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Abstract

While a popular representation of 3D data, point
clouds may contain noise and need filtering before use.
Existing point cloud filtering methods either cannot pre-
serve sharp features or result in uneven point distribu-
tions in the filtered output. To address this problem,
this paper introduces a point cloud filtering method that
considers both point distribution and feature preserva-
tion during filtering. The key idea is to incorporate a
repulsion term with a data term in energy minimiza-
tion. The repulsion term is responsible for the point
distribution, while the data term aims to approximate
the noisy surfaces while preserving geometric features.
This method is capable of handling models with fine-
scale features and sharp features. Extensive experi-
ments show that our method quickly yields good results
with relatively uniform point distribution.

Key words: point cloud filtering; point distribution; feature
preservation

1. Introduction

Researchers have made remarkable progress in point
cloud filtering in recent years. Recent methods typically
aim to maintain sharp features in the original point cloud
while projecting the noisy points to the underlying surfaces.
The filtered point cloud data can then be used for upsam-
pling [12], surface reconstruction [13, 26], skeleton learn-
ing [21, 22], computer animation [24, 27], etc.

Existing point cloud filtering methods can be divided
into traditional and deep learning techniques. In the tra-
ditional class, position-based methods [17, 11, 28] obtain
good smoothing results, while normal-based methods [26,
25] better maintain sharp edges of models (e.g. CAD mod-
els). Some of these methods incorporate repulsion terms
to prevent points from aggregating but still leave gaps near
the edges of geometric features, which affects reconstruc-
tion quality. Deep learning-based approaches [30, 31, 36]

require a number of noisy point clouds with ground-truth
models for training and often achieve good denoising re-
sults through a proper number of iterations. These methods
are usually based on local information, and lead to uneven
point distribution in the filtered results even in the presence
of a repulsion loss term. It is difficult for such methods
to handle unevenly distributed and sparsely sampled point
clouds since it is difficult to automatically adjust the patch
size. Different patch sizes in the point cloud also pose a
significant challenge to the learning procedure.

The above analysis motivates us to produce filtered point
clouds which preserve sharp features yet have a relatively
uniform point distribution. Given a noisy point cloud with
normals as input, we first smooth the input normals us-
ing bilateral filtering [12]. Principal component analysis
(PCA) [10] is used for the initial estimation of normals.
Secondly, we update the point positions in a local manner by
reformulating an objective function consisting of an edge-
aware data term and a repulsion term inspired by [23, 25].
The two aim to preserve geometric features and provide
uniform point distribution, respectively. Output with these
properties is obtained after a few iterations. We have con-
ducted extensive experiments to compare our approach to
various other approaches, including position- and normal-
based approaches, both learning and traditional. The re-
sults demonstrate that our method outperforms state-of-the-
art methods in most cases, both visually and quantitatively.

2. Related Work

In this paper, we only review the most relevant work to
our research, including traditional point cloud filtering and
deep learning-based point cloud filtering.

2.1. Traditional Point Cloud Filtering

2.1.1 Position-based methods

LOP was first proposed in [17]. It is a parameterization-free
method and does not rely on normal estimation. Besides fit-
ting the original model, a density repulsion term was added
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to evenly control the point cloud distribution. WLOP [11]
provided a novel repulsion term to solve the problem that
the original repulsion function in LOP drops too quickly
as the support radius increases. The filtered points are
distributed more evenly by WLOP. EAR [12] added an
anisotropic weighting function to WLOP to smooth the
model while preserving sharp features. CLOP [28] is an-
other LOP-based approach; it redefines the data term as a
continuous representation of a set of input points.

Although only based on point positions, these ap-
proaches achieve reasonable smoothing results. However,
as they disregard normal information, these approaches tend
to smear sharp features such as sharp edges and corners.

2.1.2 Normal-based methods

FLOP [16] adds normal information to the novel feature-
preserving projection operator and preserves features well.
Meanwhile, a new kernel density estimate (KDE)-based
random sampling method was proposed for accelerating
FLOP. MLS-based approaches [14, 15] have also been ap-
plied to point cloud filtering; they rely upon the assump-
tion that the given set of points implicitly define a surface.
In [1], the authors presented an algorithm that allocated an
MLS local reference domain for each point that most suited
its adjacent points and further projected the points to the
underlying plane. This approach uses the eigenvectors of
a weighted covariance matrix to obtain normals when the
input point cloud has no normal information. APSS [7],
RMLS [32], and RIMLS [26] use this idea. RIMLS is based
on robust local kernel regression and gives better results
when noise is high. GPF [25] incorporates normal informa-
tion in a Gaussian mixture model (GMM) with two terms,
and preserves sharp features well. A robust normal estima-
tion method was proposed in [23] for both point clouds and
meshes using a low-rank matrix approximation algorithm,
where an application of point cloud filtering was demon-
strated. To keep the geometric features, [19] first filters the
normals using discrete operators defined on point clouds,
and uses a bi-tensor voting scheme for the feature detection
step.

Inspired by image denoising, researchers have also in-
vestigated use of non-local data in point cloud denoising.
Non-local-based point cloud filtering methods [3, 4, 35, 2]
often incorporate normal information and use various sim-
ilarity definitions to update point positions in a non-local
manner. Thus, [3] proposed a similarity descriptor for point
cloud patches based on MLS surfaces. [4] designed a height
vector field to describe the difference between the neigh-
borhood of the point with neighborhoods of other points
on the surface. Inspired by the low-dimensional manifold
model, [35] extends it from image patches to point cloud
surface patches, which serves as a similarity descriptor for

non-local patches. [2] presented a new multi-patch collab-
orative method that regards denoising as a low-rank matrix
recovery problem. They define the given patch as a rotation-
invariant height-map patch and denoise the points by impos-
ing a graph constraint.

Filtering methods that rely on normal information usu-
ally yield good results, especially for point clouds with
sharp features. However, these methods strongly depend on
the quality of the input normals, and poor normal estimates
may lead to poor filtering results.

Our proposed approach falls in the normal-based cate-
gory. Inspired by GPF, we estimate normals of the input
point cloud using bilateral filtering [12] to get high-quality
normal information. Note that if the input point cloud only
contains positional information, PCA is used to compute
the initial normals. The point positions are then updated in
a local manner using the bilaterally filtered normals [23].
We also add a repulsion term [23] to ensure a more uniform
distribution of the filtered points.

2.2. Deep Learning Point Cloud Filtering

A variety of deep learning-based methods have emerged
for dealing with noisy point clouds [18, 6, 36, 5, 33, 30, 20].
For point cloud filtering, PointProNets [31] introduced a
novel generative neural network architecture that encodes
geometric features in a local way and efficiently obtains an
underlying surface. However, the generated underlying sur-
face suffers from holes due to the input shapes. NPD [5]
redesigned the framework on the basis of PointNet [29]
to estimate normals from noisy shapes and then projected
the noisy points to the predicted reference planes. An-
other PointNet-inspired method is called Pointfilter [36]. It
starts from points and learns the displacement between the
predicted points and the raw input points. Moreover, this
approach requires normals only in the training phase. In
the testing phase, only point positions are taken as input to
obtain filtered shapes with feature-preserving effects. EC-
NET [33] presented an edge-aware network (similar to PU-
NET [34]) for connecting edges of the original points. This
method retains sharp edges of 3D shapes well, but the train-
ing stage requires manual labeling of edges. Inspired by
PCPNet [8], PointCleanNet [30] developed a data-driven
method for both classifying outliers and reducing noise in
raw point clouds. A novel feature-preserving normal esti-
mation method was designed in [20] for point cloud filtering
while preserving geometric features. Deep learning-based
filtering methods usually yield good results more automat-
ically, for point clouds with high density. However, low-
density input may lead to poor filtering outcomes. Also,
such methods require sufficient suitable samples for train-
ing.
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(a) Noisy input (b) Normal filtering (c) Position update (d) Result

Data term

Repulsion term

1 iteration 5 iterations 15 iterations

(e) Reconstruction

Figure 1. Approach. (a) Noisy input. Red points are corrupted with noise. (b) Filtered normals. Blue lines are filtered results of the initial
normals. (c) Position update method, using a data term for feature preservation and a repulsion term for uniform distribution. Multiple
iterations are performed to achieve a better filtered result. (d) Filtered point cloud. (e) Mesh reconstructed from (d).

3. Method

3.1. Overview

Our approach has two phases. In phase one, we smooth
the initial normals using bilateral filtering, following [12],
to ensure the quality of normals. In phase two, we up-
date point positions with the smoothed normals to obtain a
uniformly distributed point cloud preserving geometric fea-
tures. Figure 1 overviews the proposed approach. We now
explain the second phase in detail.

3.2. Position Update

We define the noisy input with M points to be P =
{pi}Mi=1, pi ∈ R3, with corresponding filtered normals
N = {ni}Mi=1, ni ∈ R3. To obtain local information from
a given point pi, we define a local structure si for each
point in the point cloud, consisting of the k nearest points
to the current point. We employ an edge-aware recovery
algorithm [23] to obtain filtered points by minimizing

D(P,N) =
∑
i

∑
j∈si

| (pi − pj)n
T
j |2+

| (pi − pj)n
T
i |2,

(1)

where pi is the point to be updated and pj is some neigh-
boring point in the corresponding set si. Eq. (1) essentially
adjusts the angles between the tangent vector formed by pi

and pj and the corresponding normal vectors ni, nj .
Figure 2 demonstrates how the points are updated on an

assumed local plane by this edge-aware technique. It can be
seen that the quality of the filtered points depends heavily
on the quality of the estimated normals. Our normals are

Figure 2. Left: original points. Right: updated points. pi and
pj are the current point and a neighboring point. ni, and nj are
the normals of pi and pj , respectively. A local plane surface is
assumed.

generated by bilaterally filtering the original input normals,
given the simplicity and effectiveness of this approach.

3.3. Repulsive Force

From Figure 3, it can be seen that points move towards
sharp edges during the position update step, resulting in
gaps near sharp edges. It is demonstrated in [23] that min-
imizing D(P,N) inevitably yields gaps near sharp edges;
the gaps in the filtered points can greatly impact down-
stream applications such as upsampling and surface recon-
struction. Thus, we introduce a repulsion force R(P,N)
based on both point coordinates and normals [25] to better
control the distribution of points:

R(P,N) =
∑
i

λi

M∑
j∈si

η (rij) θ (rij) , (2)

3



Figure 3. Movement of the filtered points around sharp edges.
Blue points: underlying surface. Yellow, green points: two neigh-
boring points that need to be moved. (a, b) movement of pj with
fixed pi. (c, d) movement of pi with fixed pj . Note how point
move towards the sharp edges and concentrate there, leading to
gaps around the sharp edges.

where rij =
∥∥(pi − pj)− (pi − pj)n

T
j nj

∥∥, η(r) = −r,
and θ(r) = exp

(
−r2/(h/2)2

)
is a smoothly decaying

weight function.

3.4. Minimization

Combining Eq. (1) and Eq. (2), our final position update
optimization problem is to find:

A = argmin
P

D(P,N) +R(P,N) (3)

We employ the gradient descent method to do so and obtain
each updated point p′

i. The partial derivative of Eq. (3) with
respect to pi is:

∂A

∂pi
=

∑
j∈si

(
njp

T
i − njp

T
j

) (
pin

T
j − pjnj

T
)

∂pi
+

λiβij (pi − pj) (I− nT
j nj)

∂pi
,

(4)

where I is a 3× 3 identity matrix, and

βij =
θ (rij)

rij

∣∣∣∣∂η (rij)∂r

∣∣∣∣ . (5)

The updated point p′
i can thus be calculated by:

p′
i = pi + γi

∑
j∈si

(pj − pi)
(
nT
j nj + nT

i ni

)
+

µ

∑
j∈si

wjβij (pi − pj) (I− nT
j nj)∑

j∈si
wjβij

,

(6)

where γi is set to 1/(3 |si|) following [23], wj = 1 +∑
j∈si

θ (∥pi − pj∥), and µ is a parameter which controls
the relative magnitude of the repulsive force.

Algorithm 1 Point cloud filtering algorithm
Input: Noisy point set P , with corresponding filtered
normals N , neighborhood size k, number of iterations
t, repulsion strength µ
Output: Uniformly distributed set of filtered points P ′

for t iterations do
for each point pi do

construct a local patch si from k nearest neighbors
update point position via Eq. (6)

end for
end for

Table 1. Parameter settings for various models.
Parameter k µ t
Figure 4 30 0.3 5
Figure 5 30 0.3 5
Figure 6 30 0.3 5
Figure 7 30 0.3 3
Figure 8 30 0.3 5
Figure 9 30 0.3 5
Figure 10 30 0.3 10
Figure 11 30 0.3 5
Figure 12 30 0.3 5

3.5. Algorithm

The proposed method is described in Algorithm 1. We
first filter the normals using bilateral filtering. By feed-
ing the filtered normals and raw point positions into Algo-
rithm 1, we obtain the updated point positions. Depending
on the number of points in the model and the noise level, we
accordingly choose k used to generate the local patches and
the number of iterations to perform. Table 1 lists the param-
eter settings used for various models in the experiments.

4. Experiments

4.1. Settings

The proposed method was implemented in Visual Studio
2017 and executed on a PC with an Intel i9-9750h CPU and
NVidia RTX2070 GPU.

4.2. Parameter Settings

The parameters to be chosen are the local neighborhood
size k, the coefficient of repulsion force µ, and the number
of iterations t. As the number of points affects the range
of neighbors significantly, in order to find the appropriate
k for different models, we determined the value of k in the
range [15, 45] (k = 30 by default) according to the number
of points in each model. To make the distribution of points
more even while preserving features, we use the parameter
µ to balance the magnitude of the repulsive force between
points and t to control the number of iterations. Usually, for
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models with relatively smooth surfaces, we set a relatively
larger µ and a lower t, and for models with sharp surfaces,
we set a relatively smaller µ with a higher number of itera-
tions to obtain the filtered points. Table 1 gives the parame-
ters used for each model considered in the experiments.

4.3. Methods Compared and Approach

The proposed method was compared to state-of-the-
art techniques including a non-deep learning position-
based method CLOP [28], non-deep learning normal-based
methods GPF [25] and RIMLS [26], and deep learning-
based methods TotalDenoising (TD) [9], PointCleanNet
(PCN) [30] and Pointfilter (PF) [36]. We employ the fol-
lowing approach to ensure a fair comparison. (a) We first
normalized and centralized the noisy input. (b) As GPF and
RIMLS require high-quality normals, we used the same bi-
lateral filter [12] in each case to provide the same input nor-
mals for each model. (c) We tuned the main parameters of
each method as well as we could, to produce the best final
visual results. (d) For the deep learning-based methods, we
used the results of the 6th iteration for TD and iterate three
times for both PCN and PF. (e) For visual comparisons, we
used EAR [12] for upsampling to provide a similar number
of points for each method when visualizing a given model.
For surface reconstruction, we adopted the same parameters
for each given model.

4.4. Evaluation Metrics

We used two common evaluation metrics to quantita-
tively analyze the results. Let the ground-truth point cloud
and the filtered point cloud be respectively defined as: S1 =

{xi}|S1|
i=1 , S2 = {yi}|S2|

i=1 . Note that the numbers of ground-
truth points |S1| and filtered points |S2| may differ slightly.
The metrics are: chamfer distance:

eCD (S1, S2) =
1

|S1|
∑
x∈S1

min
y∈S2

∥x− y∥22+

1

|S2|
∑
y∈S2

min
x∈S1

∥y − x∥22,
(7)

and mean square error:

eMSE(S1, S2) =
1

|S1||NN(y)|
∑
x∈S1

∑
y∈NN(y)

∥x− y∥22,

(8)
where NN(y) denotes the nearest neighbors in S1 to point
y in S2. Here we set |NN(y)| = 10 following [36], i.e.
we search for 10 nearest neighbors for each point y in the
predicted point set S2.

4.5. Visual Comparisons

4.5.1 Point clouds with synthetic noise

To show the denoising effects of our method, we conducted
experiments on models with synthetic Gaussian noise at lev-
els of 0.5% and 1.0%. Compared to other state-of-the-art
methods, our visual results outperform them both in terms
of smoothing and feature preservation. The results bene-
fit from the fact that the position update considers normal
information and distributes the filtered points more evenly.

We may also observe the traits of other methods in the
experiments. CLOP always obtains good results in terms of
smoothing. However, since it is a position-based method,
it may blur sharp features. While GPF adds a gap-filling
step after projecting the points onto the underlying surface,
it still finds it difficult to maintain a uniform distribution, es-
pecially for points near sharp edges. This method may also
sharpen less sharp features. RIMLS yields promising re-
sults in both noise removal and feature preservation. How-
ever, its filtered points are often unevenly distributed, which
affects the performance of downstream applications such as
upsampling and surface reconstruction.

The learning-based method TD also yields good smooth-
ing results, but it does not seem to maintain the fine features
of the model well. PCN typically produces less sharp fea-
tures, while PCN does not provide good smoothing given a
relatively high level of noise. PF does not need normal in-
formation at run time, and achieves good feature-preserving
effects while denoising. However, when the noisy points are
sparse, this method cannot extract needed information from
the sparse point cloud, leading to distortion of the filtered
points.

Since normal information is taken into account in our
method, it can keep sharp features well. Importantly, the
greater uniformity of its point distribution makes it stand
out in point cloud filtering and downstream applications like
upsampling and surface reconstruction.

The top rows of Figures 4–6, readily show that our
method provides the most uniform point distribution. Fig-
ures 5, 6 and 8 give upsampling results for three different
models after filtering. As shown below in Figures 5 and 6,
sharp edges are maintained well during denoising. The en-
largement in Figure 8 also shows the effect of our filtering
method, where the shapes of the kitten’s ears are well main-
tained . Results of surface reconstruction are presented in
Figures 4 and 7. As the enlargement shows, the bunny’s
mouth and nose in Figure 4 are well maintained. Figure 7
also shows filtered results for our method on a simple geo-
metric model with sharp edges. Our method is best in terms
of maintaining details and sharp edges.
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(a) Noisy input (b) CLOP (c) GPF (d) RIMLS (e) TD (f) PCN (g) PF (h) Ours

Figure 4. Above: results on the Bunnyhi model corrupted with 0.5% synthetic noise. Below: surface reconstruction results.

(a) Noisy input (b) CLOP (c) GPF (d) RIMLS (e) TD (f) PCN (g) PF (h) Ours

Figure 5. Above: results on Rockerarm corrupted with 0.5% synthetic noise. Below: corresponding upsampling results.

4.5.2 Point clouds with raw scanner noise

In addition to using synthetic noise, we also performed ex-
periments on raw scanned point clouds. Results for our
method and existing methods are given in Figures 9–12.
The filtered results in Figure 9 show that our method per-
forms best in terms of smoothing and preserving details. As
can be seen from the enlargement, most methods blur the
mouth of the model or even lose it after denoising. Note
that although the model we use here has the same shape as
one used in [36], the filtered results may differ since our
sample points were sparser than theirs.

Figure 10 shows the filtered results on the BuddhaStele
raw scanned model. Results after upsampling are shown
above; below are results after surface reconstruction using

the screened Poisson method [13]. From details such as the
steps in the model, it can be seen that our method again out-
performs the other methods. In Figure 11, our method again
maintains sharp edges well. As the enlargement shows,
other state-of-the-art methods either distort sharp edges or
smooth them. Figure 12 shows filtered results on the David
raw scanned model. Our method preserves features bet-
ter during filtering, and as the enlargement shows, our ap-
proach maintains facial features better than other methods.

4.6. Quantitative Comparisons

We also make a quantitative comparison using the two
evaluation metrics given earlier. As there is no correspond-
ing ground-truth model for the raw scanned point clouds,
we used the models with synthetic noise for evaluation. Re-
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(a) Noisy input (b) CLOP (c) GPF (d) RIMLS (e) TD (f) PCN (g) PF (h) Ours

Figure 6. Above: results on Icosahedron corrupted with 1.0% synthetic noise. Below: corresponding upsampling results.

(a) Noisy input (b) CLOP (c) GPF (d) RIMLS (e) TD (f) PCN (g) PF (h) Ours

Figure 7. Results on Dodecahedron corrupted with 0.5% synthetic noise. Above: corresponding upsampling results. Below: reconstructed
meshes.

(a) Noisy input (d) RIMLS

(e) TD (f) PCN (g) PF (h) Ours

(b) CLOP (c) GPF

Figure 8. Upsampling results on kitten corrupted with 1.0% synthetic noise.
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(a) Noisy input (b) CLOP (c) GPF (d) RIMLS (e) TD (f) PCN (g) PF (h) Ours

Figure 9. Upsampling results on the Nefertiti raw scanned model.

(a) Noisy input

(b) CLOP (c) GPF (d) RIMLS (e) TD (f) PCN (g) PF (h) Ours

Figure 10. Results on BuddhaStele raw scanned model. Above: corresponding upsampling results. Below: reconstructed meshes.

sults using the Chamfer Distance metric are given in Ta-
ble 2. Despite the fact that deep learning-based methods are
trained on a large number of point clouds, our method still
outperforms all deep learning-based methods and indeed
achieves the best quantitative result in most cases. In terms
of the other evaluation metric MSE, our method still outper-
forms most deep learning methods and again provides the
lowest quantitative error in most cases, as shown in Table 3.

These quantitative results are consistent with the visual
results, demonstrating that our method generally outper-
forms existing methods both visually and quantitatively. We
believe this is because our method provides a more uni-
form distribution of the filtered points and can handle both
sparsely and densely sampled point clouds. In the case of
sparse sampling, some deep learning-based methods are un-
able to obtain meaningful local geometric information from

the sparse local neighboring points. It is also worth noting
that although RIMLS achieves comparable visual results to
our method in some cases, its numerical errors are greater
than those for our method in most cases due to its uneven
point cloud distribution.

4.7. Parameter Values

We now consider settings for the various parameters. We
performed experiments on a point cloud containing 7682
points using different values of k. Figure 13 shows the best
value of k is 30, which we use as the default value for this
parameter. It is clear that the best k depends strongly on the
density of the point cloud. Using a fixed value of k, when
the model has sparse points, the locality determined by k is
larger, which may lead to an excessive range that should not
be treated as local information, resulting in poor outcome.
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(a) Noisy input (b) CLOP (c) GPF (d) RIMLS (e) TD (f) PCN (g) PF (h) Ours

Figure 11. Upsampling results on the Realscan raw scanned model.

(a) Noisy input (d) RIMLS

(e) TD (f) PCN (g) PF (h) Ours

(b) CLOP (c) GPF

Figure 12. Upsampling results on the David raw scanned model.

For point clouds with denser distribution, the size of the
neighborhood for the same k becomes smaller, meaning that
the k neighborhood contains only a smaller amount of very
local information, leading to an uneven distribution of the
point cloud. Generally, we use a larger k for denser point
clouds to ensure an appropriate number of local neighbors.

As µ is related to the number of iterations t, we give
filtered results for different values of µ for various num-
bers of iterations. Figure 14 demonstrates the filtered point
clouds obtained for different µ values when t = 30 and
k = 30. We can see from this figure that as µ increases,
the distribution of the point cloud becomes more uniform,
but making µ too large makes the model chaotic again. Fig-
ure 14(b) shows the filtered results using a low value of µ
when i = 30 and k = 30. As we can see, a smaller µ better
maintains the edges of the model.

We also conducted experiments using different numbers
of iterations. Figure 15 shows that with increasing itera-
tions, the distribution of the filtered point cloud becomes
more uniform. However, Figure 15(d) shows that if too
many iterations are used, the boundary of the model be-
comes unclear again.

4.8. Repulsion term

Local-based filtering approaches tend to converge in cer-
tain places when updating the positions. Obviously, this
will make downstream applications such as surface recon-
struction very difficult. Our method adopts the repulsion
term mentioned in Section 3 to evenly distribute the points
while filtering, thus improving the quality of the filtered
point cloud. As Figure 16(a) shows, without the repulsion
term, it is clear that some points are concentrated at edges,
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Table 2. Quantitative evaluation of methods on the synthetic point clouds in Figures 4–8. Deep learning methods are indicated by *.
Metric used is chamfer distance (×10−5), The best method for each model is highlighted in bold.

Method Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Avg.
CLOP [28] 7.84 25.35 26.46 23.83 6.73 16.70
GPF [25] 16.19 31.85 21.52 18.35 15.54 17.58
RIMLS [26] 3.72 5.22 15.70 10.98 4.16 7.12
TD* [9] 23.88 13.20 24.43 19.22 11.86 16.15
PCN* [30] 4.76 6.38 29.87 14.96 6.24 11.18
PF* [36] 4.01 6.63 33.38 30.60 3.68 14.93
Ours 3.11 5.48 12.26 8.14 3.18 5.80

Table 3. Quantitative evaluation of methods on the synthetic point clouds in Figures 4–8. Deep learning methods are indicated by *.
Metric used is mean square error (×10−3). The best method for each model is highlighted in bold.

Method Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Avg.
CLOP [28] 10.32 13.91 21.86 23.31 9.88 15.86
GPF [25] 11.64 17.07 22.43 23.88 11.97 17.40
RIMLS [26] 10.05 14.02 21.68 23.30 10.02 15.81
TD* [9] 13.22 14.78 22.44 23.36 11.45 17.05
PCN* [30] 10.30 14.28 23.68 23.79 10.59 16.53
PF* [36] 10.02 14.17 23.71 25.28 9.82 16.60
Ours 9.92 14.01 21.46 23.15 9.92 15.69

(a) Noisy input (b) k = 1 (c) k = 5

(d) k = 15 (e) k = 30 (f) k = 45

Figure 13. Filtered results for different k. Noise level: 1.0%. t =
30, µ = 0.3.

whereas the distribution in Figure 16(b) is more even.

4.9. Point density

Results under different point densities were also tested.
Figure 17 shows that our method yields promising results
for both sparse and dense point clouds. As our method re-
quires only local information, for point clouds with greater
point density, a desired filtered result can be obtained by
setting a larger k.

(a) Noisy input (b) µ = 0.1 (c) µ = 0.2

(d) µ = 0.3 (e) µ = 0.4 (f) µ = 0.5

Figure 14. Filtered results for different µ. Noise level: 1.0%, t =
30, k = 30.

(a) Noisy input (b) 5 iterations (c) 15 iterations (d) 30 iterations

Figure 15. Filtered results for different number of iterations. Noise
level: 1.0%, k = 30, µ = 0.3.
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(a) Without (b) With

Figure 16. Filtered results without and with the repulsion term.

Noisy
input

Ours

7682 points 30722 points 67938 points
Figure 17. Filtered results for models with different numbers of
sample points.

4.10. Noise level

Different noise levels were applied to the same model to
verify the robustness of our approach. Figure 18 gives the
filtered results by our method under noise levels of 0.5%,
1.0%, 1.5%, 2.0%, 2.5% and 3.0%. It can be seen that our
method is capable of handling models with different lev-
els of noise but may work less well given excessively high
noise. As our method relies on the quality of normals, it is
difficult to accurately keep geometric features if the model
has inaccurate normals caused by high noise levels.

4.11. Irregular sampling

We conducted further experiments on models with irreg-
ular sampling. Figure 19 provides a visual comparisons
of results on an unevenly sampled model for PCN [30],
PF [36], and our method. It can be seen that the filtered
point cloud from PCN still contains obvious noise while PF
blurs the detail features. Our method smooths the model
better while preserving features.

4.12. Hole filling

Taking a cube as an example, we experimented on a
model with holes. Figure 20 shows the filtered results for
different holes. Our method is capable of filling relatively
small holes because we consider the distribution of the up-

Table 4. Runtime (in seconds) on Dodecahedron for different k
and t.

Iterations t = 5 t = 15 t = 30 t = 60
k = 30 1.41 3.77 7.37 14.69
k = 60 2.33 6.37 12.36 24.36

Table 5. Runtime (s) for different methods and models.
Method CLOP TD PCN PF Ours
Fig. 4 59.66 16.65 294.00 67.38 6.27
Fig. 5 10.82 6.17 78.04 13.86 1.80
Fig. 6 3.89 4.91 83.69 38.98 1.89
Fig. 7 2.60 5.53 28.24 70.81 0.91
Fig. 8 42.85 16.24 186.30 49.99 4.66
Fig. 9 60.92 155.76 317.67 81.10 7.93
Fig. 10 70.58 102.41 642.01 247.77 6.37
Fig. 11 103.91 40.52 241.05 68.23 28.16
Fig. 12 50.58 30.01 352.99 74.68 6.98

dated points. However, it is challenging to fill big holes that
severely disrupt the surfaces of the model.

4.13. Comparison to Lowrank

Figure 21 compares results of our approach to those of
Lowrank [23]. It demonstrates that our method results in a
more uniform point distribution than Lowrank when remov-
ing noise.

4.14. Indoor scenes

We performed an experiment on the more challenging
indoor scene data shown in Figure 22. The result shows that
our method can also deal with point cloud indoor scenes.

4.15. Runtime

Most examples in this paper were completed within 7
s. The most time-demanding was the object in Figure 11,
taking 28 s.

Running times for the proposed method were measured
for different k and numbers of iterations; Table 4 shows that
as k and the number of iterations increase, the runtime in-
creases accordingly.

In each iteration, our method gathers k neighbors for
each point. Thus the larger k is, the longer the computation
takes. The number of iterations also has a similar effect on
the run time. However, since our method is locally based,
the overall speed is not slow.

We also compare the runtime for our method and other
methods. Table 5 shows that our method is significantly
faster than other methods.

5. Limitations

Although our method achieves good results, it still has
room for improvement. Like [25], since it is a normal-based
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Noisy input

Output

0.5% noise 1.0% noise 1.5% noise 2.0% noise 2.5% noise 3.0% noise
Figure 18. Filtered results for models with different levels of noise.

PCN [30] PF [36] Ours
Figure 19. Filtered results for an irregularly sampled point cloud.

(a) (b) (c) (d)

Figure 20. Filtered results with various holes. (a) Input cube with
large holes. (b) Input cube with small holes. (c) Output after fil-
tering (a). (d) Output after filtering (b).

(a) Noisy input (b) Lowrank [23] (c) Ours

Figure 21. Filtered points of ours and Lowrank [23].

approach, it is inevitably dependent on the quality of the in-
put normals. In each iteration of the position update, each
point is estimated with reference to the direction of the nor-
mal. Therefore, inaccurate input normals may affect the
filtered results. Figure 23 shows an example of such a case.

Also, like previous methods, our method may produce

(a) Noisy input (b) Filtered result

Figure 22. Filtered result on noisy point cloud of an indoor scene.

(a) Noisy input (b) Filtered result

Figure 23. An example showing poor results.

less desirable results when handling a very high level of
noise. For instance, Figure 18 indicates 1.5% noise is more
challenging than the 0.5% and 1.0% noise.

In future, we hope to develop techniques to handle the
above limitations.

6. Conclusion

This paper presents a method to improve point cloud
filtering resulting in a more even point distribution in fil-
tered point clouds. Built on top of [23], our method intro-
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duces a repulsion term into the objective function. It not
only removes noise while preserving sharp features but also
ensures a more uniform distribution of the filtered points.
Experiments show that our method obtains promising fil-
tered results under different levels of noise and for different
densities. Both visual and quantitative comparisons show
that it generally outperforms other existing techniques. Our
method is also quicker than other compared methods.
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