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Abstract

Based on the Jacobi splitting of collocation matrices, we in this paper exploited the Jacobi–PIA format for bi-cubic
B-spline surfaces. We first present the Jacobi–PIA scheme in term of matrix product, which has higher computational
efficiency than that in term of matrix-vector product. To analyze the convergence of Jacobi–PIA, we transform the
matrix product iterative scheme into the equivalent matrix-vector product scheme by using the properties of the
Kronecker product. We showed that with the optimal relaxation factor, the Jacobi–PIA format for bi-cubic B-spline
surface converges to the interpolation surface. Numerical results also demonstrated the effectiveness of the proposed
method.

1. Introduction

Consider the interpolation problem by using the classic bi-cubic B-spline surfaces. Given an ordered data-set
{
pij
}j=1,··· ,n
i=1,··· ,m

in R3, each point pij is assigned a pair of parameters (ui, vj), where u1 = v1 = 0 and
ui = ui−1 +

1

n

n∑
j=1

‖pij − pi−1,j‖, i = 2, 3, · · · ,m;

vj = vj−1 +
1

m

m∑
i=1

‖pij − pi,j−1‖, j = 2, 3, · · · , n.

We want to find a bi-cubic B-spline surface S∗(u, v) that interpolates
{
pij
}j=1,··· ,n
i=1,··· ,m, i.e.,

S∗(ui, vj) = pij , i = 1, · · · ,m; j = 1, · · · , n. (1)

Date interpolation arises in a wide range of applications throughout computational science and engineering. Oftentimes,
the interpolation curves/surfaces can be obtained by solving linear systems of equations. For a small number of data, direct
solvers to linear systems are the preferred choices and are widely used because they are more reliable. While for large-
scale data, direct solvers are always unstable and time-consuming, hence it requires efficient algorithms for solving large
linear systems. It is well known that for large-scale systems, iterative methods are primary options and a number of iterative
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methods have emerged. For example, iterative methods based on splittings of coefficient matrices, subspace iterative methods,
preconditioning iterative methods, and so on.

In recent years an iterative method, namely progressive iteration approximation (PIA), with clear geometric meaning
was proposed. Due to its clear geometric meaning and stable convergence, the PIA gradually attracts researchers’ attention
and plays a significant role in data interpolation [9, 8]. Unfortunately, such a class of PIAs converges slowly and thus
affects the computational efficiency of data interpolation, especially on problems with large-scale data to be interpolated.
To overcome this disadvantage, numerous accelerating techniques and alternatives have been proposed in the literature,
see [10, 7, 4, 12, 13, 21, 11, 2, 6, 14, 20, 5, 15].

Regardless of its geometric significance, the PIA is mathematically equivalent to the Richardson iterative method ([2]),
which is a classic splitting method for solving linear systems. As known to all, the convergence rate of splitting iterative
methods mainly depends on their spectral radii of iteration matrices. And the smaller the spectral radius is, the faster the
splitting method converges. Therefore, an appropriate splitting method will make the spectral radius of the iterative ma-
trix smaller and result in a faster convergence rate, e.g., the modified Richardson splitting iteration [1], also known as the
weighted PIA [6]; the Jacobi splitting iteration (Jacobi–PIA) [14]; the Gauss-Seidel splitting iteration (GS-PIA) [14, 20]; the
Hermitian and skew-Hermitian splitting iteration [5]. The mentioned methods have faster convergence rates than the classical
Richardson method/PIA.

We notice in [14] that Liu et al. only discuss the Jacobi-PIA for cubic B-spline curves not discuss the iteration for surfaces.
Therefore, we in this paper exploit the Jacobi-PIA for bi-cubic B-spline surfaces based on the Jacobi splitting and analyze
its convergence. The remainder of this paper is organized as follows: Some related works, as well as the PIA for bi-cubic
B-spline surfaces, are described in Section 2. The Jacobi-PIA for bi-cubic B-spline surfaces is exploited in Section 3, and its
convergence is analyzed in Section 4. Some numerical examples are given in Section 5. Finally, we draw our conclusions in
Section 6.

2. Related work

2.1. Some conclusions of matrices

For convenience, the identity matrix of order n is denoted by In; the spectra and the spectral radius of a matrix are
denoted by λi(·) and ρ(·), respectively; the minimal and the maximal eigenvalue of a matrix are denoted by λmin(·) and
λmax(·), respectively; the column-stacking vector of a matrix is denoted by vec(·), e.g.,

vec

 1 2 3
4 5 6
7 8 9

 = [ 1 4 7 2 5 8 3 6 9 ]T .

Definition 1 ([18]) Let A = (aij) ∈ Rn×n, B = (bij) ∈ Rm×m. Then the Kronecker product of A and B is defined as

A⊗B =

 a11B · · · a1nB
...

. . .
...

an1B · · · annB

 .
Lemma 1 ([18]) The properties of the Kronecker product are given as follows:

(1) vec(AXB) =
(
BT ⊗A

)
vec(X), where A ∈ Rn×n, B ∈ Rm×m and X ∈ Rn×m;

(2) A⊗B is invertible if and only if both A and B are invertible, and (A⊗B)−1 = A−1 ⊗B−1;

(3) If A,B,C and D are matrices of such size that one can form the matrix products AC and BD, then (A⊗B)(C⊗D) =
(AC)⊗ (BD).

(4) Let λ1, . . . , λn and µ1, . . . , µm be the eigenvalues of A ∈ Rn×n and B ∈ Rm×m, respectively. Then the eigenvalues
of A⊗B are λiµj , i = 1, 2, · · ·n, j = 1, 2, · · · ,m.



2.2. Matrix representation of bi-cubic B-spline interpolation surface

We expand the interpolation question mentioned in the introduction. Firstly, we construct the knot vectorsU = {ui}m+3
i=−2

and V = {vj}n+3
j=−2 based on the parameters {ui}mi=1 and {vj}nj=1, respectively. To ensure that the bi-cubic B-spline surface

interpolates at the boundary points, we adopt the multiple-knot method, i.e.,

u−2 = . . . = u1, um = . . . = um+3, v−2 = . . . = v1, vn = . . . = vn+3.

Let N3
i (u) and N3

j (v) be the cubic B-spline basic functions defined on the knot vectors U and V , respectively. Then the
bi-cubic B-spline interpolation surface in (1) can be expressed as

S∗(u, v) =

m−1∑
i=−2

n−1∑
j=−2

p∗i+2,j+2N
3
i (u)N

3
j (v), (u, v) ∈ [u1, um]⊗ [v1, vn],

where
{
p∗ij
}j=1,··· ,n
i=1,··· ,m are the control points need to be determined (Since the multiple-knot method is adopted, the boundary

control points are determined.).
Letting P ∗ =

(
p∗ij
)j=1,··· ,n
i=1,··· ,m, P =

(
pij
)j=1,··· ,n
i=1,··· ,m. Then the formula (1) can be written in the following matrix equation

B1P
∗BT2 = P , (2)

where

B1 =


1 0

N3
−1(u2) N3

0 (u2) N3
1 (u2)

. . .
. . .

. . .
N3

m−4(um−1) N3
m−3(um−1) N3

m−2(um−1)
0 1


and

B2 =


1 0

N3
−1(v2) N3

0 (v2) N3
1 (v2)

. . .
. . .

. . .
N3

n−4(vn−1) N3
n−3(vn−1) N3

n−2(vn−1)
0 1


are the so-called collocation matrices.

According to Lemma 1, one can alternatively solve instead of (2) the equivalent the matrix equation

(B2 ⊗B1)vec(P
∗) = vec(P ). (3)

Remark 1 According to Lemma 1, it is easy to verify that the solution to (3) is the column-stacking vector of the one to (2).
We also note in [19, 16] that the system (3) is suitable for theoretical analysis but impractical to solve its numerical solution
because the system (3) is more ill-conditioned and costly than the matrix equation (2). Therefore, we in this paper exploit the
approximate interpolation scheme in the matrix form, then transform it into its equivalent matrix-vector product scheme to
analyze its convergence.

2.3. PIA for bi-cubic B-spline surfaces

In [7], the PIA was proposed to solve the aforementioned interpolation problem. For the data points
{
pij
}j=1,··· ,n
i=1,··· ,m ∈ R3

to be interpolated and the knot vectors U = {ui}m+3
i=−2, V = {vj}n+3

j=−2. Let
p
(0)
ij = pij , i = 1, . . . ,m; j = 1, . . . , n;

p
(0)
0j = p

(0)
1j ,p

(0)
m+1,j = p

(0)
m,j , j = 1, . . . , n;

p
(0)
i0 = p

(0)
i1 ,p

(0)
i,n+1 = p

(0)
i,n, i = 1, . . . ,m;

p
(0)
00 = p

(0)
11 ,p

(0)
0,n+1 = p

(0)
1n ,p

(0)
m+1,0 = p

(0)
m,1,p

(0)
m+1,n+1 = p

(0)
m,n.



Then we can obtain a bi-cubic B-spline surface

S(0)(u, v) =

m−1∑
i=−2

n−1∑
j=−2

p
(0)
i+2,j+2N

3
i (u)N

3
j (v), (u, v) ∈ [u1, um]⊗ [v1, vn],

that approximately interpolates
{
pij
}j=1,··· ,n
i=1,··· ,m.

Let δ(0)ij = pij − S
(0)(ui, vj), i = 1, . . . ,m; j = 1, . . . , n be the difference vector between the points pij and their

approximate interpolation surface S(0)(u, v). Then we can update the control points{
p
(1)
ij = p

(0)
ij + δ

(0)
ij , if i ∈ {1, . . . ,m} and j ∈ {1, . . . , n};

p
(1)
ij = p

(0)
ij , if i ∈ {0,m+ 1} or j ∈ {0, n+ 1},

and generate the approximate interpolation surface after one iteration

S(1)(u, v) =

m−1∑
i=−2

n−1∑
j=−2

p
(1)
i+2,j+2N

3
i (u)N

3
j (v), (u, v) ∈ [u1, um]⊗ [v1, vn].

Similarly, let S(k)(u, v) be the approximate interpolation surface after k iterations, and let δ(k)ij = pij −S
(k)(ui, vj), i =

1, . . . ,m; j = 1, . . . , n be the difference vector. Then the (k + 1)-th approximate interpolation surface can be defined by

S(k+1)(u, v) =

m−1∑
i=−2

n−1∑
j=−2

p
(k+1)
i+2,j+2N

3
i (u)N

3
j (v), (u, v) ∈ [u1, um]⊗ [v1, vn],

where {
p
(k+1)
ij = p

(k)
ij + δ

(k)
ij , if i ∈ {1, . . . ,m} and j ∈ {1, . . . , n};

p
(k+1)
ij = p

(k)
ij , if i ∈ {0,m+ 1} or j ∈ {0, n+ 1}.

(4)

Thus we obtain a sequence of bi-cubic B-spline surfaces
{
S(k)(u, v)

}∞
k=0

that approximately interpolate
{
pij
}j=1,··· ,n
i=1,··· ,m.

The method to generate
{
S(k)(u, v)

}∞
k=0

is known as the PIA for bi-cubic B-spline surfaces [7].

3. Jacobi–PIA for bi-cubic B-spline surfaces

For the aforementioned data
{
pij
}j=1,··· ,n
i=1,··· ,m ∈ R3, knot vectors U = {ui}m+3

i=−2, V = {vj}n+3
j=−2 and initial control points{

p
(0)
ij

}j=0,··· ,n+1

i=0,··· ,m+1
, we can iteratively generate a sequence of bi-cubic B-spline surfaces

S(k)(u, v) =

m−1∑
i=−2

n−1∑
j=−2

p
(k)
i+2,j+2N

3
i (u)N

3
j (v), (u, v) ∈ [u1, um]⊗ [v1, vn], k = 0, 1, . . . , (5)

that approximately interpolate
{
pij
}j=1,··· ,n
i=1,··· ,m. Here the control points in (5) are defined by{

p
(k)
ij = p

(k−1)
ij + ω 1

N3
i−2(ui)N3

j−2(vj)
δ
(k−1)
ij , if i ∈ {1, . . . ,m} and j ∈ {1, . . . , n};

p
(k)
ij = p

(k−1)
ij , if i ∈ {0,m+ 1} or j ∈ {0, n+ 1},

(6)

where ω is a nonnegative real number. Different from the method in (4), we in (6) multiply the difference vector δ(k)ij by
ω 1
N3

i−2(ui)N3
j−2(vj)

when we updating the control points of bi-cubic B-spline surfaces.

Letting P (k) =
(
p
(k)
ij

)j=1,··· ,n

i=1,··· ,m
, k = 0, 1, . . .. Then (6) can be written in matrix form

P (k+1) = P (k) + ωD−11 (P −B1P
(k)BT2 )D

−T
2 , k = 0, 1, . . . . (7)



In [19], Tian et al. proposed the Jacobi iterative method for matrix equations. Let B1 = D1 − (L1 + U1) and B2 =
D2 − (L2 +U2) be the Jacobi splitting of the collocation matrices B1 and B2, respectively. Here the matrices Di, Li and Ui
are the diagonal parts, strictly lower triangular parts and strictly upper triangular parts of Bi(i = 1, 2), respectively. Then the
Jacobi iterative format for solving (2) is

P (k+1) = P (k) +D−11

(
P −B1P

(k)BT2

)
D−T2 . (8)

Remark 2 Compared with the iteration (8), we in (7) multiply a relaxation factor ω to guarantee its convergence. Although
Liu et al. have shown that the Jacobi–PIA for cubic B-spline curves is convergent [14], it’s not always true for the Jacobi–PIA
for bi-cubic B-spline surfaces, which will be verified by an numerical example later. Therefore, we introduce a relaxation
factor ω and then determine the optimal relaxation factor to guarantee the convergence of the proposed iterative method.

The bi-cubic B-spline surface is said to have the Jacobi–PIA property if the limit of the sequence (5) is the interpolation
surface of

{
pij
}j=1,··· ,m
i=1,··· ,n , i.e.,

lim
k→∞

S(k)(ui, vj) = S
∗(ui, vj) = pij .

The Jacobi–PIA property also indicates that the sequence of control points converges to the control points of the interpolation
surface S∗(u, v), i.e.,

lim
k→∞

p
(k)
ij = p∗ij , i = 1, . . . ,m; j = 1, . . . , n.

We refer to the iteration (7) as the Jacobi–PIA format.
According to Lemma 1, the iteration (7) can be expressed as follows

vec
(
P (k+1)

)
=
(
Im×n − ω

(
D−12 ⊗D

−1
1

)
(B2 ⊗B1)

)
vec

(
P (k)

)
+ ω

(
D−12 ⊗D

−1
1

)
vec(P ). (9)

Hence the convergence of (7) can be alternatively transformed into that of (9).

Remark 3 From (9), D1 and D2 are diagonal matrices composed of the main diagonals of B1 and B2, respectively. Hence
both the diagonal entries of D1 and D2 are different, so is the matrix ω

(
D−12 ⊗D

−1
1

)
. On the other hand, we note in [21]

that Zhang et al. proposed the PIA with different weights (DWPIA) for tensor product surfaces. It can be expressed as

vec
(
P (k+1)

)
= (Im×n −W (B2 ⊗B1))vec

(
P (k)

)
+Wvec(P ),

where W is a diagonal matrix with different diagonal entries, i.e., the so-called different weights in [21]. Since W and
ω
(
D−12 ⊗D

−1
1

)
are diagonal matrices with different diagonal entries, the proposed Jacobi–PIA can also seem as a variant

of DWPIA. Clearly, the choices of the weights in DWPIA will influence the convergence of the DWPIA. However, we notice in
[21] that they do not give a strategy to determine the optimal weights. The analytic determination of optimal weights appears
to be daunting. In the next section, we present the optimal relaxation factor ω for Jacobi–PIA, which also gives analytic
optimal weights for DWPIA alternatively.

4. Convergence analysis of Jacobi–PIA

Definition 2 ([3]) A matrix is said to be totally nonnegative if all the minors of A are nonnegative; totally positive if all the
minors of A are positive.

Lemma 2 For i = 1, 2, let Di be the diagonal matrix composed of the main diagonal of the collocation matrix Bi. Then the
diagonal matrices D−11 and D−12 are totally nonnegative.

Proof 1 Note in [7] that the diagonals of the collocation matrices B1 and B2 are positive. Hence, D1 and D2 are diagonal
matrices with positive diagonal entries. It follows from Definition 2 that a diagonal matrix is totally nonnegative if all the
diagonal entries are positive. This shows that D−11 and D−12 are totally nonnegative.

Lemma 3 ([3]) Totally nonnegative matrices are closed under multiplication; all the eigenvalues of a totally nonnegative
matrix are nonnegative real numbers.



Lemma 4 ([17]) Let x(k+1) =Mx(k) + c be any iteration for solving a linear system Ax = b. Then the iterative sequence{
x(k)

}∞
k=0

converges to the solution of Ax = b for all starting vectors x(0) and for all b if and only if the spectral radius of
the iteration matrix is less than 1, i.e., ρ(M) < 1.

Lemma 5 ([17]) Given a linear system of equations Ax = b, where A ∈ Rn×n, x, b ∈ Rn×1. Let x(k+1) = (In −
αA)x(k) + αb be the Richardson iterative method for solving Ax = b, where α is a nonnegative real number. Then the
Richardson iterative method has the fastest convergence rate if

α =
2

λmax(A) + λmin(A)
.

And in this case, the spectral radius of the iteration matrix In − αA if

ρ(In − αA) =
λmax(A)− λmin(A)

λmax(A) + λmin(A)
.

Theorem 1 Let S(k)(u, v) be the sequence of bi-cubic B-spline surfaces defined as in (5). Then the bi-cubic B-spline surface
has the property of Jacobi–PIA if

ω =
2

λmax(D
−1
1 B1)λmax(D

−1
2 B2) + λmin(D

−1
1 B1)λmin(D

−1
2 B2)

. (10)

And in this case, the Jacobi–PIA has the fastest convergence rate.

Proof 2 Note that the Jacobi–PIA can also be seem as the Richardson iterative method for solving(
D−12 ⊗D

−1
1

)
(B2 ⊗B1)vec (P

∗) =
(
D−12 ⊗D

−1
1

)
vec (P ) .

It follows from Lemmata 1 and 5 that the Jacobi–PIA has the fastest convergence rate if

ω =
2

λmax

((
D−12 ⊗D

−1
1

)
(B2 ⊗B1)

)
+ λmin

((
D−12 ⊗D

−1
1

)
(B2 ⊗B1)

)
=

2

λmax(D
−1
2 B2)λmax(D

−1
1 B1) + λmin(D

−1
2 B2)λmin(D

−1
1 B1)

.

And in this case, the spectral radius of the iteration matrix Im×n − ω
(
D−12 ⊗D

−1
1

)
(B2 ⊗B1) is

ρ =
λmax(D

−1
1 B1)λmax(D

−1
2 B2)− λmin(D

−1
1 B1)λmin(D

−1
2 B2)

λmax(D
−1
1 B1)λmax(D

−1
2 B2) + λmin(D

−1
1 B1)λmin(D

−1
2 B2)

.

From Lemmata 2 and 3, both D−11 B1 and D−12 B2 are totally nonnegative, hence λi(D−11 B1) ≥ 0 and λi(D−12 B2) ≥ 0. It
is clear that with the optimal ω,

ρ
(
Im×n − ω

(
D−12 ⊗D

−1
1

)
(B2 ⊗B1)

)
< 1.

It follows from Lemma 4 that the iterative sequence (9) is convergent. By the equivalence of (7) and (9), we can conclude
that the bi-cubic B-spline surface has the property of Jacobi–PIA.

5. Numerical results

In this section, we present several numerical examples to assess the effectiveness of the proposed algorithm. For compar-
ison, we also tested the PIA ([7]) and the DWPIA [21]. All numerical experiments were performed in Matlab R2016a.

For approximating interpolation, the interpolation error of the kth interpolation surface S(k)(u, v) is defined by

ε(k) = max
1≤i≤m
1≤j≤n

∥∥∥pij − S(k)(ui, vj)
∥∥∥,

where ‖ · ‖ denotes the Euclidean norm.



Example 1 Consider interpolating 20 points: (1, 1, 1), (1, 2, 4), (1, 3, 2), (1, 4, 2), (1, 5, 2), (2, 1, 2), (2, 2, 2), (2, 3, 3),
(2, 4, 6), (2, 5, 4), (3, 1, 3), (3, 2, 2), (3, 3, 4), (3, 4, 4), (3, 5, 3), (4, 1, 4), (4, 2, 6), (4, 3, 1), (4, 4, 1), (4, 5, 2).

Example 2 Consider interpolating 40× 40 points sampled equidistantly from the shell surface x = 1
5

(
1− v

2π

)
cos(2v)(1 + cosu) + 1

10 cos(2u)
y = 1

5

(
1− v

2π

)
sin(2v)(1 + cosu) + 1

10 sin(2u)
z = v

2π + 1
5

(
1− v

2π

)
sin(2u)

; 0 ≤ u, v ≤ 2π.

Example 3 Consider interpolating 10×10 points sampled from f(x, y) = sin(
√
x2 + y2)/

√
x2 + y2 in the following way(

− 8 +
16(i− 1)

9
,−8 + 16(j − 1)

9
, f

(
− 8 +

16(i− 1)

9
,−8 + 16(j − 1)

9

))
, i = 1, 2, . . . , 10; j = 1, 2, . . . , 10.

Example 4 Consider interpolating m× n points sampled from

g(x, y) =
3

4
e−

(9x−2)2+(9y−2)2

4 +
3

4
e−

(9x+1)2

49 − 9y+1
10 +

1

2
e−

(9x−7)2+(9y−3)2

4 − 1

5
e−(9x−4)

2−(9y−7)2

in the following way (
i− 1

m− 1
,
j − 1

n− 1
, g

(
i− 1

m− 1
,
j − 1

n− 1

))
, i = 1, 2, . . . ,m; j = 1, 2, . . . , n.

We begin with the experiments by employing the PIA, the DWPIA, and the Jacobi–PIA to interpolate the points given
in Examples 1 and 2. In our experiments, we tested the DWPIA with different parameters a and tested the Jacobi-PIA with
different parameters ω. In Figure 1, we show the interpolation errors after k iterations, where x-axis represents the number
of iterations, y-axis represents the interpolation error. To make the results distinct, the y-axis in Figure 1(b) is plotted on a
logarithmic scale. As shown in Figure 1, for the optimal parameter ω (denoted by ωopt), the interpolation error of Jacobi–PIA
converges fastest as the number of iterations increases. It is also evident from Figure 1(b) that the Jacobi–PIA with ω = 1
is divergent. This indicates that the Jacobi–PIA with w = ωopt converges, but may diverge with w = 1, which confirms
the conclusion in Remark 2. On the other hand, even though the DWPIA does converge for different parameters a, the
convergence rate also varies for different a. In other words, the convergence rate of DWPIA is even slower than that of PIA
if the value of a is not appropriate. This allows us to find an appropriate a by testing the DWPIA with different parameters a.
Consequently, it will affect the computational efficiency of the DWPIA.

5 10 15 20 25 30 35 40 45 50

Iteration number k

0

0.2

0.4

0.6

0.8

1

1.2

1.4

In
te

rp
ol

at
io

n 
er

ro
r 
ǫ

(k
)

PIA
DWPIA with a=0.4
DWPIA with a=1
DWPIA with a=1.8
Jacobi-PIA with ω=1
Jacobi-PIA with ω=ω

opt

(a) Example 1

0 20 40 60 80 100 120

Iteration number k

10-15

10-10

10-5

100

105

1010

1015

1020

In
te

rp
ol

at
io

n 
er

ro
r 
ǫ

(k
)

PIA
DWPIA with a=0.5
DWPIA with a=1
DWPIA with a=1.5
Jacobi-PIA with ω=1
Jacobi-PIA with ω=ω

opt

(b) Example 2

Figure 1. Interpolation errors curves of PIA, DWPIA and Jacobi–PIA in Examples 1 and 2.



In the following experiments, we took ω = ωopt when we employed the Jacobi–PIA to interpolate the points given in
Examples 1 – 4. And when we employed the DWPIA to test Examples 1 - 4, we took a = 1.7, 1.5, 1.8 and 1.6, respectively.
When we tested Example 4, we took different m× n: were 10× 12, 20× 24 and 30× 35.

The spectral radii of iteration matrices of the PIA, the DWPIA, and the Jacobi–PIA are listed in Table 1. It is evident
from Table 1 that the spectral radii of the Jacobi–PIA are less than those of the PIA and the DWPIA, hence the Jacobi–PIA
would have the fastest convergence rate. It should be pointed out that when we tested Example 3, the spectral radius of the
Jacobi–PIA with w = 1 is 1.2340, while the spectral radius of the Jacobi–PIA with the optimal w is 0.7734, which also
confirms the conclusion in Remark 2.

Table 1. Spectral radii of PIA, DWPIA and Jacobi–PIA in Examples 1 – 4.

Method Example 1 Example 2 Example 3
Example 4

m = 10, n = 12 m = 20, n = 24 m = 30, n = 35

PIA 0.8586 0.8882 0.8794 0.8885 0.8929 0.8929
DWPIA 0.7178 0.8168 0.7788 0.7941 0.8071 0.8093
Jacobi–PIA 0.6645 0.7984 0.7734 0.7796 0.7984 0.8003

By implementing the PIA, the DWPIA, and the Jacobi–PIA, we list in Table 2 the interpolation errors of Example 3
and show in Figures 2 the interpolation errors of Example 4. In Figure 2, the x-axis represents the number of iterations,
y-axis represents the interpolation error and is plotted on a logarithmic scale. As the results reported in Table 2 and Figure 2
show, the interpolation errors obtained by the Jacobi–PIA are close to those obtained by the PIA and the DWPIA at the first
iterations and decrease even faster than those obtained by the PIA and the DWPIA as the number of iterations increases. The
interpolation error obtained by the Jacobi–PIA reaches the machine precision (near 10−15) first.
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Figure 2. Interpolation errors of PIA, DWPIA and Jacobi–PIA in Example 4.

Under the requirement of the same interpolation error, we show in Figure 3 the computational time (in second) and the
required number of iterations by employing the PIA, the DWPIA, and the Jacobi–PIA to test Examples 1 – 4. We took

k PIA DWPIA Jacobi–PIA
1 9.01× 10−2 8.27× 10−2 7.96× 10−2

2 4.35× 10−2 4.80× 10−2 3.86× 10−2

5 6.97× 10−3 1.76× 10−2 1.07× 10−2

10 6.45× 10−4 3.90× 10−3 1.53× 10−3

20 9.35× 10−6 2.11× 10−4 3.56× 10−5

50 1.53× 10−8 3.96× 10−8 1.82× 10−9

80 1.05× 10−10 2.49× 10−11 8.09× 10−13

Table 2. Interpolation errors of PIA, DWPIA and Jacobi–PIA in Example 3.



m = 20 and n = 24 when we tested Example 4. In our experiments, the required interpolation errors were set to 10−1, 10−2,
. . . , 10−14, respectively. Figure 3 is plotted with two y-axes, which represent the computational time (left) and the required
number of iterations (right), respectively. The x-axis is plotted on a logarithmic scale and represents the required interpolation
error. From Figure 3, we can observe that the computational time is coincident with the required number of iterations. The
computational time depends mainly on the requirement of the interpolation error. More importantly, the computational time
of the Jacobi–PIA is less than those of the other methods. This benefits from the fact that the Jacobi–PIA has the smallest
number of iterations for the same interpolation error.

10-15 10-10 10-5 100

Interpolation error

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

T
im

e(
s)

0

50

100

150

200

250

R
eq

ui
re

d 
ite

ra
tio

n 
nu

m
be

r

Jacobi-PIA(Time)
PIA(Time)
DWPIA(Time)
Jacobi-PIA(Iteration number)
PIA(Iteration number)
DWPIA(Iteration number)

(a) Example 1.

10-15 10-10 10-5 100

Interpolation error

0

1

2

3

4

5

6

T
im

e(
s)

0

50

100

150

200

250

300

R
eq

ui
re

d 
ite

ra
tio

n 
nu

m
be

r

Jacobi-PIA(Time)
PIA(Time)
DWPIA(Time)
Jacobi-PIA(Iteration number)
PIA(Iteration number)
DWPIA(Iteration number)

(b) Example 2.
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(c) Example 3.
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Figure 3. Runtime (in second) and required number of iterations vs interpolation error in Examples 1-4.

By employing the Jacobi–PIA to interpolate the points given in Examples 1 – 4, we obtain the bi-cubic B-spline interpola-
tion surfaces, which are shown in Figures 4 – 7, respectively. The interpolation surfaces in Figure 7 are obtained to interpolate
20 × 24 points sampled from g(x, y) given in Example 4. In Figures 4 – 7, all subfigures (a) are obtained by performing
one Jacobi–PIA iteration, and subfigures (b) are obtained by performing 10 Jacobi–PIA iterations. As the results reported
in Figures 4 – 7 show, the interpolation surfaces obtained by the Jacobi–PIA have good performances in approximating
interpolation.

6. Conclusions

In this paper, we have exploited the Jacobi–PIA for tensor product bi-cubic B-spline surfaces. By introducing a relaxation
factor, the Jacobi–PIA can also be seen as a variant of the DWPIA and has the fastest convergence rate with the optimal
relaxation factor. Thus it provides a reference strategy for determining the analytic optimal weights of DWPIA. Our numerical
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Figure 4. Bi-cubic B-spline interpolation surfaces obtained by performing Jacobi–PIA k iterations in Example 1.
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Figure 5. Bi-cubic B-spline interpolation surfaces obtained by performing Jacobi–PIA k iterations in Example 2.

results show that the Jacobi–PIA performs well in data interpolation.
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