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Abstract

Light field (LF) cameras record multiple perspec-
tives through a sparse sampling of real scenes, and
these perspectives provide useful information for each
other. This information is beneficial to the LF super-
resolution (LFSR). Comparing with traditional single-
image super-resolution (SISR), LF has the parallax
structure and perspective correlation between LF views.
Furthermore, the performance of existing methods is
limited as they fail to deeply explore the complementary
information across LF views. In this paper, we propose
a novel network, called light field complementary-view
feature attention network (LF-CFANet), to improve
LFSR by dynamically learning the complementary in-
formation among LF views. Specifically, we design a
residual complementary-view spatial and channel at-
tention module (RCSCAM) to effectively interact com-
plementary information between complementary views.
Moreover, RCSCAM captures the relationship of differ-
ent channels, and is able to generate informative fea-
tures for reconstructing LF images while ignoring the
redundant information. Then, a maximum-difference
information supplementary branch (MDISB) is used to
supplement information from maximum-difference an-
gular positions based on the geometrical structure of LF
images. MDISB can guide the process of reconstruction.
Experimental results on both synthetic and real-world
datasets demonstrate the superiority of our method.
The proposed LF-CFANet has a more advanced recon-
struction performance that displays faithful details with
better SR accuracy than state-of-the-art methods.

1. Introduction

Light field (LF) provide 4D LF images compared with
conventional cameras, and thus LF imaging technology has
been used widely in many applications, such as VR [1, 2],
3D reconstruction [3, 4], saliency detection [5, 6] and post-
capture image editing [7]. One of the most popular applica-
tions is LF cameras, e.g., Lytro and RayTrix. As illustrated
in Fig. 1(a), these cameras place a micro-lens array between
the main lens and the sensor to provide multiple views for
a scene, which are different from conventional cameras. LF
images, captured by the handheld LF camera [ 1, 2], record
the spatial information (accumulation from the same object
point) and the angular information (the intensity values by
all ray directions). However, due to the limitation of sen-
sor resolution, the spatial resolution of LF images is much
lower than that of commercial 2D cameras. Therefore, im-
age super-resolution (SR) technology plays an important
role in LF applications, and this technology effectively pro-
motes the field of LF.

LF super-resolution (LFSR) is an ill-posed problem.
This problem can be solved by exploring the efficient use
of sub-pixel information from different views to recon-
struct SR images. Traditional methods generally solve
the SR problem among multiple views based on prior dis-
parity information, such as Bayesian framework [8], vari-
ational framework [9, 10] and Gaussian mixture frame-
work [11]. However, these methods are restricted by the
inaccurate prior disparity information, and their computa-
tional costs are very high. With the development of deep
learning, learning-based methods [12—15] are used to ad-
dress the problem of complex 4D structure of LF data, and
improve the performance compared to the traditional ap-
proaches. Although continuous improvements have been
investigated [16, 17], the inherent complementary infor-
mation among sub-aperture images (SAI) still fails to be
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Figure 1. Principle of LF camera and structure of 4D LF. (a) II-
lustration of the schematic of LF cameras. (b) An example of 4D
LF structure. The angular position (u,v) of an LF is determined
by the number of sensor pixels under each micro-lens, while the
spatial position (h,w) is related to the number of micro-lenses in
the array.

fully explored, because the parallax information is treated
equally for each view, and the feature fusion between com-
plementary views is not sufficient. These issues hinder the
performance improvement of LFSR methods.

Taking advantage of the attention mechanism in SR net-
works [18-20], we propose a spatial and channel atten-
tion network, namely light field complementary-view fea-
ture attention network (LF-CFANet), to improve the spa-
tial resolution of LF images. As shown in Fig. 2, this net-
work consists of two main modules, namely the residual
complementary-view spatial and channel attention module
(RCSCAM) and the maximum-difference information sup-
plementary branch (MDISB). Specifically, RCSCAM is de-
signed to fuse the complementary information among the
pairs of LF images. With our RCSCAM, the reconstruction
features can be interacted with the complementary sub-pixel
information and local similarity information from differ-
ent auxiliary views by computing an attention map. Mean-
while, this module with a channel attention mechanism can
capture the global channel-level information by adaptively
adjusting the response value of the feature map of each
channel. To guide LF reconstruction both effectively and
efficiently, we propose the MDISB to guide the features for
SR reconstruction and obtain the maximum-difference in-
formation among LF views. In MDISB, the features of a
reference view and four auxiliary views are collected from
reservoir based on the maximum-difference angular posi-
tions. The maximum-difference feature is used as a guide
for the reconstruction of the reference view. Through these
two modules, the complementary information in the across
LF views can be effectively utilized to reconstruct the SR
LF images to a certain extent.

Extensive experimental results over the LF datasets
(real-world and synthetic) demonstrate that the proposed

method achieves both higher quantitative and better qualita-
tive performance, compared with the state-of-the-art meth-
ods. Our contributions are summarized as follows.

1. We propose an RCSCAM to better exploit correlation
cues for LF complementary-view pairs and generate
the effectively fused complementary-view features by
introducing the attention mechanism. The channel at-
tention increases the global perception of feature chan-
nels, and the spatial attention mechanism enhances
the interaction of spatial information between comple-
mentary views.

2. We develop an MDISB for guiding supplementation
with the most difference information for SR views by
treating each perspective unequally. The information
can be provided form reservoir by concatenating two
feature pairs consisting of four maximum-difference
fused features based on the parallax structure of the
LF images.

3. Our LF-CFANet explores the effectiveness of using
the attention mechanism for feature interaction in LF
complementary views. Extensive experiments have
demonstrated the performance improvements com-
pared with the state-of-the-art methods.

The rest of this paper is organized in the following sec-
tions. Section 2 introduces a brief review of the related
work. The structure of LF and the architecture of our LF-
CFANet are outlined in Section 3. In Section 4, we give
extensive analysis and experiments by using synthetic and
real-world datasets. Finally, Section 5 summarizes the con-
clusion of this paper.

2. Related work

In this section, we review the related work on both single
image super-resolution (SISR) and LFSR.

2.1. Single image super-resolution

SISR is a reconstruction technology for fuzzy low-
resolution (LR) images. This technology plays an important
role in the field of surveillance, satellite imaging, micro-
scopic imaging, etc. Several studies [2 1, 22] provided more
details in reviewing SISR. Here, we give a review of several
recent advancements. Nowadays, deep learning has gradu-
ally become a research hot spot, and has great influence on
the technology of super-resolution. Dong et al. [23, 24] pro-
posed a milestone study in an SR deep convolutional neural
network (SRCNN), a seminal method in the field of SR.
This simple and shallow model shows better reconstruc-
tion quality than earlier work. Additionally, Kim et al. [25]
proposed a very deep convolutional network (VDSR) com-
bined with residual learning, which was more efficient and



achieved higher quality over that of Dong’s [23, 24]. Espe-
cially, VDSR could obtain a larger receptive field by stack-
ing filters, the problem of slow convergence was solved
by applying global residual learning. To make good use
of intra-view information, more powerful models have ap-
peared based on deep networks. Lim et al. [26] proposed an
enhanced deep SR network (EDSR). This network achieved
extraordinarily well performance than previous methods by
revising the residual module and multi-scale model [27].
Zhang et al. [28, 29] proposed a residual dense network
(RDN), which could make full use of all hierarchical fea-
tures in all convolutional layers and provided better perfor-
mance in feature extraction than EDSR. With the applica-
tion of the attention mechanism, Zhang et al. [30] proposed
a residual channel attention network (RCAN), that worked
by inserting a channel attention module for considering the
interdependence between channels. Recently, Dai et al. [31]
proposed a second-order attention network (SAN) by ap-
plying the trainable second-order attention module to cap-
ture spatial information. Both the RCAN and SAN have
achieved promising performance in SISR reconstruction.

As shown in the above review, SISR methods efficiently
and effectively reconstruct the spatial information of single
images. However, these methods cannot directly handle the
correlation among multiple views, they cannot be applied to
the field of LFSR.

2.2. LF super-resolution

For LFSR, a straightforward way is fine-tuning the net-
work parameters of SISR. However, LFSR is more focused
on complementary information, which are provided by mul-
tiple LF images from one scene to reconstruct an SR im-
age. Existing LFSR methods can be mainly divided into
two categories: optimization-based and learning-based ap-
proaches.

Optimization-based approaches reconstruct SR images
based on the estimated disparities among different views.
Bishop and Favaro [8] first utilized a Bayesian framework
for LFSR. Wanner and Goldluecke [9, 10] proposed a vari-
ational method for SR by introducing the disparity maps
obtained from EPIs. Mitra and Veeraraghavan [ 1] pro-
posed a patch based approach modeled by a Gaussian mix-
ture model to solve the LF problems. The framework of
this method could handle many different processing tasks.
To better supplement complementary information and avoid
costly disparity estimation, Rossi and Frossard [32] pro-
posed an LFSR framework for the homogeneous recon-
struction of all views in the LF by using a graph-based
regularizer. After this, Alain and Smolic [33] have pro-
posed a method to convert the inverse problem of LFSR
into an optimization problem based on prior sparsity. Al-
though these methods could well encode the complex 4D
LF, optimization-based methods were not sufficient to sup-

plement the spatial information among different views.

Learning-based approaches demonstrate superiority to
optimization-based approaches in using complementary in-
formation among different views. Making full use of com-
plementary information can improve the quality of LFSR.
Yoon et al. [13, 14] have proposed a pioneering work in-
troducing CNN to the field of LF (LFCNN), while Yuan et
al. [12] proposed an SR method that fully exploited the par-
ticular structure of the LF with an SISR module and an EPI
enhancement module. These modules well maintained the
structural characteristics of LF. By extending BRCN [34],
Wang et al. [35] proposed a bidirectional recurrent convo-
lutional neural network (namely, LFNet) and stacked gen-
eralization techniques to synthesize the final sub-aperture
images. In this structure, the recurrent neural network was
improved to handle the structure of horizontal and vertical
directions. Within the network, the spatial correlations be-
tween neighboring views could be modified to be more ef-
fective and flexible. Inspired by residual network, Zhang et
al. [16] proposed a multi-branch residual network (resLF)
which handled image stacks with consistent sub-pixel off-
sets, and each branch could extract high-frequency details
from LF images. In addition, in order to preserve the par-
allax structure, Jin et al. [36] proposed a method with a
two-step LF spatial resolution by introducing a perspective
feature fusion module and the structural consistency regu-
larization loss (LF-ATO). More recently, Wang et al. [37]
proposed an LF-InterNet to extract and incorporate spatial
and angular information. This network could gradually in-
teract the spatial and angular information. The result of this
method has achieved high accuracy for LF reconstruction.

In summary, these methods implicitly learn the internal
correspondence of the LF structure, and they are gradually
making improvement to LFSR. However, due to the design
of the network structure, complementary information is still
not fully utilized. For example, LFNet designs a bidirec-
tional recurrent network to fuse angular information among
SAIs. This information only contains row and column di-
rections, and it cannot be efficiently used to reconstruct LF
images. Consequently, we propose a complementary-view
feature attention approach using the information of all aux-
iliary views to reconstruct the reference view.

3. Architecture of LF-CFANet

In this section, we introduce the 4D LF representation,
and propose a many-to-one LFSR network. The architec-
ture of our LF-CFANet is shown in Fig. 2. It is noteworthy
that the part of feature fusion is composed of two branches
(MDISB and a reservoir branch). For the target input of
our network, we convert LF images from RGB color space
to YCbCr color space and only super-resolve the Y-channel
images [36].
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Figure 2. Network architecture of the proposed LF-CFANet. The overall network is composed of four parts (feature extraction, feature
fusion, feature compression and reconstruction). The input of our network is SAls, which is composed of a reference view image and
auxiliary view images. The reference view is randomly selected from SAIs, and the remaining images are auxiliary view images. Finally,
the output is a super-resolved reference view image. Note that, c is the concatenation operation.

3.1. Structure of 4D LF Datasets Training Test LF Disparity Scene
EPFL[38] 70 10 [-1,1] Real-world
The parameterization of a 4D LF usually consists of two HClInew[39] 20 4 [-4,4] Synthetic
parallel planes. These planes can accurately describe the HClold[40] 10 2 [-3,3] Synthetic
light rays £(II,2). Each light ray intersects with the two INRIAH]L 35 5 [-1.1] Real-world
planes, which are respectively called a spatial plane and an STFgantry[+2] : 2 [-7.7] Real-world
P . STFlytro[43] 250 50 - Real-world
angular plane. As shown in Fig. 1(b), the spatial plane (Il = Total 300 7

(h,w)) and angular plane (€ = (u, v)) are used to describe
the structure of a 4D LF. Thus, one perspective of 4D LF
images can be described by fixing 2. Similarly, different
views of one 3D scene can be described with a fixed II.

Table 1. Public LF datasets used in our experiments

By fixing (w*, v*) and varying (h, u), the epipolar-plane
images (EPI) (I, o= (h,w)) can be obtained. In the same
way, I« o+ (w,v) can be obtained. EPI can intuitively re-
flect the position changes of the objects in LF images from

different views. The slope of EPIs represents the depth in-
formation of an object, so it can reflect the geometry struc-
ture of LF. At the same time, the integrity of the slope is an
important evaluation criterion for judging whether the result



of LFSR maintains the geometric structure.

3.2. Feature extraction

The quality of discriminative features with rich context
information is very useful to SR reconstruction. This in-
formation can be acquired by using a multi-scale receptive
field and feature learning. Therefore, the feature-extraction
module of our LF-CFANet follows [19], [44] and uses
atrous spatial pyramid pooling (ASPP) module to extract
the LF image features.

Fig. 2 shows the overall network architecture of the pro-
posed LF-CFANet. As what can be seen, the input Lig
is composed of SAls. The initial features (with 64 chan-
nels) of Ly are extracted by a 3x3 convolution which is
shown in Fig. 2(a), and then we use the multi-cascaded
residual ASPP (MRASPP) module shown in Fig. 2(b) for
multi-scale feature extraction to support the following parts.
Specifically, the initial features of the LF views are first fed
to the ASPP blocks, and the weights are shared for each
view in these blocks. For each ASPP block, it is composed
of three different dilated convolutions with a Leaky ReLU
layer. These dilated convolutions, with dilation rates (D)
1, 2 and 4, are used to extract Ly features with differ-
ent receptive field. After a Leaky ReLLU layer, we concate-
nate three output features and compress the number of chan-
nels through 1x1 convolution to make them more compact.
These ASPP blocks not only obtain multi-receptive fields
without changing the size of the feature maps, but also en-
rich the diversity of the convolutions. After three cascaded
residual ASPP blocks, the extracted feature of each view is
generated. These features can be specifically expressed as:

{Feiach|i: 1727'“7”} :fO (LLR)7 (1)

where f( represents the MRASPPBlock and n is the number
of SAIs.

For the output of MRASPPBlock (F_ ), the reference
feature is randomly selected from the number of n output
feature, and the auxiliary features are composed of the re-
maining features. These two types of features can be specif-
ically expressed as:

Fret = Feiach @)
Fajlux = Fe]ach7

wherei,j (1 <1i,j <UxV,i# j,i+j = n) represent the
angular positions. The number of features i is one, while
the number of features jis U x V — 1.

As shown in Fig. 2(a), we concatenate Fyor and each

FJ .« to form a feature pair {Fref, Fgux}. The way of
selecting the complementary-view pairs makes our model
more compatible for all views and increases the generaliza-

tion performance of the network.

Algorithm 1 Squeeze and excitation blocks
Require:
The feature pair { Fy, FJ } € Rr*wx64

1: Squeeze: The feature (Fy,F7J) compression is per-
formed along the spatial dimension.

For each channel, compute

Fi (Fr) = Wi Zwmt Zthl Fre(w, h);

For each channel, compute

F3 (F) = i Simw S Falw,h);

Each two-dimensional (H, W) feature channel becomes
a number, which has a global receptive field.

2: Excitation and Reweight: Each feature channel gener-
ates a weight to represent the importance of the feature
channel. The weight of the output of Excitation is re-
garded as the importance of each feature channel, and
it is applied to each channel by multiplication.
Compute F!* = F!, (Fl, (F)):

Compute Fp 7" = FLJ (FLJ (F])):
Ensure:
{Frl*’ Fal,j*} € Rhxwx64

3.3. Residual complementary-view spatial and channel
attention module (RCSCAM) in reservoir branch

The feature fusion part includes two branches. The
first branch is a reservoir branch, and the second branch is
MDISB. The reservoir branch is the key to fuse auxiliary-
view information to reference-view information by us-
ing RCSCAM. Inspired by the stereo-attention mecha-
nisms [20, 45] and spatial-temporal co-occurrence con-
straints [46—48], we develop an RCSCAM to supplement
the sub-pixel information of the reference view.

As shown in Fig. 2(c), the input pair of features
{Fref, F. gux} are separately fed to two ResBlocks (f1) with
64 channels. These two ResBlocks share the same weight.
The output features of f; are F., FJ € RH*XWx64,

To explore the correlation among feature channels, we
introduce SEBlocks following [18]. The pseudo-code to
capture the channel attention is provided in Algorithm 1.
This block processes the fed feature in three steps, the
squeeze process, the excitation process, the reweight pro-
cess. F, and FJ are respectively fed to globally adaptive
pooling (F ,FLJ) to obtain feature channels with 1x64
aggregated information. To capture channel-wise depen-
dencies, two fully-connected (F'C') layers are used. Then,
the output weight of the excitation process represents the
importance of the feature channel. They are applied to each
channel by multiplication. These processes are denoted as
(Fl.,FLJ). Then, the output are separately fed to 1x1 con-

volutions to generate the feature maps (F}, F.17). These
output can be specifically expressed as:
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Figure 3. An illustration of supplement sub-pixel information.
Here, a Lir (R3*3*%*h) is used as an example. We randomly
choose a reference view (U = 2,V = 1), and remaining views
are used as auxiliary views. For better comprehension, sub-pixel
information from different auxiliary views is visually represented
as stars with different colors. Note that, the information is added

to the blue dot in LFSR image.

F} = H, (fsp1 (Fy))
Fa = Hg (fsp2 (FY)),

where fsg1, fsgo represent the SEBlocks, H,, and Hg re-
spectively represent the 1x1 convolutions.

To generate a reference-auxiliary attention map, F1+7 is
first transposed to F}9T, and then geometry-aware matrix
is multiplied by matrix F}}. The output of multiplying these
two matrices is processed by the softmax to produce the

final attention maps (M? . ;€ RIXWXW) - Similarly,
J

3)

is generated. This process can be expressed as

ref—aux
follows:
szef—mux =5 (Frl ® F;’jT)T 4
Mflumﬂref =S (FPl ® F;’jT) ’

where ® is the operation of batch-wise matrix multiplica-
tion, S and T denote the softmax and transposition, respec-
tively.

To achieve information interaction of features between
the reference-view and the auxiliary-view, Wﬂ and
WJ

aur—re

ef—aux
¢ are generated by multiplying the input pair of
j J

features (Fref, Fux ref—aux’
M '

auz—sres)s TEspectively. Both wi! and W/

ref—aux aux—ref
contain the reference-view and auxiliary-view information.

) and the attention maps (M

W) et saue a0d W can be calculated as:
J — MJ
Wref—mux - M?jef—muac @ Fret (3)
J — J j
Wauz—)ref - Mauw—)ref ® Fgux'

As shown in Fig. 2, these two features (Wﬁ

) ef—aux’
W e f) are fed into two new SEBlock to generate new
features (W;’ejf auz® W;fm _yref)s Tespectively.

To retain the original features of reference and auxiliary

view, the input pair of features (Fref, FJ ) is concatenated
), respectively, and then fed to

’ j ’ J aux
with (Wr’ef—muac? Wajux—wef_

another 1x1 convolution. This process can be expressed as
follows:

FEJ =H, (cat (Frefa quﬂ’ejf—mui))
F27 = Hy (cat (Fgux’wl,j )) ’

aux—ref

(6)

where cat is the concatenation operator, H, and Hjs rep-
resent the 1x1 convolutions to fuse these two types of fea-
tures, respectively. 2/ and F2+J respectively represent the
fully fused features of each pair by our RCSCAM.

The interacted features of complementary views are gen-
erated in this process. These four SEBlocks can continually
distillate the valid information of the reconstruction. The
result (F24"7), fully integrating the complementary infor-
mation, can be expressed as:

Fo8 = cat (F29,F27). 7

In the training process, the reference view feature (Fyer)
is generated by randomly selecting from initial features.
Due to complex geometrical structure of LF images, the fu-
sion features (F ') obtained by RCSCAMs contain not
only complementary information, but also local similarity
information from different auxiliary views. The principle
of RCSCAM is to obtain the feature similarities to all pos-
sible disparities between each pixel in the reference view
and auxiliary view to generate an attention map. By intro-
ducing the attention mechanism, it makes the complemen-
tary information fully fused through feature-level informa-
tion interaction for reconstructing SR. The effectiveness of
RCSCAM is demonstrated in Section 4.3.

3.4. Maximum-difference information supplementary
branch (MDISB)

As the second branch of feature fusion, the MDISB is
used to select four maximum-difference fusion features for
guiding the reference view reconstruction. This branch
is to choose the four fusion features with the maximum-
difference information relative to the reference view from
the reservoir. After the RCSCAM, each pair of between ref-
erence view and auxiliary views generates one fusion fea-
ture. The number of fusion featuresisny = U xV —1 in to-
tal. Due to the parallax structure of the LF, the difference in-
formation of each auxiliary view is different to supplement
reference-view information. The four angular-position ini-

tial features [FL ., FY ., F2XV=1 FUXV] generated



Methods Scale EPFL HClInew HClold INRIA STFgantry STFlytro
Bicubic x2  29.50/0.935 31.69/0.934 37.46/0.978 31.10/0.956 30.82/0.947 33.02/0.950
VDSR[49] x2  32.01/0.959 34.37/0.956 40.34/0.985 33.80/0.972 35.80/0.980 35.91/0.970
EDSR[26] x2  32.86/0.965 35.02/0961 41.11/0.988 34.61/0.977 37.08/0.985 36.84/0.975
GB[32] x2  31.22/0.959 35.25/0969 40.21/0.988 32.76/0.972 35.44/0.983  35.04/0.956
RCAN[30] X2  33.46/0.967 35.56/0.963 41.59/0.989 35.18/0.978 38.18/0.988 37.32/0.977
SANI[31] x2  33.36/0.967 35.51/0.963 41.47/0.989 35.15/0.978 3798/0.987  37.26/0.976
LFBMDS5D[33] x2  31.15/0.955 33.72/0.955 39.62/0.985 32.85/0.969 33.55/0.972 35.01/0.966
resLF[16] x2  33.22/0.969 35.79/0.969 42.30/0.991 34.86/0.979 36.28/0.985 35.80/0.970
LFSSR[17] X2  34.15/0.973 36.98/0.974 43.29/0.993 35.76/0.982 37.67/0.989 37.57/0.978
LF-ATO[36] x2  34.49/0.976 37.28/0.977 43.76/0.994 36.21/0.984 39.06/0.992  38.27/0.982
LF-InterNet[37] x2  34.76/0.976 37.20/0.976 44.65/0.995 36.64/0.984 38.48/0.991 38.81/0.983
Ours X2  34.92/0.976 37.46/0.977 44.16/0.994 36.81/0.985 39.48/0.992 38.91/0.983
Bicubic x4 25.14/0.831 27.61/0.851 32.42/0.934  2682/0.886  25.93/0.843 27.84/0.855
VDSR[49] x4  26.82/0.869 29.12/0.876 34.01/0.943 28.87/0.914 28.31/0.893  29.17/0.880
EDSR[26] x4 27.82/0.892 29.94/0.893 35.53/0.957 29.86/0.931 29.43/0.921 30.29/0.903
GB[32] x4 26.02/0.863 28.92/0.884 33.74/0.950 27.73/0.909 28.11/0.901 28.37/0.873
RCAN[30] x4 28.31/0.899 30.25/0.896 35.89/0.959 30.36/0.936 30.25/0.934 30.66/0.909
SAN[31] x4 28.30/0.899 30.25/0.898 35.88/0.960 30.29/0.936 30.25/0.934 30.66/0.909
LFBMD5D[33] x4 26.61/0.869 29.13/0.882 34.23/0.951 28.49/0.914 28.30/0.900 29.07/0.881
resLF[16] x4 27.86/0.899 30.37/0.907 36.12/0.966 29.72/0.936 29.64/0.927 28.94/0.891
LFSSR[17] x4 29.16/0.915 30.88/0.913 36.90/0.970 31.03/0.944 30.14/0.937 31.21/0.919
LF-ATO[36] x4 29.16/0917 31.08/0.917 37.23/0.971 31.21/0.950 30.78/0.944 30.98/0.918
LF-InterNet[37] x4  29.52/0.917 31.01/0.917 37.23/0.972 31.65/0.950 30.44/0.941 31.84/0.927
Ours x4 29.58/0917 31.24/0.918 37.24/0.972 31.89/0.951 31.05/0.948 31.99/0.928

Table 2. PSNR/SSIM values achieved by different methods for 2x and 4xSR, the best results are in red and the second best results are in

blue

by the MRASPP block have maximum-difference informa-
tion compared with the reference view. These four features
concatenating with the reference-view feature are fed into
the RCSCAM. The output of these four features through
RCSCAM is [Fot, FouV poub U V=) pout Ux V),
Then, a concatenation operator (cat) is used to combine
the output from RCSCAM. This MDISB process can be ex-
pressed as:

Fout,i — cat <F0ut,1 Fout,U Fout,UX(Vfl) Fout,UxV

ref’ ref’ 7" ref’ 77 ref’ ’ " ref’ ’

®)
represents the output of our
MDISB for reference-view position, the input
[F::fi’l,F::ft,’U,Ff‘:ft,’UX(V_l),F;’:ft/UXV] represent the
fusion features that supplement the complementary-view
information to Fyer by using our RCSCAM, respectively.
As shown in Fig. 2(a), we concat these four features and
compress them by a 3x3 convolution. The depth of this
final feature is 64.

out,i
where I,

3.5. Feature compression

For feature compression, it can compress the fea-
ture depth to adapt to the part of reconstruction. We
use ResBlocks to process each feature, which are

out,1 out,j out,i out,j+1 out,end
Fref vt 7Fref ’ Fref’ ’Fref 1t Fref from
two branches. All ResBlocks share the same parameters.

We stack these features from all auxiliary views. These
features are trained to integrate the complementary in-
formation from RCSCAM, and the maximum-difference
information from MDISB. The output for feature compres-
sion can be written as:

Foubred = Stack[Fosit, .. o,

ref ref

Fout,i

ref’

out,j+1
Foof .

Fout,end} 7 (9)

o S ref

where Stack is the operation of the feature stack.
3.6. Reconstruction

Inspired by the architecture of [49] in SISR, we set a sim-
ilar structure to reconstruct the SR images. Following the
method of [17], the feature (F""') from the compres-
sion module firstly is reshaped and processed by a SAS-
Block. The process of SASBlock repeats 3 times to inte-
grate angular and spatial domain information. The output
feature is fed into two ResBlocks (with 64 channels). One
ResBlock (two residual blocks) is for channel-wise view
fusion. The other ResBlock (three residual blocks) is for
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Figure 4. Visual comparisons of different methods on 2x / 4x reconstruction.
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Figure 5. Comparison of the PSNR of individual SAIs. Here, 7x7 input views are used to perform 2xLFSR. We use standard deviation
(Std) to represent their uniformity.

channel fusion to generate the final reference-view feature layer, a shuffle layer and a convolution layer in order. Fi-
(Fr"e‘}t’ref ). nally, LS; is generated by adding the residual map with

To reduce the memory consumption and computational the upsampled image. The reconstruction image from one
complexity, we utilize an up-sampling Block Up(-) to in- angular position can be expressed as:

crease the resolution of the reference-view image (me ). i tref
This block, inspired by [16], is composed of a convolution L =Up (F::f e ) ) (10)



—*— LFSSR
7 ® - LF-ATO
O W
— — — LF-InterNet
‘ \ —-©-— LF-CFANet
&/ \ O\ BNy o =
5 AN

[235) P
® v} VAN
d

PSNR

0 5 10 15 20 25 30 35 40 45 50
SAls

Figure 6. Comparison of the PSNR of individual SAIs.

where Up represents the process of reconstruction.

In order to be comprehensive, we use Fig. 3 to simplify
our network on the LFSR process. Specifically, we first ran-
domly select a view as the reference view, and then input all
the views into our network. Through feature extraction, fea-
ture fusion, feature compression and reconstruction in our
network, these processes can fully learn the differential sub-
pixel information from the auxiliary views. The information
can be added to the reference view for reconstruction.

4. Experiments

In this section, we first introduce the datasets (real-world
scenes, synthetic scenes) and the implementation details.
Then, we compare our LF-CFANet to several state-of-the-
art SISR and LFSR methods. Finally, we conduct ablation
studies to investigate the performance of our network with
individual component modules.

4.1. Experimental Setup
4.1.1 Datasets

LF images are divided into two categories: synthetic
datasets and real-world datasets. For real-world datasets,
they are captured by different devices with different base-
line lengths. Therefore, it is more meaningful for LF al-
gorithms to adapt different datasets with different base-
line lengths. As listed in Tab. 3.1, 6 public LF datasets
(EPFL [38], HCInew [39], HCIold [40], INRIA [41], STF-
gantry [42] and STFlytro [43]) were used for training and
testing in our experiments. There were a total of 394 LF
scenes for training and 73 LF scenes for testing. For these
datasets, the properties are different. Specifically, EPFL,
INRIA and STFlytro are composed of rich outdoor-scene
images captured with a Lytro Illum camera. HCInew, HCI-
old and STFgantry contain indoor LF images. The LF dis-
parity of these datasets is multifarious and the angular res-

olution is 9 x 9 for each LF datasets. For both training
and testing, low-resolution LF images were generated by
the bicubic interpolation method.

4.1.2 Implementation Details

In our network, we have two types of convolutional layers,
which are 3 x 3 and 1 x 1. All the 3 X 3 convolutional
layers are zero-padded to keep the size of spatial resolution,
and we set the number of Resblocks to 2,2,3 residual blocks
in order. The feature depths of residual blocks are all 64.

In the training stage, we randomly crop the input LF im-
ages with the spatial size of 64 x 64. These cropped LF
images are randomly processed by flipping the images hor-
izontally or vertically, or rotating them 90 degrees. The fac-
tor of r is 2 or 4, and we respectively train the network
with different factors. We train our network with Adam op-
timizer (8, = 0.9, B2 = 0.999). The initial learning rate
was set to 1e~* and decreased by a factor of 0.5 every 250
epochs. In particular, the training of the full LF-CFANet is
stopped after 600 epochs.

4.2. Comparison with State-of-the-Art Methods

We compared our LF-CFANet with recent state-of-the-
art SISR and LFSR: Bicubic, VDSR [49], EDSR [26],
GB [32], RCAN [30], SAN [31], LFBMDS5D [33],
resLF [16], LFSSR [17], LF-ATO [36] and LF-
InterNet [37]. For a fair comparison these methods have
been re-trained on the same training dataset as our method.
Meanwhile, we chose bicubic interpolation as a baseline for
comparison. For evaluation metrics, Peak Signal-to-Noise
Ratio (PSNR) and structural similarity (SSIM) were used as
quantitative metrics for performance evaluation. The higher
value of these two metrics denotes the better LF reconstruc-
tion performance.

4.2.1 Quantitative Comparisons Results

The quantitative metrics (PSNR/SSIM) with 5x5 angular
resolution for the 6 testing datasets are listed in Tab. 3.3.
Note that, our method achieved higher PSNR and SSIM
than SISR method RCAN[30]. Specifically, our method had
an average increase of 1.7dB (x2) and 1.2dB (x4) higher
in PSNR on the testing datasets. That is because, com-
plementary information can be used effectively under the
structure of LF. Moreover, our method achieved the best re-
sults in real-world datasets (EPFL, INRIA, STFgantry) and
synthetic datesets (HCInew, HCIold). That is because, our
LF-CFANet is based on the feature fusion driven by the at-
tention mechanism, thus it is sensitive to disparity.

Due to different angular resolutions, the PSNR of each
view in SAls are not identical. As shown in Fig. 5 and
Fig. 6, we also give the comparison of the PSNR of in-
dividual SAIs among LFSSR, ATO, LF-InterNet and our
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Figure 7. Visual comparisons of different methods on x2 reconstruction for both synthetic and real-word scenes. The predicted central
SAls, the zoom-in of the framed patches, the EPIs at the colored lines. Zoom in the figure for better viewing.

method. Comparing with the same many-to-one approach
(LF-ATO), our approach shows the significant performance
improvements, as illustrated in Fig. 6. Although LFSSR,
LF-ATO and LF-InterNet can use the angular information
from all input views to super-resolve each view, our method
can be observed that the gap among maximum-difference
views of our method is much smaller than that of other
methods. That is because, our method obtains the improve-
ment by introducing MDISB to decrease the information
degradation of maximum-difference views. The reconstruc-
tion quality of LF-CFANet is slightly higher than those of
LFSR methods. Moreover, the computational efficiency
of some state-of-the-art methods (LF-ATO, LF-InterNet) is

demonstrated in Tab. 4.2.1. Note that, our method consumes
little computational efficiency but achieves the best results.

4.2.2 Qualitative Comparisons Results

We provide the visual comparisons of different methods,
as shown in Fig. 4 for x2 and x4 LFSR. Our LF-CFANet
is able to restore the fine details and textures, such as the
wheels in STFlytro_building_30. However, the comparison
methods lost most high-frequency details in the reconstruc-
tion results. Comparing with our method, VDSR and SAN,
state-of-the-art SISR methods, had poor details, because
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Figure 8. Visual comparisons of different methods on x4 reconstruction for real-word scenes. The predicted central SAls, the zoom-in of
the framed patches, the EPIs at the colored lines. Zoom in the figure for better viewing.

both of them lack the complementary information to sup-
plement image reconstruction. Although resLF, LF-SAS,
LF-ATO and LF-InterNet methods could generate better re-
sults than SISR methods, they are not efficient to make use
of complementary information in the process of LESR. Our
method can effectively and efficiently reconstruct LF im-
ages by introducing a channel and spatial attention mech-
anism. The more visual comparisons about LF parallax
structure of LFSR methods are shown in Fig. 7 and 8. It
can be seen that our method has clearer and more straight
lines compared with the other LFSR methods. It was also be
demonstrated that our method could preserve the structure
characteristics of LF.

4.3. Ablation Study

In this subsection, we implement several experiments to
investigate the effect of performance with different archi-
tectures.

4.3.1 Effectiveness of the MRASPP for feature extrac-
tion

The MRASPP is used to extract discriminative features.
In order to make the experiment more convincing, we use
LF-CFANet-onlyMRASPP and LF-CFANet-rmMRASPP
to prove the effectiveness of the MRASPP. The results are



Architecture PSNR SSIM Parameter
Bicubic 33.02 0.950 —

LF-CFANet-onlyMRASPP  38.62  0.980 2.32M
LF-CFANet-rmMRASPP 38.85 0.982 2.63M
LF-CFANet-onlyMDISB 38.71 0.982 2.54M
LF-CFANet-rmMDISB 38.87 0.983 2.41M
LF-CFANet-onlyRCSCAM  38.71  0.982 2.05M
LF-CFANet-rmRCSCAM  38.78 0.983 2.91M
LF-CFANet 3891 0.983 3.00M

Table 3. The comparison results of different architectures of LF-
CFANet on the dataset STFlytro with upscaling factor x2. The
result of bicubic method is listed as baseline. Note that, the
meaning of onlyMRASPP, onlyMDISB and onlyRCSCAM is that
only MRASPP, MDISB and RCSCAM block are used in our LF-
CFANet, respectively. Meanwhile, the meaning of rmMRASPP,
rmMDISB and rmRCSCAM is that only MRASPP, MDISB and
RCSCAM block are removed in our LF-CFANet, respectively.

Network Parameters(M) FOPs(G) Time(s) PSNR(dB)
LF-ATO [36] 1.36 28.08 28.03 31.08
LF-InterNet [37] 4.80 47.46 52.21 31.01
LF-CFANet 3.00 51.14 63.04 31.24

Table 4. Comparisons of parameters, FLOPs and Times for x4.
FLOPs are calculated on 5x5x32x32. Time is calculated in an LF

dataset
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Figure 9. An illustration for supplement different information in
MDISB. To be fair, we fix the angular position of reference view.
The reference view is indicated in yellow. The blue blocks repre-
sents the angular positions of auxiliary views, which are used to
supplement different information in MDISB.

shown in Tab. 4.2.1. As expected, LF-CFANet-rmMRASPP
suffered a 0.06 dB decrease after removing MRASPP. That
is because, our MRASPP extracted features with different
scales, which can make the feature representations more
robust. Meanwhile, discriminative features with rich con-
text information can be extracted by using multiple recep-
tive field of atrous convolutions. Therefore, our model can
obtain accurate features to reconstruct LF.

Architecture PSNR SSIM
MDISB (0°) 38.83  0.983
MDISB (45°) 38.84 0.983
MDISB (90°) 38.81 0.983

MDISB (135°) 38.89  0.983
MDISB (minimum)  38.87 0.964
MDISB (maximum) 38.91 0.983

Table 5. THE COMPARISON RESULTS OF DIFFERENT
SUPPLEMENT INFORMATION OF MDISB ON THE DATASET
STFLYTRO WITH UPSCALING FACTOR X2.

4.3.2 Effectiveness of the MDISB for feature fusion

MDISB is used to guide the reference view reconstruction.
To validate the effectiveness of the MDISB, we remove this
block, and we show the results in Tab. 4.2.1. LF-CFANet-
rmMDISB suffered a 0.04 dB decrease comparing with LF-
CFANet. That is because, this block can strengthen the in-
fluence of angular-position features on the process of recon-
structing the reference-view image. Recall that in Eq. (8),
we select four angular-position features with maximum-
difference information according to the structure of LF to
enhance the influence of maximum-difference views.

As shown in Tab. 4.3.3 and Fig. 4.2.2, we also inves-
tigated the performance of MDISB with different angu-
lar positions for auxiliary views. The reconstruction ac-
curacy consistently improved, as the degree of differenti-
ated information increased. Tab. 4.3.3 shows that MDISB
(maximum) had the best result. That is because, MDISB
(0°), MDISB (45°), MDISB (90°) and MDISB (135°) just
provide differentiated information in the same direction,
while the difference information for MDISB (minimum)
and MDISB (maximum) have four directions. Meanwhile,
the four views in MDISB (maximum) are the furthest away
from the angular position of reference view, and the max-
imum degree of differentiation can be provided for recon-
structing the reference view.

4.3.3 Effectiveness of the RCSCAM for feature fusion

The RCSCAM plays a key role in our LF-CFANet. This
model can enhance the complementary information ex-
ploitation capability between the reference view and com-
plementary view by introducing the attention mechanism.
For a comparative experiment, we just use feature concate-
nation to replace our RCSCAM. As shown in Tab. 4.3.3,
the block had a significant influence on the result, and the
PSNR suffered a 0.13 dB decrease. Without a spatial and
channel attention mechanism, the complementary informa-
tion from the cross-parallax image cannot be effectively
learned to supplement the reference view.



5. Conclusions

In this paper, we address the LFSR problem by propos-
ing the complementary-view feature attention network (LF-
CFANet). The LF-CFANet is mainly to improve the fusion
of complementary-view information, by using RCSCAM
and MDISB. For RCSCAM, we use spatial and channel at-
tention to effectively extract the complementary-view fea-
ture information to supplement the reference view. To guide
the reference view reconstruction, MDISB is proposed to
supplement the most differentiated feature-level informa-
tion. As demonstrated in the experiments, MDISB works
well in the process of reconstruction. In this way, the refer-
ence view image can be effectively and efficiently recon-
structed. The experimental results demonstrate that our
method achieves the state-of-the-art quantitative and qual-
itative SR performance in LF, and it is more robust to real-
world scenes.

It is worth noting that the quality of the supplementary
information from MDISB is crucial and improves the re-
construction accuracy. Therefore, a further study of the
maximum-difference views is needed, and could possibly
use less views to reconstruct the whole LF views. For future
work, we will use the framework of encoder and decoder to
improve the quality of feature fusion with fewer LF views.
In this case, it can take a further step toward consumer ap-
plications.
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