
Out-of-core Outlier Removal for Large-scale Indoor Point Clouds

Linlin Ge
State Key Lab of CAD&CG, Zhejiang University

Hangzhou, China
linlinge@zju.edu.cn

Jieqing Feng
State Key Lab of CAD&CG, Zhejiang University

Hangzhou, China
jqfeng@cad.zju.edu.cn

Abstract

An out-of-core outlier removal method for large-scale
indoor point clouds is proposed, which takes into ac-
count point density distribution, geometric shape infor-
mation, and appropriate thresholds in outlier removals.
First, a low-resolution point cloud (LPC) is obtained us-
ing random downsampling. It has the same density dis-
tribution as the raw point clouds (RPC), which is im-
portant information for outlier removal. The correspon-
dences from the LPC to the RPC are also recorded. The
outliers in the LPC are removed via a global threshold.
The outliers in the RPC are roughly removed guided by
the cleaned LPC. Then, the cleaned LPC is segmented
into planar parts and non-planar parts; and the LPC
segmentation is transferred to the RPC. Finally, the out-
liers in each RPC segment are removed elaborately via
a local threshold by exploring the shape information.
The experiments show that the proposed method can im-
prove the quality of outlier removal results.

1. Introduction

Raw point clouds (RPCs) from a laser scanner or 3D
reconstruction algorithm will inevitably contain numerous
outliers owing to light conditions, measurement errors, and
so on. Such outliers can significantly impact subsequent
processing operations, such as denoising, point cloud clus-
tering, segmentation, and 3D surface reconstruction. Fur-
thermore, in indoor scene applications, outliers can affect
the calculation accuracy of geometric information of build-
ings. Indoor point cloud outlier processing is challenging
owing to the large quantity and space size involved. Thus,
efficient and intelligent outlier removal has become an es-
sential preprocessing step in indoor point cloud processing.

As mentioned above, the primary difficulty in process-

ing an indoor point cloud is its large scale. Raw data may
contain points up to a few hundred millions or more; thus,
loading them into the main memory is difficult. Out-of-core
technology can solve this problem. Stream processing [34]
and hierarchy processing [37, 40, 12] are two types of typi-
cal approaches. Unfortunately, few out-of-core approaches
are utilized for outlier removal. Outlier processing has the
following characteristics: point density distribution and ge-
ometric shapes are essential information that must be pre-
served in the out-of-core processing procedure.

Compared to a scanned hand-sized object, the size of an
indoor point cloud is much larger. Finding a suitable thresh-
old for the entire point cloud outlier removal is difficult. Re-
searchers proposed different strategies for processing large
point clouds. For example, to obtain reliable thresholds, So-
toodeh [42] proposed a hierarchical outlier removal method,
in which a Euclidean minimum spanning tree and Gabriel
graph at the top and bottom layers are established, respec-
tively. Points within a small cluster size and with large spac-
ing from other clusters are removed. However, the method’s
memory consumption in processing a massive point cloud is
exceedingly high. In recent years, with the development of
deep learning, several learning-based methods [36, 43] were
proposed to learn models and automatically determine opti-
mal thresholds from training data. However, such methods
require vast amounts of training data to achieve satisfactory
results, and preparing training data is also a challenge.

To address the above issues, an out-of-core outlier re-
moval method is proposed in this paper, which is capable
of utilizing point density distribution and geometric shapes
and determining suitable thresholds for large-scale data. In
the proposed method, the random sampling (RS) strategy
capable of maintaining the point density distribution is uti-
lized to extract the low-resolution point cloud (LPC) from
the RPC. Simultaneously, the point correspondences be-
tween the LPC and the RPC are also recorded. The LPC,

1

instead of the RPC, is loaded into the memory; thus, mem-
ory consumption is reduced significantly. The operations
on the LPC can be transferred to the RPC according to
the recorded correspondences. To process the indoor point
cloud elaborately, the outlier removal procedure is divided
into two phases. In the first phase, the outliers in the LPC
are removed with the proposed outlier removal I (OR-I)
method. Next, the OR-I result for the LPC is transferred
to the RPC with the help of the recorded correspondences
and a distance constraint. In the second phase, a divide-
and-conquer strategy is utilized to further remove the out-
liers in RPC. Firstly, the cleaned LPC is segmented into two
types of segments: planar segment and non-planar segment.
Then, the corresponding segments in RPC are also obtained
via the recorded correspondences. According to the char-
acteristics of the two types of segments, the plane structure
information in the planar segments and the point density
information in the non-planar segments are adopted to re-
move the outliers, respectively. Since the segments of the
RPC are processed sequentially, an appropriate threshold
can be determined for each RPC segment, meanwhile mem-
ory consumption is reduced. Benefiting from the divide-
and-conquer strategy, the multi-threshold mechanism for
outlier removal in the RPC can lead to accurate results. The
experiments on synthetic and real-world data show that the
proposed out-of-core outlier removal method can achieve
more elaborate outlier removal results, with low memory
consumption, compared with previous methods.

The contributions of this study are summarized as fol-
lows:

• An out-of-core method maintaining the point density
distribution is explored. Point density distribution is
one of the essential information in outlier removal. To
maintain the point density distribution, random sam-
pling is employed to extract the LPC from the RPC in
the out-of-core procedure. As the LPC is lightweight,
loading it into the main memory is feasible, and ana-
lyzing the outliers of the RPC through the LPC is also
possible.

• A hierarchical structure, containing the LPC and RPC
layers, is proposed to utilize geometric shapes suffi-
ciently for outlier removal. First, the LPC is segmented
into two types of segments: planar segment and non-
planar segment. Then, the segmentation of the LPC is
transferred to the RPC, and the related geometric shape
information in the LPC is also transferred to the RPC
for the subsequent outlier removal procedures.

• A multi-threshold mechanism is proposed to improve
outlier removal accuracy. First, a method called OR-I
is applied to the LPC using a global threshold. Then,
the cleaned LPC via OR-I is used as a guide model

to roughly remove the outliers in the RPC by set-
ting a distance constraint from the cleaned LPC to the
RPC. Second, each RPC segment is processed using
its threshold for improving the outlier processing ac-
curacy.

The rest of this paper is organized as follows. The related
works are introduced in Section 2, and the proposed out-of-
core processing method is presented in Section 3.1. The
global outlier removal method and model-based refinement
outlier removal method are described in Section 3.2 and
Section 3.3, respectively. Experimental results for synthetic
and real-world data and discussion are given in Section 4,
and finally, the conclusions are drawn and future work is
indicated in Section 5.

2. Related Works

This section introduces several works related to our
study, specifically, on out-of-core technologies and outlier
removal methods.

2.1. Out-of-core Point Cloud Processing

The term “out of core” typically refers to processed data
that are too large to be loaded into the main memory. Out-
of-core technology tries to obtain the one-to-one mapping
between the data in the main memory and the data in the
external memory. According to their work mechanisms,
out-of-core technologies for massive point cloud process-
ing can be classified into stream processing and hierarchical
processing.

Stream Processing. This method was first proposed by
Renato Pajarola [34] and consists of two steps, that is, the
preprocessing step and the stream-processing step. In the
preprocessing step, the RPC is sorted into an orderly se-
quential structure in a Euclidean space using an external
sorting technique [46]. The steam-processing step tries to
process this extensive data in a specified sweeping direc-
tion. Although this method works well on local differen-
tial operators such as normal estimation, curvature estima-
tion, smoothing, and so on, Renato Pajarola [34] pointed
out that its memory consumption grows unproportionally
when faced with small clustered outliers. In other words,
this method will occupy a large main memory when faced
with point clouds containing large amounts of small clus-
tered outliers. Moreover, the batch processing flow makes
the stream processing approach rarely utilize global geo-
metric information, such as geometric shapes, for outlier
removal. These two factors limit stream processing in out-
lier removal applications.

Hierarchical Processing. QSplat [37] is the first method
that uses a hierarchical structure for the point-based ren-
dering of large-scale point clouds. Numerous octree-based
methods emerged thereafter, such as Potree [40], Entwine

[1], octree-based external memory mesh (OEMM) [12],
and so on. Typically, such methods first establish an oc-
tree, in which each leaf node contains a subset of the raw
data, stored continuously in the external memory. The data
in each leaf node are essentially raw data with no dupli-
cates. For a specific operation, only the required nodes
are loaded into the main memory through the octree. Al-
though these hierarchical methods achieve satisfactory ef-
fects in many applications, such as point-based rendering
[11, 27, 16, 6, 41], simplification [26, 12, 11, 27], shape
editing [34, 38], surface reconstruction [7], iso-surface ex-
traction [28], and so on, few studies discussed its applica-
tion to outlier removal. Previous hierarchical works parti-
tioned RPC in a Euclidean space, which will destroy the
geometric shape information of the RPC. In this study, a hi-
erarchical approach for maintaining the geometric shapes in
each hierarchy is first explored for outlier removal.

2.2. Point Cloud Outlier Removal Processing

Outliers can be classified into sparse isolated outliers
(SIOs), dense isolated outliers (DIOs), and non-isolated
outliers (NIOs) [42, 47]. An illustration of each type of
outlier is presented in Figure 1. The traditional method
generally uses a single criterion to remove outliers from a
3D point cloud. Recently, combined methods using multi-
ple criteria and learning-based techniques became the main-
stream approaches.

Figure 1. Illustration of SIOs (orange rectangle), DIOs (blue rect-
angle), and NIOs (purple rectangle)

Single criterion methods. Weyrich et al. [48] proposed
a nearest-neighbor reciprocity criterion that believes that the
valid point may be in the outlier’s neighborhood. The out-
lier is highly unlikely to be in the valid point’s neighbor-
hood. The local outlier factor (LOF) [9], local correlation
integral (LOCI) [35], and local outlier probability (LoOP)
[23] score an outlier based on each point’s local density,
and the outliers are the points with high outlier scores.
The cluster-based local outlier factor (CBLOF) [19] regards
small-clustered points far from the other points as outliers.
Campos et al. [10] used a quadratic function to fit the lo-
cal neighboring points. Then a RANSAC-based procedure
is performed to detect the outliers which are far away from
the best fitting model. Single criterion methods are well-
suited for one type of outliers but perform poorly for other
types of outliers.

Combined methods. To overcome the shortcomings of
single criterion methods, numerous works classified outliers
into different types and removed them using different crite-
ria. Ning et al. [33] proposed two geometric criteria for re-
moving SIOs and NIOs. However, the authors indicated the
method’s failure in removing DIOs. To remove DIOs effi-
ciently, S. Sotoodeh [42] proposed a hierarchical outlier re-
moval method that constructs two graphs to remove isolated
outliers and NIOs. Wang et al. [47] proposed an outlier
removal method that first converts NIOs into isolated out-
liers then removes the isolated outliers in the second stage.
Meanwhile, Ge et al. [15] developed a type-based outlier
removal framework. By considering the characteristics of
a point cloud, the framework classified outliers elaborately,
making the processing algorithm highly targeted. Although
such combined methods achieve promising results for small
point clouds, most of them can not directly solve the outlier
removal problem for large-scale indoor point clouds in an
out-of-core way owing to their high memory costs.

Learning-based methods. Rakotosaona et al. [36]
proposed a supervised network called PointCleanNet, and
Stucker et al. [43] developed a method based on a ran-
dom forest classifier that incorporates predefined semantic
classes into the learning process to improve precision. Un-
fortunately, both methods require the loading of the entire
point cloud into the main memory, making them unsuitable
for processing point clouds with hundreds of millions of
points.

3. Out-of-core Outlier Removal for Large-scale
Indoor Point Clouds

As the size of the scanned or reconstructed indoor point
cloud exceeds the main memory’s acceptable range, our ob-
jective is to remove the outliers with low memory consump-
tion. Figure 2 illustrates the proposed out-of-core outlier
removal method pipeline, which contains three phases

The out-of-core structure construction phase aims to es-
tablish a mapping from the external data to the in-core data.
For this purpose, one LPC (see Figure 2[b]) capable of be-
ing loaded into the main memory is first obtained using
random sampling (RS). Next, the cleaned LPC (see Figure
2[c]) is obtained using the proposed OR-I method. Then,
the entire cleaned LPC is loaded into the main memory, and
the KD-tree of the cleaned LPC is constructed. The KD-tree
will enable each point in the RPC to search its nearest neigh-
bor in the cleaned LPC. The correspondences between the
RPC and cleaned LPC are encoded as an external-memory-
stored hash table. A detailed description of the out-of-core
structure construction phase is presented in Section 3.1.

The global outlier removal phase tries to roughly remove
the outliers in the RPC according to the stored hash table
and cleaned LPC. Some outliers in the RPC (see Figure
2[e]) are removed through a distance threshold. A detailed

R
an

d
o
m

S
am

p
li

n
g

Merging

OR-I

OR-II

Segmentation

o
m

li
n

g

Hash

Table

Model-based Outlier Removal

(a)

(b) (c)

(e)

(f)

(d)

(h)

(e)

Global Outlier Removal

(g)R
a

S
a

(b)

Out-of-core

Structure Construction

(c)

Figure 2. Pipeline of out-of-core outlier removal method for large indoor point cloud

description of the global outlier removal phase is presented
in Section 3.2.

To further refine the global outlier removal results, the
divide-and-conquer strategy is employed. The cleaned LPC
is first segmented into serval geometric segments (see Fig-
ure 2[d]) by considering the geometric features, such as the
position and normal, of each point. As the correspondences
between the cleaned LPC and RPC are recorded in the hash
table, segmenting the globally cleaned RPC (see Figure
2[e]) into several segments according to the cleaned LPC
segmentation results is straightforward (see Figure 2[d]).
The cleaned RPC segments are classified into two types,
that is, planar segments and non-planar segments. Both seg-
ments are processed differently. The detailed description
of the model-based outlier removal phase using the divide-
and-conquer strategy is given in Section 3.3.

3.1. Out-of-core Structure Construction

3.1.1 Downsampling

The downsampling phase generates an LPC from the RPC.
The selected downsampling method should satisfy the fol-
lowing properties. As outlier removal methods are sensitive
to the point density distribution, the selected downsampling
methods should not change the point cloud density distribu-
tion. Meanwhile, the number of LPCs can be specified by
the user, and it should be as fast as possible.

Hu et al. [21] verified the effectiveness and efficiency
of random sampling (RS) compared to other downsampling
approaches, namely, farthest point sampling (FPS), inverse
density importance sampling (IDIS), generator-based sam-
pling (GS), continuous relaxation sampling (CRS), and pol-
icy gradient-based sampling (PGS). Voxel sampling (VS) is
also a commonly used downsampling approach. However,
VS is slower than RS and cannot specify the LPC quantity.
In summary, RS is more effective and efficient than FPS,
IDIS, GS, CRS, PGS, and VS. Thus, RS is adopted to ob-

tain the LPC from the RPC.
The RS implementation procedure is summarized into

two steps. First, the subset indices of the RPC are gener-
ated. Let the number of points in the RPC and LPC be n
and m, respectively. Then, a random generator is utilized
to generate an integer index set S = {s1, · · · , sm} ∈ [1, n]
. According to Acharya et al. [4], this random generator
keeps the final output point density distribution unchanged.
Second, the points in the RPC with indices within the inte-
ger set S are extracted to compose the LPC.

3.1.2 Outlier Removal I (OR-I)

The outlier removal I phase aims to remove the outliers in
the previously obtained LPC with minimal time consump-
tion. As the LPC quantity is reasonable, most existing out-
lier removal methods can be adopted. Inspired by S. So-
toodeh [42] and Wang et al. [47], the NIOs, SIOs, and DIOs
in the LPC are removed sequentially.

For NIOs, the OR-I method separates NIOs into isolated
outliers. To this end, local outlier probability (LoOP) [23]
is an ideal choice, as it can separate points with different lo-
cal densities and generate usable results without frequently
adjusting the parameters.

(a) Divide to cells (b) Get new cloud (c) Clustering

Figure 3. Schematic diagram for dealing with isolated outliers (red
cell)

For SIOs and DIOs, cluster-based methods can achieve
satisfactory performance. However, the time complexity of

most clustering algorithms is linearly proportional to the in-
put data quantity; thus, such algorithms become extremely
slow when handling millions of points. Inspired by the sta-
tistical information grid-based clustering method (STING)
[14], a fast cell-based outlier removal method is described
subsequently. Figure 3 illustrates the idea of the method.
First, the bounding box of the input point cloud is divided
into cuboid cells (see Figure 3[a]). Second, a set of cen-
troids of points in each cell can form a point cloud (see Fig-
ure 3[b]). Finally, the cluster with a quantity prominently
lower than that of the other clusters and that is far from
the others is classified as an outlier cluster, in which all the
points are outliers (see Figure 3[c]). In this way, the SIOs
and DIOs in the LPC can be removed effectively.

3.1.3 Indexing

The OR-I-cleaned LPC obtained in the previous step can
offer the point density distribution and geometric informa-
tion for us in eliminating the outliers in the RPC. However,
the correspondences between the OR-I-cleaned LPC and
RPC are missing. Let IR and IL be the point index sets
of the RPC and OR-I-cleaned LPC, respectively. An exam-
ple of the hash table storing the mapping from IL to IR is
shown in Figure 4. The hash table is established through
two phases. In the first phase, the KD-tree of the OR-I-
cleaned LPC is constructed. In the second phase, for each
point pi in the RPC, its nearest neighbor qj in the OR-I-
cleaned LPC is found using the KD-tree.

0

1

2

...

i

N-1

N

...

I I!

M

M-1

1

2

...
12 414

9

...

...

...

...

M-6 36

3423

97

Figure 4. Hash table storing the index mapping between IL of OR-
I-cleaned LPC and IR of RPC.

As a result, maintaining the hash table in the current
main memory is feasible. If the point cloud quantity is one
billon, then the hash table only requires approximately 700
MB main memory.

3.2. Global Outlier Removal

As the hash table established the correspondences be-
tween the cleaned LPC and RPC, some outliers in the RPC
can be removed using a distance threshold. Let pi be a point

in the cleaned LPC. According to the hash table, its corre-
sponding point set in the RPC are {qji |j = 1, · · · , h}. The
distance of point pi and qji is D(pi, q

j
i) . If the distance

D(pi, q
j
i) is larger than a specified threshold τm, then point

qji will be regarded as an outlier. The pseudocode of the
global outlier removal method is presented as follows:

Algorithm 1 Global Outlier Removal
Input: Cleaned LPC, Hash table
Output: Cleaned RPC

1: for each point pi in cleaned LPC do
2: Querying pi’s corresponding point set {qji |j =

1, · · · , h} in hash table
3: Calculating the distance D(pi, q

j
i)

4: if D(pi, q
j
i) > τm then

5: removing point qji
6: end if
7: end for

3.3. Model-based Outlier Removal

3.3.1 Geometric Segmentation

In this step, the cleaned LPC is segmented into simple geo-
metric parts. The segmentation on the cleaned LPC will be
transferred to the RPC. The outliers in each RPC segment
are removed further using its geometric characteristics. The
point cloud segmentation for the cleaned LPC is first for-
mulated as a graph partition problem, as follows:

Given an undirected weighted graph G =
(V ,F ,E,Ω), where V is the set of nodes, for each
node vi ∈ R3 in V is associated with a feature fi ∈ Rd.
F is the feature set, and E is the set of edges. Each edge
in (vi,vj) ∈ E has a weight ωij ∈ Ω. In this study, a
k-nearest neighbor graph[25] is used to construct the graph
for the cleaned LPC. The weight of each edge is set as
follows:

wij =
1

0.5 + di,j/d̄
(1)

where di,j is the distance of edge (vi,vj), and d̄ is the mean
distance of all the edges. The goal is to embed the feature
space into a label space L = {l1, · · · , li, · · · } by minimiz-
ing the following energy function.

arg min
L

{Ddata + µDsmooth} (2)

where µ is the regularization strength that determines the
coarseness of the resulting segments. It should be positive
and set 0.1 in this study. Ddata and Dsmooth are the data
term item and smooth item, respectively, which are defined
as follows:

Ddata =

|V |∑
i=1

‖li − fi‖2

Dsmooth =
∑

(vi,vj)∈E

ωij [li − lj 6= 0]
(3)

where [·] is the Iverson bracket. Although Equation (3) is
a nonconvex optimization, the l0-cut pursuit algorithm [24]
can quickly find an approximate solution. Consequently,
points with similar labels are considered to be in the same
cluster.

In the energy function (2), the normal of the points is
adopted as feature. Therefore, it will be estimated first.
Two crucial issues should be taken into account in the nor-
mal estimation, that is, sharp feature preservation and nor-
mal consistency. An indoor scene contains many sharp
features, such as wall corners, edges, and so on. If such
sharp features are not considered, then the segmentation re-
sults will be inaccurate. In recent years, numerous interest-
ing works [29, 30] achieved satisfactory results regarding
this issue. Boulch et al. [8] proposed a normal estimation
method based on Hough transform to deal with sharp fea-
tures. To demonstrate its advantages, this study compares
the segmentation results of a point cloud in which normal
is estimated through principal component analysis (PCA)
and Hough transform (Figure 5). Figure 5(a) shows that the
segmentation via PCA tends to be smooth at the corner and
edge, which is an over-segmentation result. However, the
normal estimated via Hough transform can lead to a satis-
factory segmentation, as shown Figure 5(b).

(a)

(b)

Figure 5. Segmentation results using different normal estimation
methods; (a) normal estimated via PCA; (b) normal estimated via
Hough transform

Although the normal estimation method based on the
Hough transform works well on sharp features, it cannot
guarantee the consistency of the normal results. This incon-
sistency will also lead to over-segmentation. For example,
in Figure 6(a), the normal orientations are not consistent
in the red rectangle area, leading to a false segmentation
result. To make the estimated normal consistent, the min-
imum spanning tree (MST) approach [20] is adopted. The

approach establishes a minimum spanning tree based on a
neighbor graph and starts from one or more vertices with
known normal orientations then flips the normal by travers-
ing the spanning tree, if necessary. Figure 6(b) shows an
improved segmentation result via the MST approach.

（a)

（b)
Figure 6. Segmentation results; (a) input point cloud without nor-
mal consistency operation; (b) input point cloud with normal con-
sistency operation

3.3.2 Outlier Removal II (OR-II)

In the OR-I phase, the cleaned LPC is obtained. Moreover,
a distance threshold from the LPC to the RPC is introduced
to roughly remove the outliers in the global outlier removal
phase (Section 3.2).

The OR-II method aims to further refine the rough global
outlier removal result by considering the planar geometry
in the RPC. The OR-II method takes the segments obtained
in the previous step as the input and outputs cleaned seg-
ments. To fully utilize the prior planar information of the
indoor scene, all the planar segments must be identified.
Suppose l1, l2, and l3 are the lengths of the axis-aligned
bounding box of a segment. As the far outliers in the OR-
I-cleaned RPC are removed in the global outlier removal
phase, then the planar segments can be determined by the
following conditions:

l1 ≤ l2 ≤ l3
l1 < τ1
l2 > τ2
l3 > τ3

(4)

τ1, τ2, and the τ3 are thresholds for l1, l2, and l3, respec-
tively. Through Equation (4), the segments can be clas-
sified into two types, namely, planar and non-planar seg-
ments. The OR-II method will process the RPC segments
sequentially. Then all the cleaned segments will be loaded
sequentially and merged into one single file.
Planar Segment Outlier Removal

For each point pi in a planar segment, its k-nearest
neighbors are denoted as

{
pji |j = 1, · · · , k

}
. Note that

p1i = pi, because pi is the nearest point to itself. Let p̄i

be the centroid of the neighborhood. The covariance matrix
C ∈ R3×3 of its k-nearest neighborhood is defined as

C =
1

k

 p1i − p̄i
· · ·

pki − p̄i

T p1i − p̄i
· · ·

pki − p̄i

 (5)

Suppose that the eigenvalues of the matrixC are λ1, λ2, λ3,
and they all satisfy the condition λ1 ≤ λ2 ≤ λ3. Then, the
surface variation σk(pi) is defined as follows:

σ(pi) =
λ1

λ1 + λ2 + λ3
(6)

According to our perception, the surface variation should
approximate zero in a planar segment. In other words, the
region with a high surface variation is likely to be an out-
lier. Thus, the surface variation is adapted to detect the out-
liers in the planar segments. With Equation (6), the sur-
face variations of each point can be obtained. The surface
variations at each point in each planar segment are denoted
as σ = {σ(pi)|i = 1, · · · , n}. Then, the outlier detection
rule Tukey’s fences [45] is utilized to detect the anomalous
surface variations. Let Q1 and Q3 be the lower and upper
quartiles of σ, respectively, and point pi is regarded as an
outlier with the following condition.

σ(pi) ≥ Q3 + α(Q3 −Q1) (7)

where α is a threshold, and the larger the threshold, the
more the points believed to be outliers. The reasonable
range of α is within (0, 50], which is set to 5 in this study.
non-planar Segment Outlier Removal

Compared with the planar-like segments, the non-planar
segments have more complicated geometric shapes, and
their geometric prior information is harder to use. Among
the outlier removal methods, density-based methods [9, 23,
35] are widely adopted when faced with arbitrarily dis-
tributed point clouds, because they have no specific point
cloud distribution requirements. LoOP [23] has two ad-
vantages among the density-based methods: (i) it is robust
when dealing with the nonuniform point cloud, and (ii) it
works well without needing to make complex parameter ad-
justments. Therefore, LoOP is adopted to remove the out-
liers in the non-planar segments. LoOP takes non-planar
segments as the input and outputs the outlier probability
score for each point in the non-planar segment. In this study,
a point with an outlier probability score larger than 0.8 is re-
garded as an outlier.

4. Experiments

All the experiments were performed on a 3.7 GHz In-
tel CoreTM i9-10900X desktop with a 128-GB memory. To

comprehensively evaluate the proposed method, the experi-
ment consists of three parts. First, the rationality of the cho-
sen downsampling strategy is verified in Section 4.1. Sec-
ond, the memory usage and runtime of the proposed out-of-
core method are compared with those of other approaches
in Section 4.2. Third, the comparison results of the different
outlier removal methods dealing with massive indoor point
clouds are presented in Section 4.3.

In this study, three large-scale point cloud datasets were
utilized to evaluate the proposed method. Semantic3D [18]
is a dataset of natural scenes with over 4 billion points in
total. Owing to the large quantity of each point cloud in
Semantic3D, it was utilized to test the validation of the pro-
posed out-of-core method. The Stanford large-scale indoor
spaces (S3DIS) [5] is a clean scanned indoor point cloud
dataset. As it is clean, this dataset was adopted to generate
the synthetic data to evaluate the proposed outlier removal
method. Three real-world models (i.e., Houses A, B, and
C) were scanned with a structure light scanner and adopted
to further verify the effect of the proposed outlier removal
method on real applications.

4.1. Validation of Downsampling Strategy

4.1.1 Runtime Comparison

Hu et al. [21] compared RS with FPS [32], (IDIS) [17],
GS [13], (CRS) [3], and PGS [49] and pointed out that
RS works best when dealing with large-scale point clouds.
However, the authors did not consider VS. In this section,
RS and VS are compared. To make the comparison rea-
sonable, the experiments were conducted on different data
scales containing 107, 108, and 109 points. As mentioned
above, VS cannot specify the amount of the generated LPC.
To compare the runtimes, the cell size of VS was specified,
and the quantity of its corresponding LPC was determined
accordingly. In this way, RS was performed under the same
LPC quantity specification as VS. Table 1 shows the cell
size of the VS approach for each raw data.

Table 1. Cell size of VS for each raw data.

Quantity of
RPC

Cell Size
(m)

Quantity of
LPC

107 0.01003660 5,001,666
108 0.01300075 5,346,474
109 0.01200075 6,982,502

Most downsampling algorithms perform two steps. In
the first step, the algorithms generate the indices of the LPC.
In the second step, based on the indices, the algorithms will
extract the LPC from the raw data. To avoid ambiguity,
both steps were included in the runtime. The runtime and
memory consumption results of VS and RS are presented
in Table 2. The table shows that RS used less memory and

runtime than VS when performing on hundreds of millions
of point clouds or more.

Table 2. Runtime (sec) and memory consumption (GB) compari-
son between VS and RS.

Time / Memory VS (sec / GB) RS (sec / GB)

107 21 / 0.90 26 / 0.70
108 54 / 6.04 25 / 0.73
109 574 / 59.64 339 / 0.93

4.1.2 Density Distribution Preservation

Point density distribution is an important factor for outlier
removal. Therefore, the point density distribution of the
LPC should be approximate to that of the raw data. Before
the point density distribution is discussed, the point density
must first be defined. For the convenience of the statisti-
cal point density, the point density of a point is defined as
the number of neighbor points within a specified radius. By
counting the number of each point density, the point density
distribution can be obtained.

To verify the effectiveness of RS in maintaining the point
density distribution, the point density distributions of the
RPC, the LPC (RS result), and the VS result are compared.
A comparison is shown in Figure 7. The point cloud gener-
ated via RS (see Figure 7[b]) has a point density distribution
similar to that of the raw data (see Figure 7[a]), whereas the
point density distribution of the point cloud generated via
VS (see Figure 7[c]) deviates from that of the raw data.

4.2. Evaluation of Data Structure in Out-of-core Method

As mentioned above, Semantic3D is adopted to evalu-
ate the data structure in the proposed out-of-core method.
Potree [40] is one of the most common octree-based out-
of-core methods. Hence, Potree and the in-core KD-tree
method are implemented and compared with the proposed
out-of-core method.

Table 3. Runtime and memory consumption in constructing the
out-of-core data structure

Scenes Numbers
Time (s) / Memory (GB)

In-core Potree Ours
sg27 1 322M 100/19.28 650/4.11 462/3.09
sg27 2 496M 149/31.53 959/3.73 685/4.17
sg27 3 422M 129/26.83 869/4.52 587/3.69
sg27 4 280M 91/17.87 470/1.91 404/2.79
sg27 5 218M 73/13.90 364/1.99 323/2.45

House A 116M 57/9.33 172/1.79 149/1.74
House B 553M 277/49.68 818/2.12 599/4.05
House C 827M 534/75.22 1285/2.12 877/5.53

The implementation of the out-of-core technology con-
sisted of two steps, that is, the data structure construction

step and the mapping step. For a fair comparison, both steps
are considered in the experiments. The statistics of runtime
and memory consumption are presented in Table 3.

Compared with the in-core results, it is observed that
the Potree and the proposed method have significantly
decreased memory consumption but take a considerable
amount of time to construct the data structure, as shown in
Table 3. Compared with the Potree, the proposed method
reduces runtime by 23.39% but increases memory con-
sumption by 35.86%. Therefore, compared with Potree, the
proposed method trades space for time. In addition, the pro-
posed method has the advantage of keeping the point den-
sity distribution of the LPC consistent with the RPC.

4.3. Evaluation of Outlier Removal

To evaluate the proposed outlier removal method, some
classical methods, including Reciprocity [48], LoOP, and
SOR, are implemented for comparison. SOR and Reci-
procity are implemented via a point data abstract library
(PDAL) [2], and LoOP is provided by MeshLab. For the
quantitative evaluation, the F -score [22] is used to evalu-
ate the accuracy and completeness of the outlier removal
results.

4.3.1 Evaluation on S3DIS

As mentioned previously, S3DIS [5] is a clean scanned in-
door point cloud dataset. S3DIS contains six large-scale in-
door scenes. The point clouds are clean and regarded as the
ground truth. Inspired by Rakotosaona et al. [36], Gaussian
noise was added to the S3DIS data to generate the RPCs
containing outliers. Next, different outlier removal methods
were applied to the RPCs. The F -score [22] is a commonly
used indicator for measuring the accuracy and complete-
ness of the results comprehensively. Therefore, the F-score
is adopted to provide quantitative comparisons among the
outlier removal results. The larger the F -score, the better
the performance of the method. As shown in Table 4, the
proposed method achieved the best F-score on the synthetic
S3DIS dataset.
Table 4. Quantitative results (F -score values) of different outlier
removal methods (Num: Number of point in RPC, Rec: Reci-
procity, Raw: the RPC with Gaussian Noise)

Scenes Num Raw Rec LoOP SOR Ours
Area 1 48M 97.08 99.18 98.92 98.73 99.73
Area 2 104M 97.08 98.27 97.08 98.86 99.24
Area 3 41M 97.05 98.27 98.80 98.83 99.15
Area 4 96M 97.10 98.25 97.10 98.88 99.81
Area 5 173M 97.07 92.15 97.07 98.73 99.81
Area 6 44M 97.09 99.16 98.88 98.73 99.70

Figure 8 shows a visual comparison among the different
outlier removal methods performed on the scenes Area 1 -

Point Density

P
ro

b
ab

il
it

y

(a) Raw

Point Density

P
ro

b
ab

il
it

yy

(b) Random Sampling

Point Density

P
ro

b
ab

il
it

y

(c) Voxel Sampling

Figure 7. Comparison of point density distribution between RS and VS downsampling approaches.

3. Two perspective views from the outside and inside view-
points are presented for the scenes Area 1 - 3. It can be seen
that SOR and the proposed method worked better than Reci-
procity and LoOP. Furthermore, the proposed method had a
better effect on the NIO removal than the SOR method.

4.3.2 Evaluation on Real-world Scenes

In real applications, outliers cannot be avoided despite care-
ful scanning operations. In addition, unlike scanning single
objects, scanning indoor point clouds would be uneven ow-
ing to their extensive scanning range. Here, three real-world
models scanned by an industrial scanner are adopted to ver-
ify the effect of the proposed outlier removal method on
real-world applications.

In Figure 9, the first row and the second row are the out-
side and inner perspective views for House A, respectively.
Reciprocity, LoOP, and SOR fail to remove the DIOs (red
circles). In addition, some SIOs (green circles) remain in
the Reciprocity and LoOP results. The point density in the
yellow circle is smaller than that in the other areas, leading
to SOR removing regular points by mistake. Among these
methods for House A, the proposed method performs best.

House B is another scene in Figure 9. The point cloud in
the red circle and rectangle contained some DIOs. Except
for the proposed method, the other methods are unable to
deal with the DIOs effectively. The inner perspective view
of House B showed that Reciprocity and LoOP failed to
remove some SIOs in the green circle. SOR removed some
regular points (yellow circle) by mistake. Similar to House
A, the proposed method also achieves the best performance.

Similar to Houses A and B, the proposed method per-
forms best again when processing the DIOs (red circles and
rectangles) and SIOs (green circles) in House C. Moreover,
LoOP achieved the worst results, as it removed some regu-
lar points (yellow circle) by mistake.

In addition, Table 5 provides the runtime and memory
consumption of the different methods when dealing with
real-world scenes. It can be seen that LoOP and SOR have
a shorter runtime than Reciprocity and the proposed meth-

Table 5. Runtime and memory consumption of different methods
for real-world scenes (Num: Number of point in RPC, Rec: Reci-
procity)

Scenes Num
Time (h) / Memory (GB)

Rec LoOP SOR Ours
A 116M 1.85/9.4 0.02/13.7 0.04/11.8 0.22/0.7
B 553M 3.24/9.2 0.08/22.2 0.04/19.6 0.47/1.0
C 827M 11.28/62 0.14/95.9 0.28/93.3 1.80/3.4

ods. However, when processing House C, memory con-
sumptions of LoOP and SOR are greater than 90 GB which
limits their applications. Compared with Reciprocity, the
proposed method used less time and memory. Overall, the
proposed method is more suitable for processing large-scale
point clouds.

5. Conclusion and Future Work

An out-of-core outlier removal method is proposed for
processing large-scale indoor data, which is capable of pre-
serving the point density distribution, utilizing geometric
shapes, and determining suitable thresholds simultaneously.
To preserve the point density distribution, RS is introduced
into the out-of-core procedure to extract the LPC from the
RPC. As the LPC is lightweight, loading it into the main
memory is feasible, and analyzing the outliers of the RPC
through the LPC is also possible. The geometric shapes
are important information for outlier removal. To take full
advantage of this information, the LPC is segmented into
two types of segments, namely, planar and non-planar seg-
ments. Then, the segmentation of the LPC is transferred
to the RPC, and the related geometric shape information in
the LPC is also transferred to the RPC for the subsequent
outlier removal procedures. To determine suitable thresh-
olds, a multi-threshold mechanism is proposed in this paper.
First, the method called OR-I is applied to the LPC using
the global threshold. Then, the cleaned LPC via the global
threshold in the OR-I method is used as a guide model to
roughly remove the outliers in the RPC by setting a dis-
tance constraint from the cleaned LPC to the RPC. Second,

Raw Reciprocity LoOP SOR Ours

A
re

a
3

A
re

a
1

A
re

a
2

Figure 8. Visual comparison among outlier removal methods for the scenes Area 1 - 3; the first row and second row of each Area present
the outside and inner perspectives of the results

each segment in RPC is processed individually by using
its threshold for improving the outlier processing accuracy.
According to the final experiments, the proposed out-of-
core method does not require an external sorting procedure,
thereby making it faster than its competitors. Moreover, the
outlier removal test results showed that the proposed outlier
removal method obtained highly accurate results.

In the OR-II phase, the plane prior in the planar seg-
ment is the decisive factor for the outliers. However, for
non-planar segment, the geometric prior of the underlying
surface is not considered. Therefore, the proposed method
is suitable for scenes with a large number of planar struc-
tures. Hence, a future research direction is to consider other
regular primitives [39] in removing outliers for complex ge-
ometric structures.

Moreover, the proposed method still contains several
complex parameters, which can cause two problems. (i)
The outlier removal method is sensitive to parameter adjust-
ments. Hence, different point clouds depend on different
parameters. (ii) Some of the parameters are not adequately
intuitive. Inspired by several papers [44, 50, 31], a self-
determined parameter algorithm will be appealing in future
research.

6. Acknowledgement

The authors wish to acknowledge Yuliang Sun, Peng
Yao, Shan Luo, Lei Wang, and Qitong Zhang. The discus-
sions with them inspired us immensely. We also sincerely
acknowledge the authors and institutions who provided the
testing datasets, including the S3DIS and Semantic3D.

References

[1] Entwine. https://github.com/connormanning/
entwine, 2010. 3

[2] Pdal point data abstraction library. https://doi.org/
10.5281/zenodo.2556738, 2018. 8

[3] A. Abid, M. F. Balin, and J. Y. Zou. Concrete autoen-
coders for differentiable feature selection and reconstruction.
arXiv:1901.09346, 2019. 7

[4] A. S. Acharya, A. Prakash, P. Saxena, and A. Nigam. Sam-
pling: Why and how of it. Indian Journal of Medical Spe-
cialties, 4(2):330–333, 2013. 4

[5] I. Armeni, S. Sax, A. R. Zamir, and S. Savarese.
Joint 2d-3d-semantic data for indoor scene understanding.
arXiv:1702.01105, 2017. 7, 8

[6] J. Baert, A. Lagae, and P. Dutré. Out-of-core construc-
tion of sparse voxel octrees. In Proceedings of the High-
Performance Graphics Conference, pages 27–32, 2013. 3

https://github.com/connormanning/entwine
https://github.com/connormanning/entwine
https://doi.org/10.5281/zenodo.2556738
https://doi.org/10.5281/zenodo.2556738

Raw LoOPReciprocity SOR Ours

H
o

u
se

 A
H

o
u
se

 B
H

o
u

se
 C

Figure 9. Qualitative comparison on outlier removal methods for Houses A, B, and C; the first row and second row present the outside and
inner perspectives of the results, respectively

[7] M. Bolitho, M. Kazhdan, R. Burns, and H. Hoppe. Mul-
tilevel streaming for out-of-core surface reconstruction. In
Proceeding of the Symposium on Geometry Processing,
pages 69–78, 2007. 3

[8] A. Boulch and R. Marlet. Fast and robust normal estimation
for point clouds with sharp features. Computer Graphics
Forum, 31(5):1765–1774, 2012. 6

[9] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander. Lof:
identifying density-based local outliers. In Proceedings of
The ACM SIGMOD International Conference on Manage-
ment of Data, pages 93–104, 2000. 3, 7

[10] R. Campos, R. Garcı́a, P. Alliez, and M. Yvinec. Splat-based
surface reconstruction from defect-laden point sets. Graphi-
cal Models, 75(6):346–361, 2013. 3

[11] Y.-J. Chiang, J. El-Sana, P. Lindstrom, R. Pajarola, and C. T.
Silva. Out-of-core algorithms for scientific visualization and
computer graphics. In IEEE Visualization, pages 35–48,
2003. 3

[12] P. Cignoni, C. Montani, C. Rocchini, and R. Scopigno.
External memory management and simplification of huge
meshes. IEEE Transactions on Visualization and Computer
Graphics, 9(4):525–537, 2003. 1, 3

[13] O. Dovrat, I. Lang, and S. Avidan. Learning to sample. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 2760–2769, 2019. 7

[14] G. Gan, C. Ma, and J. Wu. Data clustering: theory, algo-
rithms, and applications. Society for Industrial and Applied
Mathematics, 2020. 5

[15] L. Ge and J. Feng. Type-based outlier removal framework
for point clouds. Information Sciences, 580:436–459, 2021.
3

[16] E. Gobbetti, F. Marton, and J. A. I. Guitián. A single-pass
gpu ray casting framework for interactive out-of-core render-
ing of massive volumetric datasets. The Visual Computer,
24(7):797–806, 2008. 3

[17] F. Groh, P. Wieschollek, and H. P. Lensch. Flex-convolution.
In Proceeding of the Springer Asian Conference on Com-
puter Vision, pages 105–122, 2018. 7

[18] T. Hackel, N. Savinov, L. Ladicky, J. D. Wegner,
K. Schindler, and M. Pollefeys. Semantic3d.net: A new
large-scale point cloud classification benchmark. In ISPRS
annals of the Photogrammetry, Remote Sensing and Spatial
Information Sciences, pages 91–98, 2017. 7

[19] Z. He, X. Xu, and S. Deng. Discovering cluster-based local
outliers. Pattern Recognition Letters, 24(9-10):1641–1650,
2003. 3

[20] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and
W. Stuetzle. Surface reconstruction from unorganized points.
In Proceedings of the Conference on Computer Graphics and
Interactive Techniques, pages 71–78, 1992. 6

[21] Q. Hu, B. Yang, L. Xie, S. Rosa, Y. Guo, Z. Wang,
N. Trigoni, and A. Markham. Randla-net: efficient seman-
tic segmentation of large-scale point clouds. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 11108–11117, 2020. 4, 7

[22] A. Knapitsch, J. Park, Q.-Y. Zhou, and V. Koltun. Tanks
and temples: Benchmarking large-scale scene reconstruc-
tion. ACM Transactions on Graphics, 36(4):1–13, 2017. 8

[23] H.-P. Kriegel, P. Kröger, E. Schubert, and A. Zimek. Loop:
local outlier probabilities. In Proceedings of the ACM Inter-
national Conference on Information and Knowledge Man-
agement, pages 1649–1652, 2009. 3, 4, 7

[24] L. Landrieu and G. Obozinski. Cut pursuit: Fast algorithms
to learn piecewise constant functions on general weighted
graphs. SIAM Journal on Imaging Sciences, 10(4):1724–
1766, 2017. 6

[25] L. Landrieu and M. Simonovsky. Large-scale point cloud
semantic segmentation with superpoint graphs. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 4558–4567, 2018. 5

[26] P. Lindstrom. Out-of-core simplification of large polygo-
nal models. In Proceedings of the Conference on Computer
Graphics and Interactive Techniques, pages 259–262, 2000.
3

[27] P. Lindstrom. Out-of-core construction and visualization of
multiresolution surfaces. In Proceedings of the Symposium
on Interactive 3D Graphics, pages 93–102, 2003. 3

[28] R. U. Lobello, F. Dupont, and F. Denis. Out-of-core adaptive
iso-surface extraction from binary volume data. Graphical
Models, 76(6):593–608, 2014. 3

[29] D. Lu, X. Lu, Y. Sun, and J. Wang. Deep feature-preserving
normal estimation for point cloud filtering. arXiv:2004.1156,
2020. 6

[30] X. Lu, S. Schaefer, J. Luo, L. Ma, and Y. He. Low
rank matrix approximation for 3D geometry filtering.
arXiv:1803.06783, 2018. 6

[31] X. Lu, S. Wu, H. Chen, S.-K. Yeung, W. Chen, and
M. Zwicker. GPF: GMM-inspired feature-preserving point
set filtering. IEEE Transactions on Visualization and Com-
puter Graphics, 24(8):2315–2326, 2018. 10

[32] C. Moenning and N. Dodgson. Fast marching farthest point
sampling. Technical report, University of Cambridge, 2003.
7

[33] X. Ning, F. Li, G. Tian, and Y. Wang. An efficient outlier
removal method for scattered point cloud data. PloS One,
13(8):e0201280, 2018. 3

[34] R. Pajarola. Stream-processing points. In IEEE Visualization
Conference, pages 239–246, 2005. 1, 2, 3

[35] S. Papadimitriou, H. Kitagawa, P. B. Gibbons, and C. Falout-
sos. Loci: fast outlier detection using the local correlation in-

tegral. In Proceedings of the IEEE International Conference
on Data Engineering, pages 315–326, 2003. 3, 7

[36] M.-J. Rakotosaona, V. La Barbera, P. Guerrero, N. J. Mitra,
and M. Ovsjanikov. Pointcleannet: Learning to denoise and
remove outliers from dense point clouds. Computer Graph-
ics Forum, 39(1):185–203, 2020. 1, 3, 8

[37] S. Rusinkiewicz and M. Levoy. Qsplat: a multiresolution
point rendering system for large meshes. In Proceedings of
the Conference on Computer Graphics and Interactive Tech-
niques, pages 343–352, 2000. 1, 2

[38] C. Scheiblauer and M. Wimmer. Out-of-core selection
and editing of huge point clouds. Computers & Graphics,
35(2):342–351, 2011. 3

[39] R. Schnabel, R. Wahl, and R. Klein. Efficient ransac for
point-cloud shape detection. Computer Graphics Forum,
26(2):214–226, 2007. 10

[40] M. Schütz. Potree: Rendering large point clouds in web
browsers. PhD thesis, Vienna University of Technology,
2015. 1, 2, 8

[41] M. Schütz, S. Ohrhallinger, and M. Wimmer. Fast out-of-
core octree generation for massive point clouds. Computer
Graphics Forum, 39(7):155–167, 2020. 3

[42] S. Sotoodeh. Hierarchical clustered outlier detection in laser
scanner point clouds. International Archives of the Pho-
togrammetry, Remote Sensing and Spatial Information Sci-
ences, 36(3/W52):383–388, 2007. 1, 3, 4

[43] C. Stucker, A. Richard, J. D. Wegner, and K. Schindler. Su-
pervised outlier detection in large-scale mvs point clouds for
3d city modeling applications. ISPRS Annals of the Pho-
togrammetry, Remote Sensing and Spatial Information Sci-
ences, 4:263–270, 2018. 1, 3

[44] L. Trujillo, U. Lopez, and P. Legrand. Soap: Seman-
tic outliers automatic preprocessing. Information Sciences,
526:86–101, 2020. 10

[45] J. W. Tukey et al. Exploratory data analysis, volume 2. Ad-
dison Wesley Publishing Company, 1977. 7

[46] J. S. Vitter. External memory algorithms and data struc-
tures: Dealing with massive data. ACM Computing Surveys,
33(2):209–271, 2001. 2

[47] Y. Wang and H.-Y. Feng. Outlier detection for scanned
point clouds using majority voting. Computer-Aided Design,
62:31–43, 2015. 3, 4

[48] T. Weyrich, M. Pauly, R. Keiser, S. Heinzle, S. Scandella,
and M. H. Gross. Post-processing of scanned 3d surface data.
In Proceedings of the Symposium on Point Based Graphics,
pages 85–94, 2004. 3, 8

[49] K. Xu, J. Ba, R. Kiros, K. Cho, A. C. Courville, R. Salakhut-
dinov, R. S. Zemel, and Y. Bengio. Show, attend and tell:
Neural image caption generation with visual attention. In
Proceedings of the International Conference on Machine
Learning, pages 2048–2057, 2015. 7

[50] D. Zhang, X. Lu, H. Qin, and Y. He. Pointfilter: Point cloud
filtering via encoder-decoder modeling. IEEE Transactions
on Visualization and Computer Graphics, 27(3):2015–2027,
2020. 10

