurrent by using dual motion vec-
tors [29]mx,y , obtains the warped previous denoised image
c̄warped, and sends both ccurrent and c̄warped into the net-
work along with auxiliary feature buffers (albedo, depth,
normal) to generate the current filtered result c̃current. The
temporal reprojection process is as follows:

c̄warped(x, y) = c̄history (x+mx, y +my) . (3)

In this paper, we use temporally reliable dual motion
vectors [29] to better generate the warped previous in occlu-
sions. We apply PyTorch’s grid sample function with bi-
linear interpolation mode to implement this reproject step.
The difference of traditional and temporally reliable dual
motion vectors as well as the reprojected warped results are
demonstrated in Fig. 5.

Our warped results are superior to the others that use tra-
ditional motion vectors, since the repeated background area
often has a closer color to the occluded part than the fore-
ground moving object. In other words, our approach pro-
vides more efficient and valid temporal information at the
reprojection and recurrent feedback process.



Concatnate

Temporal 
reprojection 

Noise input and features

Kernel predictor

Dual motion vector

Output

Circulate feedback loop

Multi-scale 
noise images

Kernels Apply kernels 

Apply kernels Weighted 
sum

Figure 4. An overview of our network. It takes the concatenation of noise, auxiliary features (albedo, normal, depth) and temporal
reprojection (the warped denoised image of previous frame) as input, predicts per-pixel kernels in order to filter the multi-scale noisy
images, then combines them using learnable per-pixel weights. Particularly, we apply the dual motion vector [29] instead of the traditional
motion vector to temporal reproject process, and introduce novel motion occlusion loss function.

?

Denoisedi-1

Warpedi Warpedi Warpedi

Trad mvec Dual mvec

Figure 5. The blue circle moves from right to left, leaving an
occluded area marked by black shadow (left column). The cur-
rent traditional motion vector (Trad mvec) and dual motion vec-
tor (Dual mvec) reproject their warped previous images differently
(middle and right column).

4.3. Multi-scale kernel predict

We apply multi-scale pixel-wise kernel predict mod-
ule [27] to our framework, as can be seen from Fig.6, our
network predicts three kernels at last three layers of U-net,
each with 5×5 per-pixel filter weights, to filter multi-scale
current noisy images (1, 1/2 and 1/4 of full resolution), and
then sums the filtered results of these three scales noisy
images and warped previous denoised one using learned
blending weights. The coarse and fine images are combined
using:

op = ifp −U
[
αc
[
Dif

]]
p

+ U [αc [ic]]p , (4)

where if /ic represents the relative fine-scale/coarse-scale
filtered output. D and U are 2×2 maximum pooling down-
sampling and bi-linear up-sampling operators respectively.
We obtain the final output color of pixel p by combining if

and ic using the trainable weight αc .
In addition to three spatial scales, our network predicts

a temporal 5×5 kernel at the last layer. As shown in Fig.6,

4848

48
48

48 48 48 9696
9696

9696
9696

6464 51*3

26*3

I

I/4
I/2

26*3

downscale
2×

upscale
2×

skip
connection

kernelcon3*3
+Relu

Figure 6. Structure of kernel predictor. In last three layers of U-
net, we predict per-pixel kernels and scalar layer blending weights
(26 = 5×5 + α). At the finest level, we additionally predict a 5×5
temporal kernel which is applied to the warped previous denoised
output (51 = two 5×5 + αt ).

at the finest scale, 51 means a 5×5 temporal kernel + a 5×5
spatial kernel + αt , at the coarser scales, 26 means a 5×5
spatial kernel + α, while 3 means three RGB channels.

The fine-scale images maintain details and avoid produc-
ing overblur, while the coarse-scale images prevent main
high-frequency and minor low-frequency noise caused by
sparse sample counts. As stated in [27], the multi-scale ker-
nel prediction structure generates better results than direct
prediction and single-scale prediction.

4.4. Motion occlusion loss

Even though we solve the problem of the huge gap be-
tween c̃current and c̄warped in section 4.2, the occluded ar-
eas of final denoised output are still unsatisfactory visually.
Since the occlusions are too small and narrow relative to
the whole input tensors, and the network could not spon-
taneously pay additional attention to these regions, as a re-
sult, the convergence is not sufficient enough in occlusions.
In order to further decrease the minor artifacts in these ar-
eas, we introduce a new motion occlusion loss function to
increase the network’s attention on them.



Trad mvec

Denoisedi Denoisedi

mask

Mi
0 Mi

1 Mi
2

Dual mvec

Dual - Trad mvec

Figure 7. We obtain a mask from dual motion vector minus tradi-
tional motion vector (left). For frame i, we use three masks M0

i ,
M1

i and M2
i to delimit the calculation range of our motion occlu-

sion loss (right).

We combine traditional motion vectors and dual motion
vectors to calculate the occlusion mask quickly. As shown
in Fig.7, in order to calculate progressive loss temporally,
for each current frame i, we have three masks: M0

i ,M1
i and

M2
i , they are computed by MV i

dual −MV i
tra (dual motion

vector minus traditional motion vector, where MV is the
abbreviation of motion vector), MV i−1

dual −MV i−1
tra (frame

i−1) andMV i−2
dual−MV i−2

tra (frame i−2) respectively. We
use the following equation:

Locc = L1

(
I̊i, R̊i

)
I̊i = Ii �

∑2
k=0 w

k
i ·Mk

i

R̊i = Ri �
∑2

k=0 w
k
i ·Mk

i

(5)

where Ii and Ri are denoised image and reference of frame
i, � is a Hadamard Product operator that multiplies the cor-
responding location values of two matrices, which is used
for achieving the masked denoised image I̊i and reference
R̊i. w0

i , w1
i and w2

i are the weights of these three masks
M0

i , M1
i and M2

i , we set them to 1, 0.8 and 0.6 respec-
tively in our practice. For some special cases like the first
frame or second frame whose i− 1 and i− 2 frame are not
exist, we simply initialize their M1

i and M2
i to M0

i .

5. Implementation

Our network is conducted in PyTorch [18], using Xavier
initialization [7] and Adam optimizer [13] to initialize the
parameters and control the learning rate (the initial learning
rate is 0.0001). All experiments are trained for 200 epochs.

We obtain the 1 spp noisy images, 2048 spp ground-truth
images and auxiliary feature buffers (albedo, depth, nor-
mal, motion vector) from NVIDIA OptiX [17]. We take
281 animated sequence clips (142 for training and 139 for
testing) from different perspectives of 4 scenes (APPLE,
ROBOT, PINKROOM and PICA) as datasets, for a total of
2810 frames. Each clip of training data has 10 successive
frames, where the first 9 frames are trained for backward
propagation, and the last 1 frame is used for verification.

For the first frame of each clip, we initialize the warped
previous image and previous denoised one to the noise.

The total loss function is as follows:

L = L1 (Ii, Ri) + L1 (∆Ii,∆Ri) + Locc, (6)

it consists of three parts: a spatial loss Lspat = L1 (Ii, Ri),
a temporal loss Ltemp = L1 (∆Ii,∆Ri) and our novel mo-
tion occlusion loss Locc, they are all L1 loss and have equal
weight. Ii and Ri are filtered result and ground truth image
of frame i. The temporal gradients are ∆Ii = Ii− Ii−1 and
∆Ri = Ri −Ri−1. For the first 100 epochs, we apply spa-
tial and temporal loss, and for the last 100 epochs, we add
motion ooclusion loss function. More details about motion
occlusion loss can be found in section 4.4.

In order to prevent the wrong information from being ac-
cumulated incorrectly at an early stage, we calculate the to-
tal loss function on the first 9 frames of each clip. Note that
all loss functions are applied to the final filtered results and
references, not the intermediate warped previous images.

6. Results

6.1. Runtime cost

All images are rendered with 1280×720 resolution and
trained on NVIDIA GeForce RTX 2080 Ti with 12GB video
memory. The average denoising time of our network is
7.9ms per frame, which can be divided into four parts: ex-
tracting features and predicting per-pixel kernels (3.1ms),
applying the kernels to multi-scale images (3.4ms), blend-
ing the spatial and temporal filtered results (0.8ms), and cal-
culating temporal reprojection(0.6ms). These numbers are
averages over 1390 testing frames.

6.2. Compare with state of the arts

We compare with several real-time temporal reuse
and learning-based post-processing denoising methods:
SVGF [24], TRMV [29] and NTASD [9]. To compare with
learning-based NTASD method in a similar setting, we al-
ter NTASD to use the same network structure, initialization

Figure 8. Results of SSIM and MSE errors of 310 consecutive
frames on the APPLE scene.



Noise (1spp)

Noise (1spp)

Ref

Ref

Ref

Ref

NTASD

NTASD

TRMV

TRMV

Ours

Ours

SVGF

SVGF

Figure 9. We compare with the state of the arts: SVGF [24], TRMV [29] and NTASD [9]. All objects move from left to right except for
the second row.

Name Motion vectors Loss function
A Traditional spatial+temporal
B Dual spatial+temporal
C(Ours) Dual spatial+temporal+mask

Table 1. Setup of ablation study.

and learning rate as our method, and remove the adaptive
sampling part of NTASD.

Fig.9 illustrates the results of comparison. Even though
with clamping operator, SVGF [24] still exploits the tem-
poral information improperly, results in significant bright
color blocks, overblur and ghosting artifacts.

By using dual motion vectors and incident radiance,
TRMV [29] is able to achieve much cleaner results that
completely eliminate the overblur and ghosting artifacts.

Name PSNR↑ SSIM↑ L1↓ MSE↓
SVGF 69.7086 0.6517 0.0652 0.0087
TRMV 78.4319 0.8960 0.0215 0.0007
NTASD 77.7679 0.8983 0.0283 0.0009
Ours 80.1891 0.9115 0.0206 0.0002

Table 2. Errors of four metrics. For PSNR and SSIM, higher is
better, for L1 and MSE, lower is better. The scores are averaged
over 1390 test frames.

But it introduces obvious shading aliasing, thus gives us the
inspiration of using dual motion vectors in neural-based ap-
proach.

For learning-based methods, NTASD [9] performs well
enough except for occlusions, because it only uses tradi-
tional motion vectors, results in unnatural boundaries in the
occluded area.



Noise (1spp) A B C (Ours) RefRef

Noise (1spp) A B C (Ours) RefRef

Figure 10. Results of ablation study. Experiment A (baseline) is multi-scale kernel prediction network, experiment B replaces traditional
motion vectors with dual motion vectors, experiment C (our overall network) adds motion occlusion loss on the basis of B. The results
show that our method can significantly reduce the overblur and ghosting artifacts in occlusions.

Thanks to the application of temporally reliable dual mo-
tion vectors and our novel motion occlusion loss function,
we solve those artifacts while preserving details as much as
possible. As can be seen from Fig.9, our results perform
better than methods only using traditional motion vectors.

To evaluate denoising quality of occlusions, we apply

four metrics: peak signal-to-noise (PSNR), structural sim-
ilarity (SSIM), L1 loss and mean squared error (MSE), on
the tonemapped results of our method and the state of the
arts. Tab.2 shows that our method performs best on four
metrics. Fig.8 displays the errors of SSIM and MSE of con-
secutive frames on the APPLE scene, and in order to show



the effect of TAA, we ignore the first frame and demonstrate
errors from the second frame.

6.3. Ablation study

We conduct an ablation study to demonstrate the contri-
bution of each part in our network. In practical, we regard
the multi-layer kernel prediction (using traditional motion
vectors) as the baseline, and denote it as experiment A. The
following experiment B replaces the traditional motion vec-
tors with temporally reliable dual motion vectors, and the
final experiment C adds the motion occlusion loss function
on the basis of B. The setup of each experiment is shown in
the Tab.1.

The test results of different experiments are shown
in Fig.10. In the just-appeared regions that are oc-
cluded by moving objects previously (the areas highlighted
with boxes), experiment A presents serious ghosting and
overblur artifacts. The results of B are much better than
that of A, as can be seen, experiment B reduces the major
artifacts but still remains minor ghosting problems. Exper-
iment C (our whole network) resolves all the artifacts en-
countered in previous experiments. So the conclusion from
the ablation study is that, all parts of our network are valid
and effective, and our method can significantly reduce the
overblur and ghosting artifacts.

6.4. Failure cases

As can be seen from Fig.11, there are two conditions that
can cause failure of dual motion vectors: the occluded areas
are near the boundary of image, or the foreground object
moves too fast in the dark to light background area.

Consider that a moving object has just completely
emerged from the image boundary, leaving an occluded re-
gion near the boundary, according to the dual motion vector,
the pixel in occlusions will point out of the screen. Since
the expected value cannot be obtain in this case, the per-
formance of dual motion vector degenerated into the tradi-
tional: pointing to the occluder.

DenoisedWarped

Ref Ref

DenoisedWarped

RefRef

Figure 11. Two failure cases: the occlusions near the image bound-
ary (left) or the foreground object moves too fast in the dark to
light background area (right).

Another failure case usually happens when the object
moves too fast, leaving significant background changes in
the occlusions where it passed by, especially from a very
dark block to a lighter area. In this case, the dual motion
vector pastes the dark block into the occluded area whose
reference is lighter, resulting in the wrong blending result.

In the future work, we may try to solve these cases by
improving the dual motion vector or the network structure.

7. Conclusion

We have presented a learning-based temporal denoising
method for indirect illumination of sparse MC renderings at
real-time rates. We applied temporally reliable dual motion
vectors to reprojection step of multi-scale kernel-predicting
networks, and inspired by the visualizations of traditional
and dual motion vectors, we defined novel motion occlu-
sion loss function which is able to solve the residual mi-
nor ghosting artifacts of our occlusions’ reconstruction. We
also demonstrated the superiority in terms of occlusions’ re-
construction over other temporal reuse and learning-based
methods that only using traditional motion vectors. In the
future, we would like to explore temporally stable denois-
ing method for glossy indirect lighting effects. and further
explore the integration of other types of motion vectors, for
example, the shadow motion vector for dynamic shadows,
and the stochastic glossy reflection motion vector for glossy
reflections.

References

[1] K. Alexandr, K. Nima, and R. Ravi. Deep adaptive sampling
for low sample count rendering. Comput. Graph. Forum,
37:35–44, 2018. 2, 3

[2] S. Bako, T. Vogels, B. McWilliams, M. Meyer, J. Novák,
A. Harvill, P. Sen, T. Derose, and F. Rousselle. Kernel-
predicting convolutional networks for denoising monte carlo
renderings. ACM Trans. Graph., 36(4):97–1, 2017. 2

[3] X. Bing, Z. Junfei, W. Rui, X. Kun, Y. Yongliang, L. Chuan,
and T. Rui. Adversarial monte carlo denoising with condi-
tioned auxiliary feature modulation. ACM Trans. Graph.,
38(6), 2019. 2

[4] M. Bochang, C. Nathan, and Y. Sung-eui. Adaptive render-
ing based on weighted local regression. ACM Trans. Graph.,
33(5), 2014. 2

[5] M. Bochang, M. Steven, M. Kenny, and G. Markus. Adaptive
polynomial rendering. ACM Trans. Graph., 35(4), 2016. 2

[6] C. R. A. Chaitanya, A. S. Kaplanyan, C. Schied, M. Salvi,
A. Lefohn, D. Nowrouzezahrai, and T. Aila. Interactive re-
construction of monte carlo image sequences using a recur-
rent denoising autoencoder. ACM Trans. Graph., 36(4):1–12,
2017. 2, 3

[7] X. Glorot and Y. Bengio. Understanding the difficulty of
training deep feedforward neural networks. In Y. W. Teh and
M. Titterington, editors, Proceedings of the Thirteenth Inter-
national Conference on Artificial Intelligence and Statistics,



volume 9 of Proceedings of Machine Learning Research,
pages 249–256, Chia Laguna Resort, Sardinia, Italy, 13–15
May 2010. PMLR. 6

[8] I. J. Goodfellow, J. P. Abadie, M. Mirza, B. Xu, D. W. Farley,
S. Ozair, A. Courville, and Y. Bengio. Generative adversarial
networks, 2014. 2

[9] J. Hasselgren, J. Munkberg, M. Salvi, A. Patney, and
A. Lefohn. Neural temporal adaptive sampling and denois-
ing. Comput. Graph. Forum, 39(2):147–155, 2020. 1, 2, 3,
4, 6, 7

[10] E. Heitz, J. Dupuy, S.Hill, and D. Neubelt. Real-time
polygonal-light shading with linearly transformed cosines.
ACM Transactions on Graphics (TOG), 35:1–8, 2016. 2

[11] M. Jacob, H. Jon, C. Petrik, A. Magnus, and A. Tomas. Tex-
ture space caching and reconstruction for ray tracing. ACM
Trans. Graph., 35(6), 2016. 2

[12] J. T. Kajiya. The rendering equation. In Computer Graphics,
pages 143–150, 1986. 2

[13] D. P. Kingma and J. Ba. Adam: A method for stochastic op-
timization. In Proceedings of the Third International Con-
ference for Learning Representations, 2015. 6

[14] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature,
521:436–444, 2015. 2

[15] Y. Ling-Qi, M. S. Uday, R. Ravi, and D. Fredo. Fast 4d
sheared filtering for interactive rendering of distribution ef-
fects. ACM Trans. Graph., 35(1), 2016. 2

[16] G. Michaël, L. Tzu-mao, A. Miika, L. Jaakko, and D. Frédo.
Sample-based monte carlo denoising using a kernel-splatting
network. ACM Trans. Graph., 38(4), 2019. 2

[17] S. G. Parker, J. Bigler, A. Dietrich, H. Friedrich, J. Hoberock,
D. Luebke, D. McAllister, M. McGuire, K. Morley, A. Ro-
bison, and M. Stich. Optix: A general purpose ray tracing
engine. In ACM SIGGRAPH 2010 Papers, SIGGRAPH ’10,
New York, NY, USA, 2010. Association for Computing Ma-
chinery. 6

[18] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. De-
Vito, L. Zeming, A. Desmaison, L. Antiga, and A. Lerer. Au-
tomatic differentiation in pytorch. In NIPS 2017 Workshop
on Autodiff, 2017. 6

[19] M. Pharr, W. Jakob, and G. Humphreys. Physically based
rendering: From theory to implementation. Morgan Kauf-
mann, 2016. 1

[20] S. Pradeep and D. Soheil. On filtering the noise from the
random parameters in monte carlo rendering. 31(3), 2012. 2

[21] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolu-
tional networks for biomedical image segmentation. pages
234–241. Springer International Publishing, 2015. 2, 3, 4

[22] F. Rousselle, M. Manzi, and M. Zwicker. Robust denoising
using feature and color information. Comput. Graph. Forum,
32(7):121–130, 2013. 2

[23] R. Y. Rubinstein and D. P. Kroese. Simulation and the Monte
Carlo method, volume 10. John Wiley & Sons, 2016. 1, 2

[24] C. Schied, A. Kaplanyan, C. Wyman, A. Patney, C. R. A.
Chaitanya, J. Burgess, L. Shiqiu, C. Dachsbacher, A. Lefohn,
and M. Salvi. Spatiotemporal variance-guided filtering:
Real-time reconstruction for path-traced global illumination.
Association for Computing Machinery, 2017. 1, 2, 3, 4, 6, 7

[25] N. Tatarchuk, B. Karis, M. Drobot, N. Schulz, J. Charles, and
T. Mader. Advances in real-time rendering in games, part
i. SIGGRAPH ’14. Association for Computing Machinery,
2014. 2, 3

[26] M. S. Uday, Y. JiaXian, R. Ravi, and D. Fredo. Factored axis-
aligned filtering for rendering multiple distribution effects.
ACM Trans. Graph., 33(4), 2014. 2

[27] T. Vogels, F. Rousselle, B. McWilliams, G. Röthlin,
A.Harvill, D. Adler, M. Meyer, and J. Novák. Denoising
with kernel prediction and asymmetric loss functions. ACM
Trans. Graph., 37(4):1–15, 2018. 2, 3, 4, 5

[28] H. Yuchi and Y. Sung-eui. A survey on deep learning-based
monte carlo denoising. Computational Visual Media, 7:169–
185, 2021. 2

[29] Z. Zheng, L. Shiqiu, Y. Jinglei, W. Lu, and Y. Lingqi. Tempo-
rally reliable motion vectors for real-time ray tracing. Com-
put. Graph. Forum, 40(2):79–90, 2021. 1, 2, 3, 4, 5, 6, 7

[30] M. Zwicker, W. Jarosz, J. Lehtinen, B. Moon, R. Ramamoor-
thi, F. Rousselle, P. Sen, C. Soler, and S. E. Yoon. Recent
advances in adaptive sampling and reconstruction for monte
carlo rendering. Comput. Graph. Forum, 34(2):667–681,
2015. 2


